Skip to main content

Self-learning and One-Shot Learning Based Single-Slice Annotation for 3D Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13438))

Abstract

As deep learning methods continue to improve medical image segmentation performance, data annotation is still a big bottleneck due to the labor-intensive and time-consuming burden on medical experts, especially for 3D images. To significantly reduce annotation efforts while attaining competitive segmentation accuracy, we propose a self-learning and one-shot learning based framework for 3D medical image segmentation by annotating only one slice of each 3D image. Our approach takes two steps: (1) self-learning of a reconstruction network to learn semantic correspondence among 2D slices within 3D images, and (2) representative selection of single slices for one-shot manual annotation and propagating the annotated data with the well-trained reconstruction network. Extensive experiments verify that our new framework achieves comparable performance with less than \(1\%\) annotated data compared with fully supervised methods and generalizes well on several out-of-distribution testing sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, S., Vinyals, O., et al.: Scheduled sampling for sequence prediction with recurrent neural networks. In: NIPS, vol. 28 (2015)

    Google Scholar 

  2. Bilic, P., Christ, P.F., et al.: The liver tumor segmentation benchmark (LiTS). ArXiv preprint arXiv:1901.04056 (2019)

  3. Bitarafan, A., Nikdan, M., et al.: 3D image segmentation with sparse annotation by self-training and internal registration. JBHI 25(7), 2665–2672 (2020)

    Google Scholar 

  4. Chang, Y.T., Wang, Q., et al.: Weakly-supervised semantic segmentation via sub-category exploration. In: CVPR, pp. 8991–9000 (2020)

    Google Scholar 

  5. Chen, L.C., Papandreou, G., et al.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. ArXiv preprint arXiv:1412.7062 (2014)

  6. Chen, L.C., Papandreou, G., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. TPAMI 40, 834–848 (2017)

    Article  Google Scholar 

  7. Chen, L.C., Zhu, Y., et al.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV (2018)

    Google Scholar 

  8. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  9. Dai, C., et al.: Suggestive annotation of brain tumour images with gradient-guided sampling. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 156–165. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_16

    Chapter  Google Scholar 

  10. Gabor, D.: Theory of communication. Part 1: the analysis of information. J. Inst. Electr. Eng. Part III: Radio Commun. Eng. 93(26), 429–441 (1946)

    Google Scholar 

  11. He, K., Chen, X., et al.: Masked autoencoders are scalable vision learners. ArXiv preprint arXiv:2111.06377 (2021)

  12. He, K., Zhang, X., et al.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  13. Huang, Z., Wang, X., et al.: Weakly-supervised semantic segmentation network with deep seeded region growing. In: CVPR, pp. 7014–7023 (2018)

    Google Scholar 

  14. Isensee, F., Jaeger, P.F., et al.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021)

    Article  Google Scholar 

  15. Kavur, A.E., Gezer, N.S., et al.: CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation. MIA 69, 101950 (2021)

    Google Scholar 

  16. Kervadec, H., Dolz, J., et al.: Constrained-CNN losses for weakly supervised segmentation. MIA 54, 88–99 (2019)

    Google Scholar 

  17. Khoreva, A., Benenson, R., et al.: Simple does it: weakly supervised instance and semantic segmentation. In: CVPR, pp. 876–885 (2017)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Kolesnikov, A., Lampert, C.H.: Seed, expand and constrain: three principles for weakly-supervised image segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 695–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_42

    Chapter  Google Scholar 

  20. Krishna, K., Murty, M.N.: Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 29(3), 433–439 (1999)

    Google Scholar 

  21. Long, J., Shelhamer, E., et al.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  22. Milletari, F., Navab, N., et al.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV (2016)

    Google Scholar 

  23. Papandreou, G., Chen, L.C., et al.: Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: ICCV, pp. 1742–1750 (2015)

    Google Scholar 

  24. Pathak, D., Krahenbuhl, P., et al.: Context encoders: feature learning by inpainting. In: CVPR, pp. 2536–2544 (2016)

    Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Shi, X., Dou, Q., Xue, C., Qin, J., Chen, H., Heng, P.-A.: An active learning approach for reducing annotation cost in skin lesion analysis. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 628–636. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_72

    Chapter  Google Scholar 

  27. Simpson, A.L., Antonelli, M., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. ArXiv preprint arXiv:1902.09063 (2019)

  28. Song, C., Huang, Y., et al.: Box-driven class-wise region masking and filling rate guided loss for weakly supervised semantic segmentation. In: CVPR, pp. 3136–3145 (2019)

    Google Scholar 

  29. Tajbakhsh, N., Hu, Y., et al.: Surrogate supervision for medical image analysis: effective deep learning from limited quantities of labeled data. In: ISBI, pp. 1251–1255. IEEE (2019)

    Google Scholar 

  30. Taleb, A., Lippert, C., Klein, T., Nabi, M.: Multimodal self-supervised learning for medical image analysis. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 661–673. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_51

    Chapter  Google Scholar 

  31. Taleb, A., Loetzsch, W., et al.: 3D self-supervised methods for medical imaging. In: NIPS, vol. 33, pp. 18158–18172 (2020)

    Google Scholar 

  32. Van Ginneken, B., Heimann, T., et al.: 3D segmentation in the clinic: a grand challenge. In: MICCAI Workshop on 3D Segmentation in the Clinic: A Grand Challenge, vol. 1, pp. 7–15 (2007)

    Google Scholar 

  33. Vincent, P., Larochelle, H., et al.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. JMLR 11(12), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Vondrick, C., Shrivastava, A., et al.: Tracking emerges by colorizing videos. In: ECCV, pp. 391–408 (2018)

    Google Scholar 

  35. Wang, X., Jabri, A., et al.: Learning correspondence from the cycle-consistency of time. In: CVPR, pp. 2566–2576 (2019)

    Google Scholar 

  36. Wang, Z., Yin, Z.: Annotation-efficient cell counting. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 405–414. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_39

    Chapter  Google Scholar 

  37. Yang, G., Wang, C., et al.: Weakly-supervised convolutional neural networks of renal tumor segmentation in abdominal CTA images. BMC Med. Imaging 20(1), 1–12 (2020)

    Article  Google Scholar 

  38. Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_46

    Chapter  Google Scholar 

  39. Zhao, A., Balakrishnan, G., et al.: Data augmentation using learned transformations for one-shot medical image segmentation. In: CVPR, pp. 8543–8553 (2019)

    Google Scholar 

  40. Zheng, H., Yang, L., et al.: Biomedical image segmentation via representative annotation. In: AAAI, vol. 33, pp. 5901–5908 (2019)

    Google Scholar 

  41. Zheng, H., Zhang, Y., et al.: An annotation sparsification strategy for 3D medical image segmentation via representative selection and self-training. In: AAAI, vol. 34, pp. 6925–6932 (2020)

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by National Key R\( { \& }\)D Program of China under grant No. 2019YFC0118802, National Natural Science Foundation of China under grants No. 62176231, Zhejiang public welfare technology research project under grant No. LGF20F020013, D. Z. Chen’s research was supported in part by NSF Grant CCF-1617735.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y., Zheng, B., Chen, J., Chen, D.Z., Wu, J. (2022). Self-learning and One-Shot Learning Based Single-Slice Annotation for 3D Medical Image Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics