Skip to main content

TractoFormer: A Novel Fiber-Level Whole Brain Tractography Analysis Framework Using Spectral Embedding and Vision Transformers

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Diffusion MRI tractography is an advanced imaging technique for quantitative mapping of the brain’s structural connectivity. Whole brain tractography (WBT) data contains over hundreds of thousands of individual fiber streamlines (estimated brain connections), and this data is usually parcellated to create compact representations for data analysis applications such as disease classification. In this paper, we propose a novel parcellation-free WBT analysis framework, TractoFormer, that leverages tractography information at the level of individual fiber streamlines and provides a natural mechanism for interpretation of results using the attention mechanism of transformers. TractoFormer includes two main contributions. First, we propose a novel and simple 2D image representation of WBT, TractoEmbedding, to encode 3D fiber spatial relationships and any feature of interest that can be computed from individual fibers (such as FA or MD). Second, we design a network based on vision transformers (ViTs) that includes: 1) data augmentation to overcome model overfitting on small datasets, 2) identification of discriminative fibers for interpretation of results, and 3) ensemble learning to leverage fiber information from different brain regions. In a synthetic data experiment, TractoFormer successfully identifies discriminative fibers with simulated group differences. In a disease classification experiment comparing several methods, TractoFormer achieves the highest accuracy in classifying schizophrenia vs control. Discriminative fibers are identified in left hemispheric frontal and parietal superficial white matter regions, which have previously been shown to be affected in schizophrenia patients.

This work is supported by the following NIH grants: R01MH119222, R01MH125860, P41EB015902, R01MH074794.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    While embeddings from the first 3 dimensions can be used to generate 3D TractoEmbedding images, our unpublished results show that this decreases group classification performance potentially due to the data sparsity where many voxels on the 3D grid do not have any mapped fibers.

  2. 2.

    Following instructions from: https://github.com/jeonsworld/ViT-pytorch.

  3. 3.

    https://github.com/H2ydrogen/Connectome_based_prediction.

References

  1. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000)

    Article  Google Scholar 

  2. Zhang, F., Daducci, A., He, Y., et al.: Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: a review. Neuroimage 249, 118870 (2022)

    Article  Google Scholar 

  3. Zhan, L., et al.: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease. Front. Aging Neurosci. (2015). https://doi.org/10.3389/fnagi.2015.00048

    Article  Google Scholar 

  4. Deng, Y., et al.: Tractography-based classification in distinguishing patients with first-episode schizophrenia from healthy individuals. Prog. Neuropsychopharmacol. Biol. Psychiatry 88, 66–73 (2019)

    Article  Google Scholar 

  5. Hu, M., X., et al.: Structural and diffusion MRI based schizophrenia classification using 2D pretrained and 3D naive Convolutional Neural Networks. Schizophr. Res. (2021). https://doi.org/10.1016/j.schres.2021.06.011

    Article  Google Scholar 

  6. Brown, C.J., Hamarneh, G.: Machine Learning on human connectome data from MRI. arXiv [cs.LG] (2016). http://arxiv.org/abs/1611.08699

  7. Mansour, L.S., Tian, Y., Yeo, B.T.T., Cropley, V., Zalesky, A.: High-resolution connectomic fingerprints: mapping neural identity and behavior. Neuroimage 229, 117695 (2021)

    Article  Google Scholar 

  8. Cole, M., Murray, K., et al.: Surface-Based Connectivity Integration: an atlas-free approach to jointly study functional and structural connectivity. Hum. Brain Mapp. 42, 3481–3499 (2021)

    Article  Google Scholar 

  9. Barile, B., Marzullo, A., Stamile, C., Durand-Dubief, F., Sappey-Marinier, D.: Data augmentation using generative adversarial neural networks on brain structural connectivity in multiple sclerosis. Comput. Methods Programs Biomed. 206, 106113 (2021)

    Article  Google Scholar 

  10. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  11. Dosovitskiy, A., Beyer, L., et al.: An image is worth 16 × 16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  12. Han, K., et al.: A survey on vision transformer. IEEE Trans. Pattern. Anal. Mach. Intell. (2022). https://doi.org/10.1109/TPAMI.2022.3152247

  13. Steiner, A., Kolesnikov, A., et al.: How to train your ViT? Data, augmentation, and regularization in vision transformers. TMLR (2022)

    Google Scholar 

  14. Hofmann, S.M., Beyer, F., Lapuschkin, S., et al.: Towards the interpretability of deep learning models for human neuroimaging. bioRxiv, p. 2021.06.25.449906 (2021)

    Google Scholar 

  15. Zhang, Q.-S., Zhu, S.-C.: Visual interpretability for deep learning: a survey. Front. Inf. Technol. Electron. Eng. 19(1), 27–39 (2018). https://doi.org/10.1631/FITEE.1700808

    Article  Google Scholar 

  16. Lombardi, A., Diacono, D., Amoroso, N., et al.: Explainable deep learning for personalized age prediction with brain morphology. Front. Neurosci. 15, 674055 (2021)

    Article  Google Scholar 

  17. Chefer, H., Gur, S., Wolf, L.: Generic attention-model explainability for interpreting bi-modal and encoder-decoder transformers. In: ICCV, pp. 397–406 (2021)

    Google Scholar 

  18. Abnar, S., Zuidema, W.: Quantifying attention flow in transformers. In: ACL 2020. pp. 4190–4197 (2020)

    Google Scholar 

  19. Van Essen, D.C., et al.: The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  20. Poldrack, R.A., et al.: A phenome-wide examination of neural and cognitive function. Sci. Data 3, 160110 (2016)

    Article  Google Scholar 

  21. Malcolm, J.G., Shenton, M.E., Rathi, Y.: Filtered multitensor tractography. IEEE Trans. Med. Imaging 29, 1664–1675 (2010)

    Article  Google Scholar 

  22. Reddy, C.P., Rathi, Y.: Joint multi-fiber NODDI parameter estimation and tractography using the unscented information filter. Front. Neurosci. 10, 166 (2016)

    Article  Google Scholar 

  23. Norton, I., Essayed, W.I., Zhang, F., Pujol, S., et al.: SlicerDMRI: open source diffusion MRI software for brain cancer research. Cancer Res. 77, e101–e103 (2017)

    Article  Google Scholar 

  24. Zhang, F., Noh, T., et al.: SlicerDMRI: diffusion MRI and tractography research software for brain cancer surgery planning and visualization. JCO Clin. Can. Inform. 4, 299–309 (2020)

    Google Scholar 

  25. Zhang, F., Savadjiev, P., Cai, W., et al.: Whole brain white matter connectivity analysis using machine learning: an application to autism. Neuroimage 172, 826–837 (2018)

    Article  Google Scholar 

  26. Hamoda, H.M., et al.: Abnormalities in thalamo-cortical connections in patients with first-episode schizophrenia: a two-tensor tractography study. Brain Imaging Behav. 13(2), 472–481 (2018). https://doi.org/10.1007/s11682-018-9862-8

    Article  Google Scholar 

  27. Zhang, F., Wu, Y., et al.: An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. Neuroimage 179, 429–447 (2018)

    Article  Google Scholar 

  28. O’Donnell, L.J., Wells, W.M., Golby, A.J., Westin, C.-F.: Unbiased groupwise registration of white matter tractography. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 123–130. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_16

    Chapter  Google Scholar 

  29. Vercruysse, D., Christiaens, D., Maes, F., Sunaert, S., Suetens, P.: Fiber bundle segmentation using spectral embedding and supervised learning. In: CDMRI, pp. 103–114 (2014)

    Google Scholar 

  30. O’Donnell, L.J., Westin, C.-F.: Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Trans. Med. Imaging. 26, 1562–1575 (2007)

    Article  Google Scholar 

  31. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the Nyström method. IEEE Trans. Pattern Anal. Mach. Intell. 26, 214–225 (2004)

    Article  Google Scholar 

  32. Moberts, B., Vilanova, A., van Wijk, J.J.: Evaluation of fiber clustering methods for diffusion tensor imaging. In: IEEE Conference on Visualization, pp. 65–72 (2005)

    Google Scholar 

  33. Jianu, R., Demiralp, C., Laidlaw, D.H.: Exploring 3D DTI fiber tracts with linked 2D representations. IEEE Trans. Vis. Comput. Graph. 15, 1449–1456 (2009)

    Article  Google Scholar 

  34. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  35. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  36. Zhang, F., Wu, W., Ning, L., et al.: Suprathreshold fiber cluster statistics: Leveraging white matter geometry to enhance tractography statistical analysis. Neuroimage 171, 341–354 (2018)

    Article  Google Scholar 

  37. Smith, S.M., Nichols, T.E.: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44, 83–98 (2009)

    Article  Google Scholar 

  38. Kelly, S., et al.: Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group. Mol. Psychiatry 23, 1261–1269 (2018)

    Article  Google Scholar 

  39. He, H., Zhang, F., et al.: Model and predict age and sex in healthy subjects using brain white matter features: a deep learning approach. In: ISBI, pp. 1–5 (2022)

    Google Scholar 

  40. Calamante, F., Tournier, D., et al.: Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping. Neuroimage 53(4), 1233–1243 (2010)

    Article  Google Scholar 

  41. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  42. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929 (2016)

    Google Scholar 

  43. Nazeri, A., Chakravarty, M., et al.: Alterations of superficial white matter in schizophrenia and relationship to cognitive performance. Neuropsychopharmacology 38, 1954–1962 (2013)

    Article  Google Scholar 

  44. Makris, N., Seidman, L.J., Ahern, T., Kennedy, D.N., et al.: White matter volume abnormalities and associations with symptomatology in schizophrenia. Psychiatry Res. 183, 21–29 (2010)

    Article  Google Scholar 

  45. Ji, E., Guevara, P., et al.: Increased and decreased superficial white matter structural connectivity in schizophrenia and bipolar disorder. Schizophr. Bull. 45, 1367–1378 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, F., Xue, T., Cai, W., Rathi, Y., Westin, CF., O’Donnell, L.J. (2022). TractoFormer: A Novel Fiber-Level Whole Brain Tractography Analysis Framework Using Spectral Embedding and Vision Transformers. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics