Skip to main content

Joint Graph Convolution for Analyzing Brain Structural and Functional Connectome

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13431))

Abstract

The white-matter (micro-)structural architecture of the brain promotes synchrony among neuronal populations, giving rise to richly patterned functional connections. A fundamental problem for systems neuroscience is determining the best way to relate structural and functional networks quantified by diffusion tensor imaging and resting-state functional MRI. As one of the state-of-the-art approaches for network analysis, graph convolutional networks (GCN) have been separately used to analyze functional and structural networks, but have not been applied to explore inter-network relationships. In this work, we propose to couple the two networks of an individual by adding inter-network edges between corresponding brain regions, so that the joint structure-function graph can be directly analyzed by a single GCN. The weights of inter-network edges are learnable, reflecting non-uniform structure-function coupling strength across the brain. We apply our Joint-GCN to predict age and sex of 662 participants from the public dataset of the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) based on their functional and micro-structural white-matter networks. Our results support that the proposed Joint-GCN outperforms existing multi-modal graph learning approaches for analyzing structural and functional networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baum, G., et al.: Development of structure-function coupling in human brain networks during youth. Proc. Natl. Acad. Sci. 117(1), 771–778 (2019)

    Google Scholar 

  2. Brown, S., et al.: The national consortium on alcohol and NeuroDevelopment in Adolescence (NCANDA): a multisite study of adolescent development and substance use. J. Stud. Alcohol Drugs 76(6), 895–908 (2015)

    Google Scholar 

  3. D’Souza, N., et al.: A matrix autoencoder framework to align the functional and structural connectivity manifolds as guided by behavioral phenotypes, 12907, 625–636 (2021)

    Google Scholar 

  4. Gadgil, S., Zhao, Q., Pfefferbaum, A., Sullivan, E.V., Adeli, E., Pohl, K.M.: Spatio-temporal graph convolution for resting-state fMRI analysis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 528–538. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_52

    Chapter  Google Scholar 

  5. Hanik, M., Demirtaş, M.A., Gharsallaoui, M.A., Rekik, I.: Predicting cognitive scores with graph neural networks through sample selection learning. Brain Imaging Behav. 16, 1–16 (2021)

    Google Scholar 

  6. Jung, J., Cloutman, L., Binney, R., Ralph, M.: The structural connectivity of higher order association cortices reflects human functional brain networks. Cortex 97, 221–239 (2016)

    Google Scholar 

  7. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  8. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  9. Li, X., et al.: BrainGNN: interpretable brain graph neural network for fMRI analysis. Med. Image Anal. 74, 1–13 (2021)

    Article  Google Scholar 

  10. Liu, J., Ma, G., Jiang, F., Lu, C.T., Yu, P., Ragin, A.: Community-preserving graph convolutions for structural and functional joint embedding of brain networks. In: International Conference on Big Data (Big Data), pp. 1163–1168, November 2019

    Google Scholar 

  11. Moody, J., Adluru, N., Alexander, A., Field, A.: The connectomes: methods of white matter tractography and contributions of resting state fMRI. Semin. Ultrasound CT and MRI 42(5), 507–522 (2021)

    Google Scholar 

  12. Pohl, K.M., et al.: The ‘NCANDA_PUBLIC_6Y_DIFFUSION_V01’ data release of the national consortium on alcohol and neurodevelopment in adolescence (NCANDA). Sage Bionetworks Synapse (2022). https://doi.org/10.7303/syn27226988

  13. Pohl, K.M., et al.: The ‘NCANDA_PUBLIC_6Y_REDCAP_V04’ data release of the national consortium on alcohol and neurodevelopment in adolescence (NCANDA). Sage Bionetworks Synapse (2022). https://doi.org/10.7303/syn26951066

  14. Pohl, K.M., et al.: The ‘NCANDA_PUBLIC_6Y_RESTINGSTATE_V01’ data release of the national consortium on alcohol and neurodevelopment in adolescence (NCANDA). Sage Bionetworks Synapse (2022). https://doi.org/10.7303/syn32303917

  15. Pujol, J., Vendrell, P., Junqué, C., Martí-Vilalta, J.L., Capdevila, A.: When does human brain development end? Evidence of corpus callosum growth up to adulthood. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 34(1), 71–75 (1993)

    Google Scholar 

  16. Rodriguez-Vazquez, B., et al.: Gradients of structure-function tethering across neocortex. PNAS 116(42), 21219–21227 (2019)

    Google Scholar 

  17. Rohlfing, T., Zahr, N., Sullivan, E., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 31(5), 798–819 (2009)

    Google Scholar 

  18. Song, T.A., et al.: Graph convolutional neural networks for Alzheimer’s disease classification. In: IEEE International Symposium on Biomedical Imaging, vol. 2019, pp. 414–417, April 2019

    Google Scholar 

  19. Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1(4), 245–251 (2005)

    Google Scholar 

  20. Weissenbacher, A., Kasess, C., Gerstl, F., Lanzenberger, R., Moser, E., Windischberger, C.: Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage 47(4), 1408–1416 (2009)

    Article  Google Scholar 

  21. Yalcin, A., Rekik, I.: A diagnostic unified classification model for classifying multi-sized and multi-modal brain graphs using graph alignment. J. Neurosci. Methods 348, 1–14 (2021)

    Article  Google Scholar 

  22. Yang, J., Zhu, Q., Zhang, R., Huang, J., Zhang, D.: Unified brain network with functional and structural data, 12267, 114–123 (2020)

    Google Scholar 

  23. Zhang, X., He, L., Chen, K., Luo, Y., Zhou, J., Wang, F.: Multi-view graph convolutional network and its applications on neuroimage analysis for Parkinson’s disease. In: AMIA Annual Symposium Proceedings, vol. 2018, pp. 1147–1156. American Medical Informatics Association (2018)

    Google Scholar 

  24. Zhao, Q., et al.: Longitudinally consistent estimates of intrinsic functional networks. Hum. Brain Mapp. 40(8), 2511–2528 (2019)

    Google Scholar 

  25. Zhao, Q., et al.: Association of heavy drinking with deviant fiber tract development in frontal brain systems in adolescents. JAMA Psychiatry 78(4), 407–415 (2020)

    Google Scholar 

Download references

Acknowledgment

This research was supported in part by NIH U24 AA021697, K99 AA028840, and Stanford HAI GCP Credit. The data were part of the public NCANDA data releases NCANDA_PUBLIC_6Y_REDCAP_V04 [13], NCANDA_PUBLIC_6Y_DIFFUSION_V01 [12], and NCANDA_PUBLIC_6Y_RESTINGSTATE_V01 [14], whose collection and distribution were supported by NIH funding AA021697, AA021695, AA021692, AA021696, AA021681, AA021690, and AA02169.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueting Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Wei, Q., Adeli, E., Pohl, K.M., Zhao, Q. (2022). Joint Graph Convolution for Analyzing Brain Structural and Functional Connectome. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics