Skip to main content

Reducing Positional Variance in Cross-sectional Abdominal CT Slices with Deep Conditional Generative Models

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

2D low-dose single-slice abdominal computed tomography (CT) slice enables direct measurements of body composition, which are critical to quantitatively characterizing health relationships on aging. However, longitudinal analysis of body composition changes using 2D abdominal slices is challenging due to positional variance between longitudinal slices acquired in different years. To reduce the positional variance, we extend the conditional generative models to our C-SliceGen that takes an arbitrary axial slice in the abdominal region as the condition and generates a defined vertebral level slice by estimating the structural changes in the latent space. Experiments on 1170 subjects from an in-house dataset and 50 subjects from BTCV MICCAI Challenge 2015 show that our model can generate high quality images in terms of realism and similarity. External experiments on 20 subjects from the Baltimore Longitudinal Study of Aging (BLSA) dataset that contains longitudinal single abdominal slices validate that our method can harmonize the slice positional variance in terms of muscle and visceral fat area. Our approach provides a promising direction of mapping slices from different vertebral levels to a target slice to reduce positional variance for single slice longitudinal analysis. The source code is available at: https://github.com/MASILab/C-SliceGen.

X. Yu and Q. Yang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almalioglu, Y., et al.: Endol2h: Deep super-resolution for capsule endoscopy. IEEE Trans. Med. Imaging 39(12), 4297–4309 (2020)

    Article  Google Scholar 

  2. Andreoli, A., Garaci, F., Cafarelli, F.P., Guglielmi, G.: Body composition in clinical practice. Eur. J. Radiol. 85(8), 1461–1468 (2016)

    Article  Google Scholar 

  3. Bezdek, J.C., Ehrlich, R., Full, W.: Fcm: the fuzzy c-means clustering algorithm. Comput. Ggeosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  4. Cover, T.M.: Elements of information theory. John Wiley & Sons (1999)

    Google Scholar 

  5. De Bem, R., Ghosh, A., Boukhayma, A., Ajanthan, T., Siddharth, N., Torr, P.: A conditional deep generative model of people in natural images. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1449–1458. IEEE (2019)

    Google Scholar 

  6. De Schutter, A., Lavie, C.J., Gonzalez, J., Milani, R.V.: Body composition in coronary heart disease: how does body mass index correlate with body fatness? Ochsner J. 11(3), 220–225 (2011)

    Google Scholar 

  7. Ferrucci, L.: The baltimore longitudinal study of aging (blsa): a 50-year-long journey and plans for the future (2008)

    Google Scholar 

  8. Florian, L.C., Adam, S.H.: Rethinking atrous convolution for semantic image segmentation. In: Conference on Computer Vision and Pattern Recognition (CVPR). IEEE/CVF (2017)

    Google Scholar 

  9. Gao, R., et al.: Lung cancer risk estimation with incomplete data: a joint missing imputation perspective. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 647–656. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_62

    Chapter  Google Scholar 

  10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  11. Henderson, P., Lampert, C.H., Bickel, B.: Unsupervised video prediction from a single frame by estimating 3d dynamic scene structure. arXiv preprint arXiv:2106.09051 (2021)

  12. Hore, A., Ziou, D.: Image quality metrics: Psnr vs. ssim. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)

    Google Scholar 

  13. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  14. Kuriyan, R.: Body composition techniques. Indian J. Med. Res. 148(5), 648 (2018)

    Article  Google Scholar 

  15. Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A.: Miccai multi-atlas labeling beyond the cranial vault-workshop and challenge. In: Proceedings of MICCAI Multi-Atlas Labeling Beyond Cranial Vault-Workshop Challenge, vol. 5, p. 12 (2015)

    Google Scholar 

  16. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: International Conference on Machine Learning, pp. 1558–1566. PMLR (2016)

    Google Scholar 

  17. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  18. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  19. Ribeiro, S.M., Kehayias, J.J.: Sarcopenia and the analysis of body composition. Adv. Nutr. 5(3), 260–267 (2014)

    Article  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. Advances in neural information processing systems 28 (2015)

    Google Scholar 

  22. Solanki, J.D., Makwana, A.H., Mehta, H.B., Gokhale, P.A., Shah, C.J.: Body composition in type 2 diabetes: change in quality and not just quantity that matters. Int. J. Preventive Med. 6 (2015)

    Google Scholar 

  23. Tang, Y., et al.: Body part regression with self-supervision. IEEE Trans. Med. Imaging 40(5), 1499–1507 (2021)

    Article  Google Scholar 

  24. Tang, Y., et al.: Prediction of type II diabetes onset with computed tomography and electronic medical records. In: Syeda-Mahmood, T., Drechsler, K., Greenspan, H., Madabhushi, A., Karargyris, A., Linguraru, M.G., Oyarzun Laura, C., Shekhar, R., Wesarg, S., González Ballester, M.Á., Erdt, M. (eds.) CLIP/ML-CDS -2020. LNCS, vol. 12445, pp. 13–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60946-7_2

    Chapter  Google Scholar 

  25. Tang, Y., et al.: Pancreas CT segmentation by predictive phenotyping. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 25–35. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_3

    Chapter  Google Scholar 

  26. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  27. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

Download references

Acknowledgements

This research is supported by NSF CAREER 1452485, 2040462 and the National Institutes of Health (NIH) under award numbers R01EB017230, R01EB006136, R01NS09529, T32EB001628, 5UL1TR002243-04, 1R01MH121620-01, and T32GM007347; by ViSE/VICTR VR3029; and by the National Center for Research Resources, Grant UL1RR024975-01, and is now at the National Center for Advancing Translational Sciences, Grant 2UL1TR000445-06. This research was conducted with the support from the Intramural Research Program of the National Institute on Aging of the NIH. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The identified datasets used for the analysis described were obtained from the Research Derivative (RD), database of clinical and related data. The inhouse imaging dataset(s) used for the analysis described were obtained from ImageVU, a research repository of medical imaging data and image-related metadata. ImageVU and RD are supported by the VICTR CTSA award (ULTR000445 from NCATS/NIH) and Vanderbilt University Medical Center institutional funding. ImageVU pilot work was also funded by PCORI (contract CDRN-1306-04869).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, X. et al. (2022). Reducing Positional Variance in Cross-sectional Abdominal CT Slices with Deep Conditional Generative Models. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics