Skip to main content

Dynamics of Clamping Pneumatic Cylinder for Technological Equipment

  • Conference paper
  • First Online:
Advanced Manufacturing Processes IV (InterPartner 2022)

Abstract

The question of mathematical modeling of the dynamic characteristics for a single-acting pneumatic drive of the clamping device for technological equipment, as well as research on its working process in the clamping pneumatic cylinder, is considered. The pneumatic settlement scheme for a drive is presented. The working stroke of the clamping pneumatic cylinder is performed when the compressed air is supplied to the piston cavity; the return stroke occurs under the action of the built-in spring. The mathematical model of the dynamic characteristics of the pneumatic drive has been developed. The mathematical model is based on the pneumatic cylinder piston’s motion equations, the piston cavity’s continuity equation, and the mass flow rate for air entering the piston cavity. The piston motion equations separately consider the positional load of the built-in spring, the resistance force proportional to the movement velocity, and the dry friction force. The thermodynamic process in the piston cavity of the pneumatic cylinder is adiabatic. The continuity equation considers the variable volume of the piston cavity and the volume of the connected pneumatic line. The equation for the mass flow rate of compressed air entering the pressure chamber of the pneumatic cylinder considers the subcritical and supercritical gas flow regimes. The example of calculating the dynamic characteristics for the clamping pneumatic cylinder is given. The presence of characteristic stages of the working process is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beater, P.: Pneumatic Drives. System Design, Modelling and Control. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  2. Fomin, O., Lovska, A.: Establishing patterns in determining the dynamics and strength of a covered freight car, which exhausted its resource. East. Eur. J. Enterprise Technol. 6(7(108)), 21–29 (2020). https://doi.org/10.15587/1729-4061.2020.217162

    Article  Google Scholar 

  3. Abrahamova, T., Bushuyev, V., Gilova, L.: Metal-Cutting Machine Tools. Machinery Engineering, Moscow (2012)

    Google Scholar 

  4. Shevchenko, S., Mukhovaty, A., Krol, O.: Gear transmission with conic axoid on parallel axes. In: Radionov, A.A., Kravchenko, O.A., Guzeev, V.I., Rozhdestvenskiy, Y.V. (eds.) ICIE 2019. LNME, pp. 1–10. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22041-9_1

    Chapter  Google Scholar 

  5. Karpus, V.E., Ivanov, V.A.: Locating accuracy of shafts in V-blocks. Russ. Eng. Res. 32(2), 144–150 (2012). https://doi.org/10.3103/S1068798X1202013X

    Article  Google Scholar 

  6. Ivanov, V., Vashchenko, S., Rong, Y.: Information support of the computer-aided fixture design system. In: CEUR Workshop Proceedings 1614, pp. 73–86 (2016)

    Google Scholar 

  7. Sokolova, Y.: The synthesis of system of automatic control of equipment for machining materials with hydraulic drive. East. Eur. J. Enterprise Technol. 2(2(68)), 56–68 (2014). https://doi.org/10.15587/1729-4061.2014.23396

    Article  Google Scholar 

  8. Merzliakov, I., Pavlenko, I., Chekh, O., Sharapov, S., Ivanov, V.: Mathematical modeling of operating process and technological features for designing the vortex type liquid-vapor jet apparatus. In: Ivanov, V., et al. (eds.) DSMIE 2019. LNME, pp. 613–622. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_61

    Chapter  Google Scholar 

  9. Lovska, A., Fomin, O.: A new fastener to ensure the reliability of a passenger car body on a train ferry. Acta Polytech. 60(6), 478–485 (2020). https://doi.org/10.14311/AP.2020.60.0478

    Article  Google Scholar 

  10. Pavlenko, I., Liaposhchenko, A., Ochowiak, M., Demyanenko, M.: Solving the stationary hydroaeroelasticity problem for dynamic deflection elements of separation devices. Vibr. Phys. Syst. 29, 2018026 (2018)

    Google Scholar 

  11. Schön, H.: Compressed gas cylinders. In: Handbook of Purified Gases, pp. 143–153. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-540-32599-4_6

    Chapter  Google Scholar 

  12. Tan, K.K., Putra, A.S.: Servo hydraulic and pneumatic drive. In: Tan, K.K., Putra, A.S. (eds.) Drives and Control for Industrial Automation, pp. 9–44. Springer, London (2011). https://doi.org/10.1007/978-1-84882-425-6_2

    Chapter  Google Scholar 

  13. Kundrák, J., Mitsyk, A., Fedorovich, V., Markopoulos, A., Grabchenko, A.: Simulation of the circulating motion of the working medium and metal removal during multi-energy processing under the action of vibration and centrifugal forces. Machines 9(6), 118 (2021). https://doi.org/10.3390/machines9060118

    Article  Google Scholar 

  14. Klinzing, G., Rizk, F., Marcus, R., Leung, L.: Control of pneumatic transport. In: Pneumatic Conveying of Solids. Particle Technology Series, vol. 8, pp. 459–474. Springer, Dordrecht (2010)

    Chapter  Google Scholar 

  15. Kundrák, J., Mitsyk, A., Fedorovich, V., Markopoulos, A., Grabchenko, A.: Modeling the energy action of vibration and centrifugal forces on the working medium and parts in a vibration machine oscillating reservoir with an impeller. Manuf. Technol. 21(3), 364–372 (2021). https://doi.org/10.21062/mft.2021.042

    Article  Google Scholar 

  16. Chung, J.: Coordinated control of a new pneumatic gripper. In: Kim, J.-H., Yang, W., Jo, J., Sincak, P., Myung, H. (eds.) Robot Intelligence Technology and Applications 3. AISC, vol. 345, pp. 561–570. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16841-8_50

    Chapter  Google Scholar 

  17. Rasskazova, Y.: Automation of control processes of technological equipment with rotary hydraulic drive. East. Eur. J. Enterprise Technol. 2(2(80)), 44–50 (2016). https://doi.org/10.15587/1729-4061.2016.63711

    Article  Google Scholar 

  18. Andrenko, P., Rogovyi, A., Hrechka, I., Khovanskyi, S., Svynarenko, M.: The influence of the gas content in the working fluid on parameters of the the hydraulic motor’s axial piston. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds.) DSMIE 2021. LNME, pp. 97–106. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77823-1_10

    Chapter  Google Scholar 

  19. Sokolov, V.: Transfer functions for shearing stress in nonstationary fluid friction. In: Radionov, A.A., Kravchenko, O.A., Guzeev, V.I., Rozhdestvenskiy, Y.V. (eds.) ICIE 2019. LNME, pp. 707–715. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22041-9_76

    Chapter  Google Scholar 

  20. Pavlenko, I.: Static and dynamic analysis of the closing rotor balancing device of the multistage centrifugal pump. Appl. Mech. Mater. 630, 248–254 (2014). https://doi.org/10.4028/www.scientific.net/AMM.630.248

    Article  Google Scholar 

  21. Prydalnyi, B.I., Sulym, H.T.: Mathematical model of the tensioning in the collet clamping mechanism with the rotary movable input link on spindle units. J. Eng. Sci. 8(1), E23–E28 (2021). https://doi.org/10.21272/jes.2021.8(1).e4

    Article  Google Scholar 

  22. Rogovyi, A., Korohodskyi, V., Khovanskyi, S., Hrechka, I., Medvediev, Y.: Optimal design of vortex chamber pump. J. Phys. Conf. Ser. 1741, 012018 (2021)

    Article  Google Scholar 

  23. Rogovyi, A., Korohodskyi, V., Medvediev, Y.: Influence of Bingham fluid viscosity on energy performances of a vortex chamber pump. Energy 218, 119432 (2021). https://doi.org/10.1016/j.energy.2020.119432

    Article  Google Scholar 

  24. Popov, D., Panaiotti, S., Ryabinin, M.: Hydromechanics. MSTU, Moscow (2014)

    Google Scholar 

  25. Sveshnikov, V.: Hydrodrives of Tools. Machinery Engineering, Moscow (2008)

    Google Scholar 

  26. Kovalevskyy, S., Kovalevska, O., Koshevoy, A., Tasić, I.: Using wave signatures for identifying mechanical objects. IOP Conf. Ser. Mater. Sci. Eng. 568, 012117 (2019)

    Article  Google Scholar 

  27. Popov, D.: Mechanics of Hydro- and Pneumodrives. MSTU, Moscow (2001)

    Google Scholar 

  28. Loytsyanskiy, L.: Mechanics of Liquid and Gas. Drofa, Moscow (2003)

    Google Scholar 

  29. Nuruzzaman, M.: Modeling and Simulating in Simulink for Engineers and Scientists. Author-House, Bloomington (2004)

    Google Scholar 

  30. Tewari, A.: Modern Control Design with MATLAB and Simulink. John Wiley & Sons Ltd., Weinheim (2002)

    Google Scholar 

  31. Krol, O., Sokolov, V.: Modelling of spindle nodes for machining centers. J. Phys: Conf. Ser. 1084, 012007 (2018)

    Google Scholar 

  32. Sokolov, V., Porkuian, O., Krol, O., Baturin, Y.: Design calculation of electrohydraulic servo drive for technological equipment. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds.) DSMIE 2020. LNME, pp. 75–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50794-7_8

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Sokolov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sokolov, V., Krol, O., Golubenko, O., Tsankov, P., Marchenko, D. (2023). Dynamics of Clamping Pneumatic Cylinder for Technological Equipment. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes IV. InterPartner 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-16651-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16651-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16650-1

  • Online ISBN: 978-3-031-16651-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics