
Chapter 4
Rotators and Snakes

Vadim Ptitsyn

Abstract This lecture introduces various kinds of spin rotating devices used in
present particle accelerators. They include Siberian Snakes used for polarization
preservation and spin rotators used for creating a specific polarization orientation in
experimental locations. Following the analysis of spin rotation in different types
of magnets, approaches for designing spin rotating devices are discussed. Con-
siderations for appropriate design choices of spin rotating devices in dependence
on the beam energy are given. Examples of Snakes and spin rotators used in past
accelerators as well as designs considered for future ones are presented.

4.1 Spin Rotation Devices

When describing spin motion in a circular accelerator the central role belongs to
periodical spin solution .n̂0 on beam closed orbit:

.n̂0(s) = n̂0(s + C) (4.1)

which is also called the stable spin direction. The importance of the vector .n̂0(s)
comes from the fact that particle spin aligned along this vector repeats its direction
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on every turn. Particle spins not aligned with the vector .n̂0 rotate around this vector,
thus the spin projections on the vector .n̂0 are preserved. This defines an observable
beam polarization at a given location.

Let’s first consider a circular accelerator without any spin rotators. We assume
that there is no magnet misalignments or magnet errors affecting the beam vertical
orbit. Thus, the closed beam orbit is formed by vertical guiding field of dipole
magnets and is in the horizontal plane everywhere. It is easy to see that in this
case the periodical spin solution .n̂0 is vertical at any ring azimuth s. And it remains
vertical for any beam energy. Without betatron coupling the stable spin solution
also remains vertical on a closed orbit for off-momentum particle, defined by the
horizontal dispersion function. Obviously, this is very good case for controlling the
polarization since one gets spin orientation at all energies parallel.

But often one needs to change the stable spin direction from vertical, which
can be done by introducing non-vertical fields on the closed beam orbit in the
accelerator. It affects the stable spin direction and makes it to deviate locally
or globally from the vertical. Examples of such non-vertical fields are solenoid
magnets having longitudinal field, or vertical bending magnets having a horizontal
magnetic field. Various kinds of spin rotating devices utilizing non-vertical guiding
fields are used in circular accelerators. They include:

• Siberian Snakes (or Full Snakes) which are used to prevent polarization loss when
crossing spin resonances

• Partial Snakes which are used to improve the spin resonance crossing when Full
Snakes are not feasible

• Spin Rotators around an experimental point to produce different from vertical
beam polarization orientation at an experimental detector.

When working on design of a spin rotating device scientists and engineers
become concerned with several design aspects. The spin rotating device should be
compact in order to fit well into the accelerator lattice. It should produce sufficiently
small orbit excursions. It also should have minimum effect on the beam optics and
non-linear beam dynamics. Some of spin rotating devices have to operate in wide
energy range.

In following description spin rotation matrices in the spinor presentation will be
given for different types of magnets and spin rotating devices. We will use the spinor
matrix form corresponding to right-handed convention for the spin rotation:

.M = exp[−i(σ · b)
ϕ

2
] = I cos(ϕ/2) − i(σ · b) sin(ϕ/2) (4.2)

where .ϕ is the spin rotation angle around the rotation axis .b (.b is unit vector), and
.σ is a vector with components the Pauli matrices (Chap. 3).
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4.2 Spin Rotation in Different Types of Accelerator Magnets

4.2.1 Spin Rotation in Solenoidal Field

First, we consider a solenoidal magnet which is a magnet with the longitudinally
oriented magnetic field. In such magnet a particle which travels along the magnet
axis preserves straight line trajectory. The spin rotates around longitudinal direction,
hence the longitudinally oriented spin is preserved. The spin rotation angle around
the longitudinal axis for a particle with the charge e, momentum p and anomalous
magnetic moment G is defined by the field integral of solenoidal field:

.φsp = −(1 + G)
e

p

∫
Bsol · ds (4.3)

If one would want to realize the spin rotation .φ using the solenoidal magnet, the
required field integral is:

.Bsol · L = φ

π

10.479

1 + G
p(GeV/c) (4.4)

For 20GeV/c protons (.G = 1.79) to rotate spin by 180.◦ the field integral .Bsol ·L =
75.1 T.·m is needed. For the electron beam (.G = 0.00116)1 having the same 20GeV
energy, the required field integral is considerably larger: .Bsol · L = 209.3T.·m .

The major convenience of the spin rotator design based on solenoidal magnets
is that the beam orbit is not distorted in this case. A disadvantage is that the field
integral required for spin rotation is proportional to particle momentum. Thus, the
use of these spin rotators is limited to the energies below 30GeV.

The spinor transformation matrix for solenoidal field is written as:

.Msol = cos(φsp/2) − iσ2 sin(φsp/2) (4.5)

4.2.2 Spin Rotation in Dipole Field

In a dipole magnet the magnetic field is orthogonal to the particle trajectory. The
beam trajectory is curved. The spin equation becomes:

.
dS
ds

= −e(1 + Gγ )

p
Bdip × S (4.6)

1 We would like to note that the accepted symbol in scientific papers for the electron magnetic
anomaly is a.
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The particle spin rotates around the magnetic field direction. But when consider-
ing the spin rotation angle resulting formulas depend on the coordinate frame. Often
the laboratory frame, which has fixed orientation of coordinate axes, presents an
appropriate coordinate frame for considering spin propagation. For instance, when
considering a spin rotator with the particle orbit restored at the end of the rotator the
laboratory frame is more convenient choice for design consideration. Resulting spin
rotation angle in the laboratory frame can be written as:

.φsp = −(1 + Gγ )
e

p

∫
Bdip · ds = −(

1

γ
+ G)

e

mβc

∫
Bdip · ds (4.7)

Let’s note that in this case for relativistic beams (.γ >> 1) the spin rotation does not
depend on the beam energy. It is all defined by the field integral.

Another coordinate frame that can be used is the accelerator frame which follows
particle velocity rotation on the design closed orbit. The particle velocity vector
remains constant in the accelerator frame. If one considers the spin rotation in a
dipole magnet in such frame, the rotation of particle velocity is subtracted. It leads
to the spin rotation proportional to the particle .γ :

.φsp = Gγ
e

p

∫
Bdipds = Gγθ (4.8)

where .θ is the velocity rotation angle. One obvious conclusion from the formula
(4.8) is that in a ring with only vertical guiding field one turn spin rotation is .2πGγ ,
which defines the spin tune equal to .Gγ .

4.2.3 Spin Rotation in Helical Dipole Field

As shown in Fig. 4.1 a helical dipole magnet is described by the following paraxial
field (without magnet edges):

.By = B0 cos ks, Bx = −B0 sin ks (4.9)

Fig. 4.1 The fields in one
period of helical dipole
magnet

BxBy
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where

.k = R
2π

λ
(4.10)

and .λ is the helical twist period. Compared with common dipole the helical dipole
has an additional parameter, the helicity R, which is equal to either +1 or -1.

Actual helical field is intrinsically nonlinear. It also contains longitudinal off-
axis component. For instance, if we limit consideration to second order terms in
transverse coordinates, the helical field expressions become:

.Bx = −B0{[1 + k2

8
(3x2 + y2)] sin(ks) − k2

4
xy cos(ks)}

By = B0{[1 + k2

8
(x2 + 3y2)] cos(ks) − k2

4
xy sin(ks)} (4.11)

Bs = −B0k{x cos(ks) + y sin(ks)}

But, in most cases, when the particle trajectory stays close to the helical magnet
axis, the evaluation of the spin and particle motion using the paraxial helical fields
presents a quite good approximation.

Resolving the orbital motion in the paraxial approximation one gets following
expressions for a particle trajectory:

.x(s) = −r(1 − cos(ks)) + x0 + x ′
0s, (4.12)

y(s) = −r sin(ks) + y0 + (y ′
0 + kr)s

The trajectory is a spiral with a shifted axis. The radius r of the spiral orbit is:

.r = eB0

k2p
= B0c

k2β

e

E
(4.13)

If .x ′
0 = 0 and .y ′

0 = 0 the orbit is shifted after one helix period by:

.δy = 2πRr (4.14)

as shown in Fig. 4.2. One can note that flipping simultaneously the sign of magnetic
field and the helicity does not change the orbit shift.

For evaluation of the spin motion it is convenient to use a coordinate frame,
rotating around the longitudinal axis in which the vector of magnetic field remains
constant. In the rotating coordinate frame the spin motion equation

.
dS
ds

= W̃k × S (4.15)
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Fig. 4.2 The beam orbit
transformation through one
period of helical dipole
magnet
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has the spin precession vector .W̃k with following components:

.W̃x = 0

W̃y = −e(1 + Gγ )

p
B0, (4.16)

W̃s = −k

Since the precession frequency is constant the spin motion is easily resolved.
After one helix period the axes of rotating and laboratory frame coincide. From here
one can find one period transformation of the spin vector in the laboratory frame.
This transformation is characterized by the rotation angle .φsp and the rotation axis
.b:

.φsp = 2π
√
1 + χ2. (4.17)

bx = 0, by = − χ√
1 + χ2

, bs = − R√
1 + χ2

.. (4.18)

χ = (G + 1/γ )
eB0

mβc|k| (4.19)

The helical dipole has an additional degree of freedom compared with the normal
dipole: the helicity of helical twist R. That leads to four possible orientations of spin
rotation axis of one period spin transformation, as shown in Fig. 4.3 with the same
spin rotation angle .φsp. Two of the axes orientations correspond to a positive shift of
the beam orbit, while two others correspond to a negative shift. All this provides a
good degree of flexibility when designing a spin rotator device consisting of several
one period helical dipole modules. In addition, by rotating a helical dipole magnet
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Fig. 4.3 Possible spin
rotation axes of one turn spin
transformation in a helical
dipole magnet

Fig. 4.4 The Wien filter
exploits a combination of
orthogonal electric and
magnetic fields to rotate spin
but keep the beam orbit not
distorted

trajectory

around its longitudinal axis one can place the spin rotation axis in other planes,
defined by the orientation of the magnetic field at the magnet entrance.

4.2.4 Spin Rotation in Combined Electrical and Magnetic
Field: Wien Filter

At very low energies an elegant way to realize spin rotation without distorting the
beam orbit is given by the Wien filter. The Wien filter utilizes a combination of
static transverse electrical and magnetic fields, oriented orthogonally to each other
(Fig. 4.4). In order to have the beam trajectory straight the following condition
relating electric and magnetic field values has to be satisfied:

.
E × v

c2
= 1 − γ 2

γ 2 B⊥ (4.20)

The spin rotation axis is defined bymagnetic field direction. And the spin rotation
angle is:

.ϕ = e(1 + G)

γ 2βmc

∫
Bds (4.21)

.γ 2 dependence of the spin rotation limits using this device to very low energies. The
required electrical field also becomes unreasonably large at kinetic beam energies
above few MeV. The Wien filter is commonly used as a spin rotator for polarized
particle sources.
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4.3 Siberian Snakes

4.3.1 Main Properties of the Snakes

The Siberian Snake (or the Full Snake) is a spin rotating device which rotates
particle spin by 180.◦ around some rotation axis (Fig. 4.5). The rotation axis is
called the Snake axis and usually placed in horizontal plane. In the following we
will consider only Snake with the Snake axis in the horizontal plane. The angle .αs

characterizing the orientation of the Snake axis in the horizontal plane is called the
Snake axis angle. We will count the value of .αs from the horizontal transverse axis.

For the Siberian Snake having the Snake axis in the horizontal plane the spinor
matrix is written as:

.Msnake = −i(σ1 cosαs + σ2 sin αs) (4.22)

Following two relations are very useful when analyzing spin transformation
properties of an accelerator ring with Full Snakes.

1. Relation 1:

.Msnake = exp(−iαsσ3) · (−iσ1) (4.23)

This relation means that any Siberian Snake transformation can be presented as a
rotation by 180.◦ around horizontal axis, followed by the rotation by .2αs around
vertical axis.

2. Relation 2:

.V (φ)Msnake = MsnakeV (−φ) (4.24)

where .V (φ) is the rotation about vertical axis by an angle .φ:

.V (φ) = exp(−iσ3
φ

2
) (4.25)

Fig. 4.5 The spin
transformation by a Siberian
Snake
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Deriving these relations by exercising the spinor math we leave for the homework
(see Exercise 1 in the Sect. 4.6).

Original Siberian Snake concept was invented by Derbenev and Kondratenko [1].
As youwill see in the following the Siberian Snakes can be applied for two purposes.
First is for controlling a direction of beam polarization in a particular location. For
this purpose one Siberian Snake can be used. The second purpose is to prevent
depolarization caused by spin resonance crossings when accelerating a particle
beam in an accelerator ring. For this purpose, two Snakes (or, in general even
number of Snakes) are usually considered. The invention of the Siberian Snake
concept opened a way for achieving highly polarized proton beams at the energies
of tens of GeV and higher.

4.3.2 Case of One Snake

We start with considering an accelerator ring with one Snake (Fig. 4.6). It is
convenient to take the origin point of the ring azimuth in a ring location opposite to
the Snake. Spin rotation in the arcs is described by the matrix V which represents
rotation around vertical axis by .Gγπ . To evaluate one turn matrix the Relation 2
can be used:

.Mturn = V (Gγπ)MsnakeV (Gγπ) = MsnakeV (−Gγπ)V (Gγπ) = Msnake

(4.26)

arriving to the conclusion that one turn spin transformation matrix is the Snake
matrix.

Fig. 4.6 The layout of a ring
with one Snake
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From here one can deduce the following properties for the accelerator ring with
one Full Snake:

• The stable spin direction .n̂0 at the ring azimuth opposite to the Snake is directed
along the Snake axis.

• The stable spin vector .n̂0 remains in the horizontal plane in the accelerator ring
arcs.

• The spin rotation angle .µ of the one turn matrix is equal to .180◦. Therefore the
spin tune is:

.νsp = µ

2π
= π

2π
= 1

2
(4.27)

Thus, the spin tune remains at constant value .1/2 independently of the beam
energy. This is a wonderful property which, as will be seen in following sections,
is characteristic for accelerators with Full Snakes.

Main application of the single Snake configuration is related with producing the
longitudinal polarization orientation for physics experiments. For this purpose, the
Snake with longitudinal Snake axis has to be put at the ring azimuth opposite to
the experimental detector. Such configuration was used in two electron accelerators,
AmPS [2] in Amsterdam and the SHR ring [3] at MIT-Bates. They applied a single
Siberian Snake to create the longitudinal polarization at the locations of internal
targets.

The single Snake configuration can be also used for preventing depolarization
during proton beam acceleration by avoiding spin resonance conditions, since the
spin tune is held at fixed value .1/2. But having the stable spin vector in horizontal
plane creates the coupling with horizontal betatron motion. Another inconvenience
is that the vector .n̂0 has strong dependence on beam energy in the ring arcs. These
issues can be resolved by using two Snakes.

4.3.3 Case of Two Snakes

Now we consider an arrangement with two Snakes placed at opposite azimuths of
the accelerator ring (Fig. 4.7). The Snake axis angles of these Snakes are .αs1 and
.αs2.

Again for the analysis of the 2-Snake configuration properties one needs to start
with calculating one-turn spin transformationmatrix. For the ring azimuth right after
the first Snake, one turn matrix calculation, using on the way both Relations 1 and
2, leads to:

.Mturn = Msnake1V (Gγπ)Msnake2V (Gγπ) = Msnake1Msnake2V (−Gγπ)V (Gγπ)

= Msnake1Msnake2 = exp(−iαs1σ3) · (−iσ1) exp(−iαs2σ3) · (−iσ1)

= exp(−i(αs1 − αs2)σ3)(−σ 2
1 ) = exp(−i(αs1 − αs2)σ3) (4.28)
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Fig. 4.7 The layout of a ring
with two Snakes

From the one turn spin transformation matrix .Mturn one can get two characteris-
tic properties of two Snake configuration:

• Stable spin direction .n̂0 is vertical in the ring arcs, pointing up in one half, and
down on another.

• Spin tune is independent of particle energy and is defined by the Snake axis
orientations:

.νsp = 2(αs1 − αs2)

2π
= (αs1 − αs2)

π
(4.29)

For instance, to get the spin tune equal to 0.5, the Snake axes should be at .90◦
angle to each other. And unlike the case with one Snake per ring, the 2-Snake
configuration allows for any choice of the spin tune, not only .0.5 value. It should
be noted that the energy independence of the spin tune is due to Snake placement at
the opposite ring azimuths. The homework Exercise 3 in the Sect. 4.6 considers the
effect of the Snake axis and bending angle errors on the spin tune.

With the stable spin oriented vertically at all energies the 2-Snake configu-
ration is a preferable solution for accelerating polarized beams through the spin
resonances.This configuration was implemented in RHIC for accelerating polarized
protons from 25GeV to 255GeV energy [4]. Each RHIC ring contains two Snakes
placed in opposite ring azimuths to each other (Fig. 4.8). The Snake axes of RHIC
Snakes were chosen to be at 45 and 135.◦, that is symmetrical with respect to
the longitudinal direction. According to (4.29) the spin tune is equal to .0.5 . Due
to the Snakes polarized protons in RHIC have been accelerated to 255GeV with
minimal polarization loss. The polarization loss still happens due to high order
resonances (so-called Snake resonances [5]). The resonance conditions for the
Snake resonances are:

.νsp = N + m · Qy + n · Qx (4.30)
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Fig. 4.8 The scheme of RHIC setup for polarization. Each ring contains two Siberian Snakes. In
addition, the spin rotators are used around experimental detectors

where N , m and n are arbitrary integers. The Snake resonances must be avoided
by proper control of the betatron tune and betatron coupling. The analysis of the
Snake resonances is beyond the scope of this lecture, but if you are interested in
getting more information on them the following papers are recommended: [5–7].
The homework Exercise 4 in the Sect. 4.6 considers the Snake resonance values and
the number of resonances for different spin tunes.

4.3.4 Case of Multiple Snakes

As the spin resonance strength increases with the beam energy, the increased
number of Snakes may need to be employed in future high energy accelerators.
Thus we consider the case of 2N Snakes distributed around the ring at azimuth
.θ1, θ2, . . . , θ2N = 2π . Each Snake is characterized by its own Snake axis angle .αsi

and by the spin transformation matrix .Msn,i . Between the Snakes the spin rotates
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around vertical direction as the beam goes through the arcs which are presented by
spin transformation matrices .Vθi,θi−1

Calculation of one turn matrix is a nice homework exercise (see Exercise 2 in the
Sect. 4.6). The result of the exercise is:

.Mturn = Msn,2NVθ2N,θ2N−1Msn,2N−1Vθ2N−1,θ2N−2 . . .Msn,1Vθ1,θ0

= . . .

= V (φ) = exp(−iσ3
φ

2
) (4.31)

where the spin rotation angle .φ depends on Snake location and Snake axis
orientation:

.φ = Gγ

2N∑
i=1

(−1)i−1(θi − θi−1) + 2
N∑

i=1

(αs,2i − αs,2i−1) (4.32)

From here the spin tune then is obtained as:

.νsp = Gγ

2π

2N∑
i=1

(−1)i−1(θi − θi−1) + 1

π

N∑
i=1

(αs,2i − αs,2i−1) (4.33)

In order to avoid spin resonance conditions during beam acceleration one would
want the spin tune to be independent of energy. The formula (4.33) shows that
this can be achieved by allocating the Snakes around the ring so that the first
term in (4.33) becomes 0. Then the spin tune value can be chosen by selecting
proper orientations of Snake axes. Common approach is to have the spin tune at 0.5,
providing maximum detuning from all first-order spin resonance conditions.

From (4.31) one can also deduce that the stable spin direction .n̂0 is vertical in all
arcs. Each Snake switches .n̂0 direction from up to down, and vice versa.

Thus, with even number of Snakes one can maintain the vertical stable spin at
all beam energies as well as have the spin resonances contained. If in locations of
particle physics experiments a specific polarization orientation (often, longitudinal)
is required, a pair of spin rotators can be installed, to convert the polarization
orientation from the vertical to one required by the experiment, and then back to
the vertical. This represents a general recipe for providing highly polarized beams
at high energies for physics experiments.
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4.4 Realization of Snakes and Spin Rotators

4.4.1 Solenoidal Snake and Spin Rotator

A Siberian Snake with longitudinal Snake axis can be simply constructed by using
a solenoidal magnet. The required magnetic fields for .180◦ spin rotation are:

• For electrons:

.Bsol · L = 10.47 · p(GeV/c) (4.34)

• For protons:

.Bsol · L = 3.75 · p(GeV/c) (4.35)

A notable advantage of solenoidal Snake is that the beam closed orbit is not
affected by the Snake. But the longitudinal magnetic field introduces a betatron
coupling which, in most cases, would require compensation. Since required mag-
netic field increases with the particle energy the energy range for solenoid-based
Full Snake applications is limited to below 10–20GeV.

A solenoidal Snake was used in IUCF 500 MeV Cooler Ring for Siberian
Snake proof-of-principle experiments (1989–1997) [8]. The IUCF Snake used 2T.·m
solenoid. The experiments provided a first observation that depolarizing resonances
were overcome by the Snake, confirming the main principle of the Snake. High-
order spin resonances, Snake resonances, have been also first observed during the
IUCF Snake studies.

In following years the solenoidal Snakes were used in nuclear physics exper-
iments in AmPS (Netherlands) [2] and MIT-Bates SHR (USA) [3] to create
longitudinal polarization on internal targets. Beam energy in these accelerators was
in 0.7–1GeV range. For compensating betatron coupling the system of normal
and skew-quadrupoles were incorporated into the solenoidal insertion as shown
in Fig. 4.9. To make the Snakes as compact as possible the Snake solenoids were
implemented as superconducting magnets.

A solenoidal magnet can be also used to realize a simple spin rotator. This is
done by a combination of a solenoidal magnet and horizontally bending dipole.
Spin transformation matrix for converting the vertical spin to longitudinal one is

Fig. 4.9 Solenoidal Snake
coupling compensation
scheme. SQ are
skew-quadrupoles. QC is a
normal quadrupole



4 Rotators and Snakes 97

very simple:

.Mrot = exp(−iπσ3/4) exp(−iπσ2/4) (4.36)

It requires 90.◦ spin rotation by the solenoid magnet accompanied by .90◦ spin
rotation by the horizontal bend. Similar rotator can be used also in transfer lines to
convert the longitudinal beam polarization produced in a polarized electron source
to the vertical one. One deficiency of such rotator is that it works perfectly only at
one particular energy.

In order to operate in wide energy range the rotator scheme must use more than
one solenoidal insertion. For instance, a general electron rotator scheme for EIC has
to cover energy rage 6–18GeV. In this case to convert vertical spin to longitudinal
at the experimental location at all required energies a combination of two solenoidal
insertions and two horizontal bending sections can be used. The schematic of
such rotator is shown in Fig. 4.10. After passing the experiment location a similar
combination of solenoidal and dipole magnets is used to convert the spin back to the
vertical.

The rotator system consideration using spin transformation matrices is a bit
cumbersome in this case. But when one gets through it comes to the relations which
define required solenoidal spin rotations .ϕi as a function of spin rotation .ψ1 in dipole
magnets:

. tan ϕ1 = ± cosψ2√− cos(ψ1 + ψ2) cos(ψ1 − ψ2)
. (4.37)

cosϕ2 = cotψ1 cotψ2 (4.38)

From here the required solenoidal fields in all energy range can be found.
In order to properly integrate the solenoidal insertions into the electron ring

lattice the optics of the solenoid insertion must satisfy two independent conditions:

1. Betatron coupling has to be compensated by the use of normal and skew
quadrupoles.

2. Specific spin matching conditions have to be satisfied to minimize depolarization.

Fig. 4.10 The schematic layout of the electron spin rotator for EIC
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Realization detail for such solenoidal insertion will be considered in the lecture on
spin matching.

4.4.2 Siberian Snake and Spin Rotator Based on Dipole
Magnets

A Siberian Snake can be constructed using a sequence of alternating vertical (V )
and horizontal (H ) bends, as shown in Fig. 4.11. Such design of the Siberian Snake
was proposed by Steffen [9]. In more general form the Snake configuration can be
written as:

.(−H,−V,m · H, 2V,−m · H,−V,H).

here m is a number more than 1 [10]. The design uses a special field symmetry with
respect to the Snake center:

• the vertical field (H -bends) is anti-symmetric
• the horizontal field (V -bends) is symmetric

Such symmetry makes the beam orbit restored at the Snake exit. It also results in
the Snake axis lying in the horizontal plane. Then, by choosing fields of H and V

bending magnets one can setup the required spin rotation angle (.180◦ for the Full
Snake) and a preferred direction of the Snake axis. Due to capability to select any
Snake axis orientation such Snake configuration is called the continuous axis Snake.

From the analysis of the spin transformation matrix of this Snake one can derive
that for getting .180◦ spin rotation the following relation connecting spin rotations
in horizontal (.ψH ) and vertical (.ψV ) bends must be satisfied:

. sin2 ψH sin2 ψV = 1

2
(4.39)

Thus, this relation connects horizontal and vertical magnetic fields of the Snake
magnets in order to realize the Full Snake. Using this relation and the Snake

Fig. 4.11 The schematic layout of Steffen’s Snake based on vertical and horizontal dipole magnets
[6]
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Fig. 4.12 Dipole magnet Snake parameter plot defining the spin rotation in vertical bends required
to get a particular Snake axis orientation [6]

parameter plot shown in Fig. 4.12 one can select any Snake axis orientation in the
horizontal plane and find corresponding set of magnetic fields.

The Snakes based on dipole magnets have following characteristics properties.
First, required fields scale inversely proportionally to particle velocity, thus for
relativistic beams the magnetic fields very weakly depend on the beam energy.
Second, the orbit excursion changes inversely proportionally to the particle energy.
And, at last, the required integrated magnetic field is generally in the range 15–
35 .T · m, depending on the orientation of the Snake axis. Therefore this type of
Snake is preferred at the high beam energy.

Unlike the Snake based on solenoidal magnets in the dipole magnet Snake the
beam orbit makes excursion inside the Snake. Below 20GeV the orbit excursion
reaches tens of centimeters. But at the energies above 20GeV the orbit excursion
becomes reasonable. And while the required field of solenoidal Snake increases
with the beam energy, the field of the dipole-based Snake is nearly constant at high
energies. Thus, the Snake based on dipole magnets would be a good choice at the
beam energies above 20GeV.

The spin rotators based on dipole magnets were used in HERA [11]. HERA
was the first e-p collider, operated with 27.5GeV electrons and 920GeV protons.
The spin rotators were implemented for electron beam to produce longitudinal
polarization at the experimental detectors. To this day it is the highest energy
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application of the spin rotators in electron accelerators. The HERA rotator was a
sequence of three horizontal and three vertical bending magnets:

.(V 3,H3, V 2,H2, V 2,H1).

Since the vertical orbit needs to be restored the fields of vertical bendingmagnets
are connected by the relation:

.V 3 = −(V 1 + V 2) (4.40)

Since the HERA spin rotators were for electron beam the rotator optics had to be
designed to satisfy the spin matching conditions (see the lecture on spin matching).
The vertical orbit excursion characteristic for rotators based on dipole magnets was
addressed by placing some magnets off the horizontal plane to keep them centered
on the beam orbit. But changing polarization direction at the experiments was
challenging, since it required moving the magnets vertically to maintain the magnet
alignment on the beam orbit.

4.4.3 Siberian Snake and Spin Rotator Based on Helical
Magnets

The Siberian Snake can be created with four full twist helical dipole magnets,
having vertically oriented field at the entrance of each helix [12]. Each magnet is
characterized by the strength of magnetic field on the magnet axis .Bi , the helical
twist helicity .Ri and the number of helical periods .Ni . Similar to the continuous
axis Snake based on dipole magnets one can identify symmetry conditions which
automatically provide the beam orbit restoration and the Snake axis being in the
horizontal plane. The symmetry conditions in the case of the helical magnets can
be written by relating fields, helicities and numbers of helical periods of different
Snake magnets:

.B1 = −B4; B2 = −B3; R1 = R4; R2 = R3; N1 = N4; N2 = N3. (4.41)

These conditions define the continuous axis helical Snake.
The Siberian Snakes based on the helical magnets have been implemented in

collider RHIC in Brookhaven National Laboratory. In the RHIC Snake each helical
magnet has one helical period. Fields of the Snake magnets can be found from
the parameter plot that is obtained from the Snake spin transformation matrix.
Figure 4.13 shows the parameter plot for RHIC Snake [4]. .µ is the spin rotation
angle. For the Full Snake .µ = 180◦ is needed (green curve). .αs is the Snake axis
angle. (On this plot it is accounted from the longitudinal axis!). From this plot one
can find helical fields .(B1, B2) required to achieve given .µ and .αs . Natural choice,
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Fig. 4.13 Parameter plot defining the magnet strength of helical magnets for the RHIC Snake [4]

applied in RHIC is to have one Snake axis at .+45◦ with other Snake axis oriented at
.−45◦ with respect to longitudinal axis. Blue circles show possible parameter points
for the 45.◦ Snake axis.

Figure 4.14 shows spin and orbit evolution through RHIC helical Snake at
the injection energy (.γ = 25). Since the orbit excursion reduces inversely
proportionally to beam energy at the store energy (.γ = 270) the maximum orbit
deviation is just a couple of millimeters. Comparing the helical Snake with a Steffen
Snake of similar total length one gets smaller resulting orbit excursion in the helical
Snake. Some disadvantage of using helical magnets is related with the fact that
their field is intrinsically non-linear. Because of this the effects of such spin rotators
on particle dynamics has to be carefully considered. That includes betatron tune
shifts and beta-function distortions induced by the helical Snakes. The homework
Exercise 5 in the Sect. 4.6 compares several design options for the helical Siberian
Snakes.

The sequence of the four helical magnets can also be used to realize a spin rotator
for transforming the vertical polarization at the rotator entrance into longitudinal
polarization in the location of experimental detector. It was shown that most efficient
scheme was one based on the helical magnets having horizontal field orientation at
the magnet entrance [12]. Helical spin rotators were implemented in RHIC.

Stronger magnetic field makes the spin rotator or the Snake more compact and
minimizes the beam orbit excursions inside the rotators. Because of this, supercon-
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Fig. 4.14 Spin and orbit trajectories in RHIC helical Snake at .γ = 25 [4]

ducting magnet technology, using NbTi superconductor, has been used for building
4T helical magnets for RHIC Snakes and spin rotators. Figure 4.15 shows the
cross-sections of the helical magnets of RHIC spin rotators. The superconducting
coil is surrounded by the iron collar. All magnet elements are cooled to 4.2K by
using liquid He. Since the orbit excursion gets larger at lower energies, the magnet
aperture is defined at low energies. For instance, for RHIC the magnet aperture must
be large enough to accommodate sufficiently large orbit excursion (.∼2 cm) at RHIC
injection energy 25GeV.
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Fig. 4.15 The cross-section of RHIC spin rotator helical magnets

4.5 Summary

Various types of spin rotating devices can be used in accelerator rings for different
purposes. Among them the Siberian Snake represents an amazing device allowing
polarization preservation when crossing numerous spin resonances during beam
acceleration. Most efficient use of Snakes is in pairs (even number), with proper
distribution of an accelerator ring. Proper selection of the Snake axis angle ensures
spin tune .0.5. Even with Snakes one needs to be careful about depolarization, since
there are higher order resonances, Snake resonances. And larger beam energies
require larger number of the Snake pairs. Spin rotators also play very important
role in accelerators which require longitudinally polarized beam at experimental
detectors. Practical realization of Snakes and rotators depends on the energy
of a particular accelerator. Dipole and helical dipole-based Snakes would be a
proper choice at higher energies (>20GeV); while solenoidal based Snakes more
appropriate at lower energies (<20GeV).

4.6 Homework Exercises

In this section several exercises referred throughout this Chapter are given together
with their solutions.
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•? Exercise 1

A general spinor transformation matrix has the form:

.M = exp[−i(σ · b)
ϕ

2
] = I cos(ϕ/2) − i(σ · b) sin(ϕ/2) (4.42)

where .ϕ is the spin rotation angle and .b is the rotation axis unit vector.
The matrix of the Siberian Snake with the Snake axis angle .αs is:

.Msnake = −i(σ1 cosαs + σ2 sin αs) (4.43)

And the matrix of spin rotation in the ring arcs, where the spin rotates around the
vertical guiding magnetic field of dipole magnets is:

.V (φ) = exp[−i(σ3
φ

2
)] = I cos(φ/2) − i(σ3 sin(φ/2) (4.44)

where .φ = Gγθ and .θ is the arc bending angle.
Then, first, prove that the Snake matrix can be presented as the product of two

consecutive rotations (around horizontal and vertical axes):

.Msnake = exp(−iαsσ3) · (−iσ1) (4.45)

Second, prove the relation between arc and Snake matrices

.V (φ)Msnake = MsnakeV (−φ)

Solution
Please note, that there are different ways to prove these relations. Only one possible
way is shown, as an example.

For proving the relation:

.Msnake = exp(−iαsσ3) · (−iσ1) (4.46)

one could use the following properties of .σ matrices:

.σ1σ1 = I, σ2σ1 = −iσ3 (4.47)

To prove the first relation one can follow this path:

.Msnake = −i(σ1 cosαs + σ2 sin αs) = −i(σ1 cosαs + σ2σ
2
1 sinαs)

= (cosαs + σ2σ1 sin αs)(−iσ1) = (cosαs − iσ3 sin αs)(−iσ1)

= exp(−iαsσ3)(−iσ1) (4.48)
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For proving the relation:

.V (φ)Msnake = MsnakeV (−φ)

one could use the following properties of .σ matrices:

.σ3σ1 = −σ1σ3, σ3σ2 = −σ2σ3 (4.49)

Then this relation can be proved in following way:

.V (φ)Msnake = (I cos(φ/2) − iσ3 sin(φ/2)) · (−i)(σ1 cosαs + σ2 sin αs)

= (−i)[I cos(φ/2)(σ1 cosαs + σ2 sin αs) −
− i sin(φ/2)(σ3σ1 cosαs + σ3σ2 sinαs)] =
= (−i)[(σ1 cosαs + σ2 sin αs) · I cos(φ/2) +
+ i(σ1σ3 cosαs + σ2σ3 sin αs) sin(φ/2)] =
= (−i)(σ1 cosαs + σ2 sin αs) · (I cos(φ/2) + iσ3 sin(φ/2)) =
= MsnakeV

−1(φ) = MsnakeV (−φ) (4.50)

•? Exercise 2

Consider a system of 2N Siberian Snakes placed at the azimuths .θ1, θ2, . . . , θ2N in
an accelerator ring. Each Snake is characterized by its own Snake axis angle .αs,i .

Show that the one turn matrix is the matrix of the spin rotation around the vertical
axis and confirm the spin tune expression (4.33):

.Mturn = Msn,2NVθ2N,θ2N−1Msn,2N−1Vθ2N−1,θ2N−2 . . .Msn,1Vθ1,θ0

= . . .

= V (φ) = exp(−iσ3
φ

2
) (4.51)

and

.φ = Gγ

2N∑
i=1

(−1)i−1(θi − θi−1) + 2
N∑

i=1

(αs,2i − αs,2i−1) (4.52)
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Solution
Please note that there might be different ways to prove this relation. Only one
possible way is shown, as an example.

Let’s note first that .Vθi,θi−1 = V (Gγ (θi − θi−1)) Then, using the relation
.V (φ)Msnake = MsnakeV (−φ) one can consecutively exchange positions of Snake
matrices

.Mturn = Msn,2NV (Gγ (θ2N − θ2N−1))Msn,2N−1V (Gγ (θ2N−1 − θ2N−2)) . . .

. . . Msn,1V (Gγ (θ1 − θ0)) =
= V (Gγ (θ2N−1 − θ2N))V (Gγ (θ2N−1 − θ2N−2)) . . .

. . . V (Gγ (θ1 − θ0))Msn,2NMsn,2N−1 . . .Msn,1 =
= V (Gγ [(θ2N−1 − θ2N) + (θ2N−1 − θ2N−2) + . . . .

. . . +(θ1 − θ0)])Msn,2NMsn,2N−1 . . .Msn,1 =
= V (ϕ1)Msn,2NMsn,2N−1 . . .Msn,1 (4.53)

where

.ϕ1 = Gγ

2N∑
i=1

(−1)i−1(θi − θi−1) (4.54)

On next step we transform the product of the Snake matrices:

.Msn,2NMsn,2N−1 . . .Msn,1 = exp(−iαs,2Nσ3)(−iσ1) exp(−iαs,2N−1σ3)(−iσ1)

. . . exp(−iαs,1σ3)(−iσ1) =
= exp(−iαs,2Nσ3) exp(iαs,2N−1 . . .

. . . exp(−iαs,1(−iσ1)(−iσ1) . . . (−iσ1) =
= exp(−i(αs,2N − αs,2N−1 + . . . + αs,1)σ3)(−iσ1)

2N

= V (ϕ2)(−1)N (4.55)

where

.ϕ2 = 2
N∑

i=1

(αs,2i − αs,2i−1) (4.56)

Finally:

.Mturn = V (ϕ1)Msn,2NMsn,2N−1 . . .Msn,1 = (−1)NV (ϕ1)V (ϕ2) =
= (−1)NV (ϕ1 + ϕ2) = V (φ) (4.57)
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where

.φ = ϕ1 + ϕ2 = Gγ

2N∑
i=1

(−1)i−1(θi − θi−1) + 2
N∑

i=1

(αs,2i − αs,2i−1) (4.58)

Note, that factor .(−1)N in Eq. (4.57) can be dropped out since it increments .φ by
.2π .

•? Exercise 3

Consider a system of two Full Snakes separated precisely by .180◦ bending angle.
The Snake axes are chosen such that .αs,2 − αs,1 = π/2, so the spin tune is equal to
one half.

1. Let’s assume that there is some error in the Snake axis orientation. Find a
tolerance of the Snake axis angle to have the spin tune deviation less than 0.1.

2. Let’s assume that one Snake was placed imperfectly, shifted by .0.1◦ of bending
angle from the perfect location. Evaluate the spin tune shift when accelerating
protons from 240 to 250GeV.

Solution
One can use the expression (4.33) for spin tune in the system with 2N Snakes. With
only 2 Snakes the expression reads as:

.νsp = Gγ

2π
[(θ1 − θ2) + (θ1 − θ0)] + 1

π
(αs,2 − αs,1) =

= Gγ

π
(θ1 − π) + 1

π
(αs,2 − αs,1) (4.59)

since .θ0 = 0 and .θ2 = 2π .
For perfectly placed Snakes (.θ1 = π) and with .αs,2 − αs,1 = π/2 the spin tune

is .νsp = 1/2.

1. Let’s consider that one of the Snake axis (say, .αs,1) is shifted by .δαs,1.
Corresponding change in the spin tune can be written as:

.νsp = 1

π
(π/2 − δαs,1) (4.60)

Thus the spin tune shift is

.δνsp = − 1

π
δαs,1 (4.61)
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From here, in order to have the spin tune shift less than 0.1, .|δαs,1| has to be
less than .0.1π . That is the tolerance on .|δαs,1| is 0.314 rad (or 18.◦).

2. Now let’s consider that there is an error .δθ in the bending angle between the
Snakes. That is .θ1 = π + δθ The spin tune becomes

.νsp = Gγ

π
(δθ) + 1/2. (4.62)

For protons .G = 1.79. Relativistic factor .γ = 255.8 for 240GeV, and .γ = 266.5
for 250GeV.

Then from the Eq. (4.62 ) the spin tune shifts corresponding to .0.1◦ bending angle
error can be calculated to be .0.254 at 240GeV and .0.265 at 250GeV, changing
linearly with the beam energy between these two energies.

•? Exercise 4

Consider system of two Full Snakes separated by .180◦ bending angle. The Snake
axes are chosen such that .αs,2 − αs,1 = π/2. Spin tune for such system is 0.5.

Calculate vertical betatron tune values corresponding to the resonance conditions
of 2nd, 3rd and 4th order spin resonances.

Next, consider that Snake axes were retuned to get the spin tune 0.25. Find the
required orientation of the Snake axes and calculate vertical betatron tune values
corresponding to the locations of 2nd, 3rd and 4th order spin resonances.

How does the number of the resonances compare in two cases?

Solution
The general condition of the spin resonance between the spin tune .νsp and vertical
betatron tune .Qy is :

.νsp = N + mQy (4.63)

whereN and m are arbitrary integer numbers. Absolute value ofm defines the order
of the resonance.

Let’s present .Qy as .Qy = [Qy] + {Qy} where .[Qy ] is the integer part of the
vertical betatron tune, and .{Qy} is the fractional part, which is between 0 and 1. For
the fractional part of vertical betatron tune, using the Eq. (4.63) one gets:

.{Qy} = νsp − N − m[Qy ]
m

(4.64)
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If the spin tune is equal to .1/2, then resonance condition becomes:

.{Qy} = 1 − 2N − 2m[Qy]
2m

= 1 + 2 ∗ Ñ

2m
(4.65)

where .Ñ is an arbitrary integer which gives .{Qy} between 0 and 1. From here the
following table of high-order spin resonance values of .{Qy} can be compiled:

m Resonance .{Qy }
2nd order .m = −2 or .m = 2 .1/4, .3/4

3rd order .m = −3 or .m = 3 .1/6, .1/2, .5/6

4th order .m = −4 or .m = 4 .1/8, .3/8, .5/8, .7/8

Now let’s take the spin tune equal to .1/4. As follows from the formula (4.29), to
obtain this spin tune the Snake axis angles have to be in the relations:

.αs,2 − αs,1 = π/4 (4.66)

The spin resonance condition in this case becomes:

.{Qy} = 1 − 4N − 4m[Qy]
4m

= 1 + 4 ∗ Ñ

4m
(4.67)

where .Ñ is again an arbitrary integer which gives .{Qy} between 0 and 1. Then one
gets the following table of high-order spin resonance values of .{Qy}:

m Resonance .{Qy }
2nd order .m = −2 or .m = 2 .1/8, .3/8, .5/8, .7/8

3rd order .m = −3 or .m = 3 .1/12, .3/12, .5/12, .7/12, .9/12, .11/12

4th order .m = −4 or .m = 4 .1/16, .3/16, .5/16, .7/16, .9/16, .11/16, .13/16, .15/16

Comparing the results for .νsp = 1/2 and .νsp = 1/4 one can note that, beside
different resonance locations, the total number of resonances of any order is twice
smaller in the case of .νsp = 1/2. It happens because with .νsp = 1/2 high-order
resonances are paired together. This can be considered as one of advantages of using
.νsp = 1/2, since it provides a cleaner working point space for choosing the betatron
tune.
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•? Exercise 5

One needs to design a continuous axis Siberian Snake for a proton accelerator ring
based on helical dipole modules. Three schemes have been proposed, which are
summarized in the table:

Scheme 1 Scheme 2 Scheme 3

.B0 R N .B0 R N .B0 R N

1st Helix .3.5T .+1 1 .1.3 T .+1 1 .2.5 T .+1 1

2nd Helix .−1.1 T .+1 2 .−4T .+1 1 .−2.5 T .+1 1

3rd Helix .1.1T .+1 2 4T .+1 1 .2.4 T .−1 1

4th Helix .3.5T .+1 1 .−1.3 T .+1 1 .−2.4 T .−1 1

All Snakes use helical magnets with twist period .2.4m.N characterizes a number
of helical twist periods in each magnet. Using the formula (4.14) for the orbit shift
on one twist period, find the maximum orbit excursion inside each Snake design
scheme at .E = 25GeV. Also, calculate the absolute total field integral for each
design option. On the basis of these calculations and, may be, other considerations
select a design scheme which you would recommend for the accelerator ring.

Solution
From the orbit shift formula (4.14) one gets for the orbit shift on one helical period:

.�y = 2πRr = 2πRB0c

k2β

e

E
= λ2RB0c

2πβ

e

E
(4.68)

For 25GeV one then obtains:

.�y(mm) ≈ 11.0 ∗ R ∗ B0(T ) (4.69)

Then using values of .B0, R and N for three design options one can calculate .�y

and y after each helix:

Scheme 1 Scheme 2 Scheme 3

.�y, mm y, mm .�y, mm y, mm .�y, mm y, mm

1st Helix 38.5 38.5 14.3 14.3 27.5 27.5

2nd Helix .−24.2 14.3 .−44.0 .−29.7 .−27.5 0

3rd Helix 24.2 38.5 44.0 14.3 26.4 26.4

4th Helix .−38.5 0 .−14.3 0 .−25.4 0

From there the maximum orbit excursion and the absolute field integral for every
scheme can be summarized as:

The Scheme 3 demonstrates smaller orbit excursion and smaller field integral
than other two schemes. However, it does not satisfy symmetry conditions for field
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Max. Orbit .|y|, Total field integral,

mm T.·m
Scheme 1 38.5 27.36

Scheme 2 29.7 25.44

Scheme 3 27.5 23.52

and twist helicities, required for the continuous axis Snake (4.41). Thus, the Scheme
2 would be a preferable choice. In fact, the Scheme 2 was realized at RHIC.
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