Skip to main content

Intra-class Contrastive Learning Improves Computer Aided Diagnosis of Breast Cancer in Mammography

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Radiologists consider fine-grained characteristics of mammograms as well as patient-specific information before making the final diagnosis. Recent literature suggests that a similar strategy works for Computer Aided Diagnosis (CAD) models; multi-task learning with radiological and patient features as auxiliary classification tasks improves the model performance in breast cancer detection. Unfortunately, the additional labels that these learning paradigms require, such as patient age, breast density, and lesion type, are often unavailable due to privacy restrictions and annotation costs. In this paper, we introduce a contrastive learning framework comprising a Lesion Contrastive Loss (LCL) and a Normal Contrastive Loss (NCL), which jointly encourage models to learn subtle variations beyond class labels in a self-supervised manner. The proposed loss functions effectively utilize the multi-view property of mammograms to sample contrastive image pairs. Unlike previous multi-task learning approaches, our method improves cancer detection performance without additional annotations. Experimental results further demonstrate that the proposed losses produce discriminative intra-class features and reduce false positive rates in challenging cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We randomly sampled 1,000 exams per category for each validation and test set, and a few outlier exams (e.g. breast implants) are excluded.

References

  1. Boyd, N.F., et al.: Mammographic density and the risk and detection of breast cancer. New Engl. J. Med. 356(3), 227–236 (2007). https://doi.org/10.1056/NEJMoa062790, pMID: 17229950

  2. Cao, Z., et al.: Supervised contrastive pre-training for mammographic triage screening models. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 129–139. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_13

    Chapter  Google Scholar 

  3. Chen, H., et al.: Anatomy-aware Siamese network: exploiting semantic asymmetry for accurate pelvic fracture detection in X-ray images. CoRR abs/2007.01464 (2020). https://arxiv.org/abs/2007.01464

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations (2020)

    Google Scholar 

  5. DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 837–845 (1988)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  7. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742 (2006). https://doi.org/10.1109/CVPR.2006.100

  8. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual representation learning. CoRR abs/1911.05722 (2019). http://arxiv.org/abs/1911.05722

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

  10. Hungness, E.S., et al.: Bilateral synchronous breast cancer: mode of detection and comparison of histologic features between the 2 breasts. Surgery 128(4), 702–707 (2000)

    Article  Google Scholar 

  11. Kim, H.E., et al.: Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study. Lancet Digit. Health 2(3), e138–e148 (2020). https://doi.org/10.1016/S2589-7500(20)30003-0. https://www.sciencedirect.com/science/article/pii/S2589750020300030

  12. Kyono, T., Gilbert, F.J., van der Schaar, M.: Multi-view multi-task learning for improving autonomous mammogram diagnosis. In: Doshi-Velez, F., et al. (eds.) Proceedings of the 4th Machine Learning for Healthcare Conference. Proceedings of Machine Learning Research, vol. 106, pp. 571–591. PMLR (2019). https://proceedings.mlr.press/v106/kyono19a.html

  13. Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J.T., Peng, X.: Contrastive clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 10, pp. 8547–8555 (2021). https://ojs.aaai.org/index.php/AAAI/article/view/17037

  14. Li, Z., et al.: Domain generalization for mammography detection via multi-style and multi-view contrastive learning (2021)

    Google Scholar 

  15. Liu, Y., Zhang, F., Chen, C., Wang, S., Wang, Y., Yu, Y.: Act like a radiologist: towards reliable multi-view correspondence reasoning for mammogram mass detection. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2021). https://doi.org/10.1109/TPAMI.2021.3085783

  16. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with restarts. CoRR abs/1608.03983 (2016). http://arxiv.org/abs/1608.03983

  17. Ma, J., Li, X., Li, H., Wang, R., Menze, B., Zheng, W.S.: Cross-view relation networks for mammogram mass detection. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 8632–8638 (2021). https://doi.org/10.1109/ICPR48806.2021.9413132

  18. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. CoRR abs/1807.03748 (2018). http://arxiv.org/abs/1807.03748

  19. Salim, M., et al.: External evaluation of 3 commercial artificial intelligence algorithms for independent assessment of screening mammograms. JAMA Oncol. 6(10), 1581–1588 (2020)

    Article  Google Scholar 

  20. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. CoRR abs/1503.03832 (2015). http://arxiv.org/abs/1503.03832

  21. Sechopoulos, I., Teuwen, J., Mann, R.: Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: state of the art. In: Seminars in Cancer Biology, vol. 72, pp. 214–225. Elsevier (2021)

    Google Scholar 

  22. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics, 2022. CA: Cancer J. Clin. 72(1), 7–33 (2022). https://doi.org/10.3322/caac.21708. https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21708

  23. Spak, D., Plaxco, J., Santiago, L., Dryden, M., Dogan, B.: BI-RADS® fifth edition: a summary of changes. Diagn. Int. Imaging 98(3), 179–190 (2017). https://doi.org/10.1016/j.diii.2017.01.001. https://www.sciencedirect.com/science/article/pii/S2211568417300013

  24. Yan, Y., Conze, P.H., Lamard, M., Quellec, G., Cochener, B., Coatrieux, G.: Multi-tasking Siamese networks for breast mass detection using dual-view mammogram matching (2020). https://doi.org/10.1007/978-3-030-59861-7_32

  25. Yang, Z., et al.: MommiNet-v2: mammographic multi-view mass identification networks. Med. Image Anal. 73, 102204 (2021). https://doi.org/10.1016/j.media.2021.102204. https://www.sciencedirect.com/science/article/pii/S1361841521002498

  26. Yi, M., et al.: Predictors of contralateral breast cancer in patients with unilateral breast cancer undergoing contralateral prophylactic mastectomy. Cancer 115(5), 962–971 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeonseob Nam .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 197 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

You, K., Lee, S., Jo, K., Park, E., Kooi, T., Nam, H. (2022). Intra-class Contrastive Learning Improves Computer Aided Diagnosis of Breast Cancer in Mammography. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics