
Chapter 7
Natural Language Processing for
Policymaking

Zhijing Jin and Rada Mihalcea

Abstract Language is the medium for many political activities, from campaigns
to news reports. Natural language processing (NLP) uses computational tools to
parse text into key information that is needed for policymaking. In this chapter, we
introduce common methods of NLP, including text classification, topic modelling,
event extraction, and text scaling. We then overview how these methods can be
used for policymaking through four major applications including data collection for
evidence-based policymaking, interpretation of political decisions, policy commu-
nication, and investigation of policy effects. Finally, we highlight some potential
limitations and ethical concerns when using NLP for policymaking.

7.1 Introduction

Language is an important form of data in politics. Constituents express their stances
and needs in text such as social media and survey responses. Politicians conduct
campaigns through debates, statements of policy positions, and social media.
Government staff needs to compile information from various documents to assist in
decision-making. Textual data is also prevalent through the documents and debates
in the legislation process, negotiations and treaties to resolve international conflicts,
and media such as news reports, social media, party platforms, and manifestos.

Natural language processing (NLP) is the study of computational methods
to automatically analyse text and extract meaningful information for subsequent
analysis. The importance of NLP for policymaking has been highlighted since the
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last century (Gigley, 1993). With the recent success of NLP and its versatility over
tasks such as classification, information extraction, summarization, and translation
(Brown et al., 2020; Devlin et al., 2019), there is a rising trend to integrate NLP into
the policy decisions and public administrations (Engstrom et al., 2020; Misuraca
et al., 2020; Van Roy et al., 2021). Main applications include extracting useful,
condensed information from free-form text (Engstrom et al., 2020), and analysing
sentiment and citizen feedback by NLP Biran et al. (2022) as in many projects
funded by EU Horizon projects (European Commission, 2017). Driven by the broad
applications of NLP (Jin et al., 2021a), the research community also starts to connect
NLP with various social applications in the fields of computational social science
(Engel et al., 2021; Lazer et al., 2009; Luz, 2022; Shah et al., 2015) and political
science in particular (Glavaš et al., 2019; Grimmer & Stewart, 2013).

We show an overview of NLP for policymaking in Fig. 7.1. According to this
overview, the chapter will consist of three parts. First, we introduce in Sect. 7.2
NLP methods that are applicable to political science, including text classification,
topic modelling, event extraction, and score prediction. Next, we cover a variety
of cases where NLP can be applied to policymaking in Sect. 7.3. Specifically,
we cover four stages: analysing data for evidence-based policymaking, improving
policy communication with the public, investigating policy effects, and interpreting
political phenomena to the public. Finally, we will discuss limitations and ethical
considerations when using NLP for policymaking in Sect. 7.4.

From Text to Information
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Fig. 7.1 Overview of NLP for policymaking
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7.2 NLP for Text Analysis

NLP brings powerful computational tools to analyse textual data (Jurafsky &
Martin, 2000). According to the type of information that we want to extract from the
text, we introduce four different NLP tools to analyse text data: text classification
(by which the extracted information is the category of the text), topic modelling
(by which the extracted information is the key topics in the text), event extraction
(by which the extracted information is the list of events mentioned in the text), and
score prediction (where the extracted information is a score of the text). Table 7.1
lists each method with the type of information it can extract and some example
application scenarios, which we will detail in the following subsections.

7.2.1 Text Classification

As one of the most common types of text analysis methods, text classification reads
in a piece of text and predicts its category using an NLP text classification model,
as in Fig. 7.2.

Table 7.1 Four common NLP methods, the type of information extracted by each of them, and
example applications

NLP method Information to extract Example applications

Text classification Category of text Identify the sentiment, stance, etc.

Topic modelling Key topics in text Summarize topics in political agenda

Event extraction List of events Extract news events, international conflicts

Score prediction Score Text scaling

News Article
Political Perspective

StanceCampaign
Positive or Negative

Sentiment
Legislation Issue AreaSpeech

International
Statement

Politicians'
Language

Language Devices, e.g., 
Framing Technique Type

Text Classification

Peaceful or Belligerent

Example Applications

Usage
Text Category

NLP Text Classification Model

Fig. 7.2 The usage and example applications of text classification on political text
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There are many off-the-shelf existing tools for text classification (Brown et al.,
2020; Loria, 2018; Yin et al., 2019) such as the implementation1 using the Python
package transformers (Wolf et al., 2020). A well-known subtask of text clas-
sification is sentiment classification (also known as sentiment analysis or opinion
mining), which aims to distinguish the subjective information in the text, such as
positive or negative sentiment (Pang & Lee, 2007). However, the existing tools only
do well in categories that are easy to predict. If the categorization is customized
and very specific to a study context, then there are two common solutions. One is
to use dictionary-based methods, by a list of frequent keywords that correspond to
a certain category (Albaugh et al., 2013) or using general linguistic dictionaries
such as the Linguistic Inquiry and Word Count (LIWC) dictionary (Pennebaker
et al., 2001). The second way is to adopt the data-driven pipeline, which requires
human hand coding of documents into a predetermined set of categories, then train
an NLP model to learn the text classification task (Sun et al., 2019), and verify
the performance of the NLP model on a held-out subset of the data, as introduced
in Grimmer and Stewart (2013). An example of adapting the state-of-the-art NLP
models on a customized dataset is demonstrated in this guide.2

Using the text classification method, we can automate many types of analyses
in political science. As listed in the examples in Fig. 7.2, researchers can detect
political perspective of news articles (Huguet Cabot et al., 2020), the stance in media
on a certain topic (Luo et al., 2020), whether campaigns use positive or negative
sentiment (Ansolabehere & Iyengar, 1995), which issue area is the legislation
about (Adler & Wilkerson, 2011), topics in parliament speech (Albaugh et al.,
2013; Osnabrügge et al., 2021), congressional bills (Collingwood & Wilkerson,
2012; Hillard et al., 2008) and political agenda (Karan et al., 2016), whether the
international statement is peaceful or belligerent (Schrodt, 2000), whether a speech
contains positive or negative sentiment (Schumacher et al., 2016), and whether a
US Circuit Courts case decision is conservative or liberal (Hausladen et al., 2020).
Moreover, text classification can also be used to categorize the type of language
devices that politicians use, such as what type of framing the text uses (Huguet
Cabot et al., 2020), and whether a tweet uses political parody (Maronikolakis et al.,
2020).

7.2.2 Topic Modelling

Topic modelling is a method to uncover a list of frequent topics in a corpus of text.
For example, news articles that are against vaccination might frequently mention
the topic “autism”, whereas news articles supporting vaccination will be more likely
to mention “immune” and “protective”. One of the most widely used models is the

1 https://discuss.huggingface.co/t/new-pipeline-for-zero-shot-text-classification/681.
2 https://skimai.com/fine-tuning-bert-for-sentiment-analysis/.


 -108 4279 a -108
4279 a
 
https://discuss.huggingface.co/t/new-pipeline-for-zero-shot-text-classification/681

 -108 4378 a -108 4378 a
 
https://skimai.com/fine-tuning-bert-for-sentiment-analysis/


7 Natural Language Processing for Policymaking 145
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Fig. 7.3 Given a collection of text documents, topic modelling generates a list of topic clusters

Latent Dirichlet Allocation (LDA) (Blei et al., 2001) which is available in the Python
packages NLTK and Gensim, as in this guide.3

Specifically, LDA is a probabilistic model that models each topic as a mixture of
words, and each textual document can be represented as a mixture of topics. As in
Fig. 7.3, given a collection of textual documents, LDA topic modelling generates
a list of topic clusters, for which the number N of topics can be customized
by the analyst. In addition, if needed, LDA can also produce a representation of
each document as a weighted list of topics. While often the number of topics is
predetermined by the analyst, this number can also be dynamically determined by
measuring the perplexity of the resulting topics. In addition to LDA, other topic
modelling algorithms have been used extensively, such as those based on principal
component analysis (PCA) (Chung & Pennebaker, 2008).

Topic modelling, as described in this section, can facilitate various studies on
political text. Previous studies analysed the topics of legislative speech (Quinn
et al., 2006, 2010), Senate press releases (Grimmer, 2010a), and electoral manifestos
(Menini et al., 2017).

7.2.3 Event Extraction

Event extraction is the task of extracting a list of events from a given text. It is a
subtask of a larger domain of NLP called information extraction (Manning et al.,
2008). For example, the sentence “Israel bombs Hamas sites in Gaza” expresses

an event “Israel
bombs−−−→ Hamas sites” with the location “Gaza”. Event extraction

usually incorporates both entity extraction (e.g. Israel, Hamas sites, and Gaza in the
previous example) and relation extraction (e.g. “bombs” in the previous example).

Event extraction is a handy tool to monitor events automatically, such as
detecting news events (Mitamura et al., 2017; Walker et al., 2006) and detecting
international conflicts (Azar, 1980; Trappl, 2006). To foster research on event
extraction, there are tremendous efforts into textual data collection (McClelland,

3 https://skimai.com/fine-tuning-bert-for-sentiment-analysis/.
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1976; Merritt et al., 1993; Raleigh et al., 2010; Schrodt & Hall, 2006; Sundberg &
Melander, 2013), event coding schemes to accommodate different political events
(Bond et al., 1997; Gerner et al., 2002; Goldstein, 1992), and dataset validity
assessment (Schrodt & Gerner, 1994).

As for event extraction models, similar to text classification models, there are off-
the-shelf tools such as the Python packages stanza (Qi et al., 2020) and spaCy
(Honnibal et al., 2020). In case of customized sets of event types, researchers can
also train NLP models on a collection of textual documents with event annotations
(Hogenboom et al., 2011; Liu et al., 2020, inter alia).

7.2.4 Score Prediction

NLP can also be used to predict a score given input text. A useful application
is political text scaling, which aims to predict a score (e.g. left-to-right ideology,
emotionality, and different attitudes towards the European integration process) for a
given piece of text (e.g. political speeches, party manifestos, and social media posts)
(Gennaro & Ash, 2021; Laver et al., 2003; Lowe et al., 2011; Slapin & Proksch,
2008, inter alia).

Traditional models for text scaling include Wordscores (Laver et al., 2003)
and WordFish (Lowe et al., 2011; Slapin & Proksch, 2008). Recent NLP models
represent the text by high-dimensional vectors learned by neural networks to predict
the scores (Glavaš et al., 2017b; Nanni et al., 2019). One way to use the NLP models
is to apply off-the-shelf general-purpose models such as InstructGPT (Ouyang et al.,
2022) and design a prompt to specify the type of the scaling to the API,4 or borrow
existing, trained NLP models if the same type of scaling has been studied by
previous researchers. Another way is to collect a dataset of text with hand-coded
scales, and train NLP models to learn to predict the scale, similar to the practice in
Gennaro and Ash (2021); Slapin and Proksch (2008), inter alia.

7.3 Using NLP for Policymaking

In the political domain, there are large amounts of textual data to analyse (NEUEN-
DORF & KUMAR, 2015), such as parliament debates (Van Aggelen et al., 2017),
speeches (Schumacher et al., 2016), legislative text (Baumgartner et al., 2006;
Bevan, 2017), database of political parties worldwide (Döring & Regel, 2019), and
expert survey data (Bakker et al., 2015). Since it is tedious to hand-code all textual
data, NLP provides a low-cost tool to automatically analyse such massive text.

4 https://beta.openai.com/docs/introduction.
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In this section, we will introduce how NLP can facilitate four major areas to
help policymaking: before policies are made, researchers can use NLP to analyse
data and extract key information for evidence-based policymaking (Sect. 7.3.1);
after policies are made, researchers can interpret the priorities among and reasons
behind political decisions (Sect. 7.3.2); researchers can also analyse features in the
language of politicians when communicating the policies to the public (Sect. 7.3.3);
and finally, after the policies have taken effect, researchers can investigate the
effectiveness of the policies (Sect. 7.3.4).

7.3.1 Analysing Data for Evidence-Based Policymaking

A major use of NLP is to extract information from large collections of text. This
function can be very useful for analysing the views and needs of constituents, so
that policymakers can make decisions accordingly.

As in Fig. 7.4, we will explain how NLP can be used to analyse data for evidence-
based policymaking from three aspects: data, information to extract, and political
usage.

Data Data is the basis of such analyses. Large amounts of textual data can reveal
information about constituents, media outlets, and influential figures. The data
can come from a variety of sources, including social media such as Twitter and
Facebook, survey responses, and news articles.

Information to Extract Based on the large textual corpora, NLP models can be
used to extract information that are useful for political decision-making, ranging
from information about people, such as sentiment (Rosenthal et al., 2015; Thelwall
et al., 2011), stance (Gottipati et al., 2013; Luo et al., 2020; Stefanov et al., 2020;
Thomas et al., 2006), ideology (Hirst et al., 2010; Iyyer et al., 2014; Preoţiuc-Pietro
et al., 2017), and reasoning on certain topics (Camp et al., 2021; Demszky et al.,

Information to Extract

Classification

Data

Sentiment
Stance

Social Media

Survey Responses

Political Usage

Predict Elections

Collect Opinions
towards Topics or

Parties/President/etc.
Ideology

Events

About people:

About facts:

Topics
Get Feedbacks /

Increase Engagement

Reasoning on
Certain Topics

About constituents:

About media outlets
& influential figures:

News

Social Media Needs

Analysis

Scaling

Topic Model
Event Extr.

NLP

Classification

Classification

Classification

Survey Voters' 
Views & Needs

Fig. 7.4 NLP to analyse data for evidence-based policymaking
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2019; Egami et al., 2018), to factual information, such as main topics (Gottipati
et al., 2013), events (Ding & Riloff, 2018; Ding et al., 2019; Mitamura et al., 2017;
Trappl, 2006), and needs (Crayton et al., 2020; Paul & Frank, 2019; Sarol et al.,
2020) expressed in the data. The extracted information cannot only be about people
but also about political entities, such as the left-right political scales of parties
and political actors (Glavaš et al., 2017b; Slapin & Proksch, 2008), which claims
are raised by which politicians (Blessing et al., 2019; Padó et al., 2019), and the
legislative body’s vote breakdown for state bills by backgrounds such as gender,
rural-urban, and ideological splits (Davoodi et al., 2020).

To extract such information from text, we can often utilize the main NLP
tools introduced in Sect. 7.2, including text classification, topic modelling, event
extraction, and score prediction (especially text scaling to predict left-to-right
ideology). In NLP literature, social media, such as Twitter, is a popular source
of textual data to collect public opinions (Arunachalam & Sarkar, 2013; Pak &
Paroubek, 2010; Paltoglou & Thelwall, 2012; Rosenthal et al., 2015; Thelwall et al.,
2011).

Political Usage Such information extracted from data is highly valuable for
political usage. For example, voters’ sentiment, stance, and ideology are important
supplementary for traditional polls and surveys to gather information about the
constituents’ political leaning. Identifying the needs expressed by people is another
important survey target, which helps politicians understand what needs they should
take care of and match the needs and availabilities of resources (Hiware et al., 2020).

Among more specific political uses is to understand the public opinion on par-
ties/president, as well as on certain topics. The public sentiment towards parties (Pla
& Hurtado, 2014) and president (Marchetti-Bowick & Chambers, 2012) can serve
as a supplementary for the traditional approval rating survey, and stances towards
certain topics (Gottipati et al., 2013; Luo et al., 2020; Stefanov et al., 2020) can be
important information for legislators to make decisions on debatable issues such as
abortion, taxes, and legalization of same-sex marriage. Many existing studies use
NLP on social media text to predict election results (Beverungen & Kalita, 2011;
Mohammad et al., 2015; O’Connor et al., 2010; Tjong Kim Sang & Bos, 2012;
Unankard et al., 2014). In general, big data-driven analyses can facilitate decision-
makers to collect more feedback from people and society, enabling policymakers to
be closer to citizens, and increase transparency and engagement in political issues
(Arunachalam & Sarkar, 2013).

7.3.2 Interpreting Political Decisions

After policies are made, political scientists and social scientists can use textual data
to interpret political decisions. As in Fig. 7.5, there are two major use cases: mining
political agendas and discovering policy responsiveness.



7 Natural Language Processing for Policymaking 149

Discovering Policy Responsiveness 
(Alignment of Policies & Public Opinion) 

Data 

Mining Political Agenda

Data 

Press Releases

Legislation

Topics (with Priority)

Political Events

Electoral
Campaigns

Event Extr.

Topic Model

Policy

Public Sentiment
(Surveys & Social

Media)

Score  
Prediction Alignment

Classification
Politicians' Stances

Fig. 7.5 NLP to interpret political decisions

Mining Political Agendas Researchers can use textual data to infer a political
agenda, including the topics that politicians prioritize, political events, and different
political actors’ stances on certain topics. Such data can come from press releases,
legislation, and electoral campaigns. Examples of previous studies to analyse the
topics and prioritization of political bodies include the research on the prioritization
each senator assigns to topics using press releases (Grimmer, 2010b), topics in
different parties’ electoral manifestos (Glavaš et al., 2017a), topics in EU parliament
speeches (Lauscher et al., 2016) and other various types of text (Grimmer, 2010a;
Hopkins & King, 2010; King & Lowe, 2003; Roberts et al., 2014), as well as
political event detection from congressional text and news (Nanni et al., 2017).

Research on politicians’ stances include identifying policy positions of politi-
cians (Laver et al., 2003; Lowe et al., 2011; Slapin & Proksch, 2008; Winter &
Stewart, 1977, inter alia), how different politicians agree or disagree on certain
topics in electoral campaigns (Menini & Tonelli, 2016), and assessment of political
personalities (Immelman, 1993).

Further studies look into how political interests affect legislative behaviour.
Legislators tend to show strong personal interest in the issues that come before their
committees (Fenno, 1973), and Mayhew (2004) identifies that senators replying on
appropriations secured for their state have a strong incentive to support legislations
that allow them to secure particularistic goods.

Discovering Policy Responsiveness Policy responsiveness is the study of how
policies respond to different factors, such as how changes in public opinion
lead to responses in public policy (Stimson et al., 1995). One major direction
is that politicians tend to make policies that align with the expectations of their
constituents, in order to run for successful re-election in the next term (Canes-
Wrone et al., 2002). Studies show that policy preferences of the state public can
be a predictor of future state policies (Caughey & Warshaw, 2018). For example,
Lax and Phillips (2009) show that more LGBT tolerance leads to more pro-gay
legislation in response.

A recent study by Jin et al. (2021b) uses NLP to analyse over 10 million COVID-
19-related tweets targeted at US governors; using classification models to obtain the
public sentiment, they study how public sentiment leads to political decisions of
COVID-19 policies made by US governors. Such use of NLP on massive textual
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Fig. 7.6 NLP to analyse policy communication

data contrasts with the traditional studies of policy responsiveness which span over
several decades and use manually collected survey results (Caughey & Warshaw,
2018; Lax & Phillips, 2009, 2012).

7.3.3 Improving Policy Communication with the Public

Policy communication is the study to understand how politicians present the
policies to their constituents. As in Fig. 7.6, common research questions in policy
communication include how politicians establish their images (Fenno, 1978) such
as campaign strategies (Petrocik, 1996; Sigelman & Buell Jr, 2004; Simon, 2002),
how constituents allocate credit, what receives attention in Congress (Sulkin, 2005),
and what receives attention in news articles (Armstrong et al., 2006; McCombs &
Valenzuela, 2004; Semetko & Valkenburg, 2000).

Based on data from press releases, political statements, electoral campaigns, and
news articles,5 researchers usually analyse two types of information: the language
techniques politicians use and the contents such as topics and underlying moral
foundations in these textual documents.

Language Techniques Policy communication largely focuses on the types of lan-
guages that politicians use. Researchers are interested in first analysing the language
techniques in political texts, and then, based on these techniques, researchers can
dive into the questions of why politicians use them and what are the effects of such
usage.

For example, previous studies analyse what portions of political texts are
position-taking versus credit-claiming (Grimmer, 2013; Grimmer et al., 2012),

5 Other data sources used in policy communication research include surveys of senate staffers
(Cook, 1988), newsletters that legislators send to constituents (Lipinski, 2009), and so on.
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whether the claims are vague or concrete (Baerg et al., 2018; Eichorst & Lin,
2019), the frequency of credit-claiming messages versus the actual amount of
contributions (Grimmer et al., 2012), and whether politicians tend to make credible
or dishonourable promises (Grimmer, 2010b). Within the political statements, it is
also interesting to check the ideological proportions (Sim et al., 2013) and how
politicians make use of dialectal variations and code-mixing (Sravani et al., 2021).

The representation styles usually affect the effectiveness of policy communi-
cation, such as the role of language ambiguity in framing the political agenda
(Campbell, 1983; Page, 1976) and the effect of credit-claiming messages on
constituents’ allocation of credit (Grimmer et al., 2012).

Contents The contents of policy communication include the topics in the political
statements, such as what senators discuss in floor statements (Hill & Hurley,
2002) and what presidents address in daily speeches (Lee, 2008), and also the
moral foundations used by politicians underlying their political tweets (Johnson &
Goldwasser, 2018).

Using the extracted content information, researchers can explore further ques-
tions such as whether competing politicians or political elites emphasize the same
issues (Gabel & Scheve, 2007; Petrocik, 1996) and how the priorities politicians
articulate co-vary with the issues discussed in the media (Bartels, 1996). Another
open research direction is to analyse the interaction between newspapers and
politicians’ messages, such as how often newspapers cover a certain politician’s
message and in what way and how such coverage affects incumbency advantage.

Meaningful Future Work Apart from analysing the language of existing political
texts that aims to maximize political interests, an advanced question that is more
meaningful to society is how to improve policy communication to steer towards a
more beneficial future for society as a whole. There is relatively little research on
this, and we welcome future work on this meaningful topic.

7.3.4 Investigating Policy Effects

After policies are taken into effect, it is important to collect feedback or evaluate
the effectiveness of policies. Existing studies evaluate the effects of policies along
different dimensions: one dimension is the change in public sentiment, which can be
analysed by comparing the sentiment classification results before and after policies,
following a similar paradigm in Sect. 7.3.1. There are also studies on how policies
affect the crowd’s perception of the democratic process (Miller et al., 1990).

Another dimension is how policies result in economic changes. Calvo-González
et al. (2018) investigate the negative consequences of policy volatility that harm
long-term economic growth. Specifically, to measure policy volatility, they first
obtain main topics by topic modelling on presidential speeches and then analyse
how the significance of topics changes over time.
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7.4 Limitations and Ethical Considerations

There are several limitations that researchers and policymakers need to take into
consideration when using NLP for policymaking, due to the data-driven and
black-box nature of modern NLP. First, the effectiveness of the computational
models relies on the quality and comprehensiveness of the data. Although many
political discourses are public, including data sources such as news, press releases,
legislation, and campaigns, when it comes to surveying public opinions, social
media might be a biased representation of the whole population. Therefore, when
making important policy decisions, the traditional polls and surveys can provide
more comprehensive coverage. Note that in the case of traditional polls, NLP can
still be helpful in expediting the processing of survey answers.

The second concern is the black-box nature of modern NLP models. We do
not encourage decision-making systems to depend fully on NLP, but suggest that
NLP can assist human decision-makers. Hence, all the applications introduced in
this chapter use NLP to compile information that is necessary for policymaking
instead of directly suggesting a policy. Nonetheless, some of the models are hard to
interpret or explain, such as text classification using deep learning models (Brown
et al., 2020; Yin et al., 2019), which could be vulnerable to adversarial attacks by
small paraphrasing of the text input (Jin et al., 2020). In practical applications, it
is important to ensure the trustworthiness of the usage of AI. There could be a
preference for transparent machine learning models if they can do the work well
(e.g. LDA topic models and traditional classification methods using dictionaries or
linguistic rules) or tasks with well-controlled outputs such as event extraction to
select spans of the given text that mention events. In cases where only the deep
learning models can provide good performance, there should be more detailed
performance analysis (e.g. a study to check the correlation of the model decisions
and human judgments), error analysis (e.g. different types of errors, failure modes,
and potential bias towards certain groups), and studies about the interpretability of
the model (e.g. feature attribution of the model, visualization of the internal states
of the model).

Apart from the limitations of the technical methodology, there are also ethical
considerations arising from the use of NLP. Among the use cases introduced in
this chapter, some applications of NLP are relatively safe as they mainly involve
analysing public political documents and fact-based evidence or effects of policies.
However, others could be concerning and vulnerable to misuse. For example,
although effective, truthful policy communication is beneficial for society, it might
be tempting to overdo policy communication and by all means optimize the votes.
As it is highly important for government and politicians to gain positive public
perception, overly optimizing policy communication might lead to propaganda,
intrusion of data privacy to collect more user preferences, and, in more severe
cases, surveillance and violation of human rights. Hence, there is a strong need for
policies to regulate the use of technologies that influence public opinions and pose
a challenge to democracy.
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7.5 Conclusions

This chapter provided a brief overview of current research directions in NLP that
provide support for policymaking. We first introduced four main NLP tasks that
are commonly used in text analysis: text classification, topic modelling, event
extraction, and text scaling. We then showed how these methods can be used in poli-
cymaking for applications such as data collection for evidence-based policymaking,
interpretation of political decisions, policy communication, and investigation of
policy effects. We also discussed potential limitations and ethical considerations
of which researchers and policymakers should be aware.

NLP holds significant promise for enabling data-driven policymaking. In addi-
tion to the tasks overviewed in this chapter, we foresee that other NLP applications,
such as text summarization (e.g. to condense information from large documents),
question answering (e.g. for reasoning about policies), and culturally adjusted
machine translation (e.g. to facilitate international communications), will soon
find use in policymaking. The field of NLP is quickly advancing, and close
collaborations between NLP experts and public policy experts will be key to the
successful use and deployment of NLP tools in public policy.
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