Skip to main content

New Trends and Challenges of Smart Sensors Based on Polymer Nanocomposites

  • Living reference work entry
  • First Online:
Handbook of Nanosensors

Abstract

The consistent environmental issues of population-driven intensified modern agricultural activities, urban growth, and industrialization lead to bargained environment quality because of pollution from toxic, assiduous, and bio-accumulative rising pollutants; hence it is crucial to detect them. Remarkably, electrochemical methods are appealing because of their advantages. The most recent progress in the electrochemical detection of environmental contaminations is discussed in this chapter. Polymer-based sensors are commonly utilized in environmental management because of their smart monitoring response, compact size, high sensitivity, and suitability in mild and natural conditions. Accordingly, this chapter delves into the potential of polymer nanocomposites (PNC)-based electrochemical sensor applications. It also investigates broad progress and concerns in polymer-based electrochemical sensor technology and also displayed different examples of the trendiest electrochemical sensor technologies concerning to PNC-based sensors. Furthermore, a strong emphasis has been assigned to the difficulties and developments in the current field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Ag NPs:

Silver nanoparticles

CDL:

Double-layer capacitance

CE:

Counter electrode

CEA:

Carcinoembryonic antigen

CL:

Cross-linker

CLS:

Calcium lignosulfonate

CMs:

Co-monomers

CNDs:

Carbon nanodots

CPs:

Conducting polymers

CV:

Cyclic voltammetry

DPV:

Differential pulse voltammetry

EBNA-1:

Epstein-Barr virus nuclear antigen 1

ECL:

Electrochemiluminescence

EDL:

Electrical double layer

EIS:

Electrochemical impedance spectroscopy

EP:

Epinephrine

ErbB2:

Epidermal growth factor receptor

FET:

Field-effect transistors

FMs:

Functional monomers

GCE:

Glassy carbon electrode

GO:

Graphene oxide

GOD:

Glucose oxidase

HM:

Heavy metals

IIPs:

Ion-imprinted polymers

IOT:

Internet of things

LOD:

Low limit detection

MEMS:

Micro electromechanical system

MIPs:

Molecularly imprinted polymers

MMT:

Montmorillonite

NCNF:

N-doped

NEFA:

Non-esterified fatty acids

Nf:

Nafion

NIPA:

N-Isopropylacrylamide

NMNPs:

Noble metal nanoparticles

NMP22:

Nuclear matrix protein 22

PANI-AuNP:

Polyaniline-gold nanoparticle

PGR:

Porous graphene

PIR:

Passive infrared

PM:

Particle matter

PNC:

Polymer nanocomposites

Ppy:

Polypyrrole

PPy-Pt:

Polypyrene-platinum

PSA:

Prostate-specific antigen

QCM:

Quartz crystal microbalances

RCT:

Charge transfer resistance

RE:

Reference electrode

RMT:

Mass transfer resistance

S:

Solvents

SPEs:

Screen-printed electrodes

SWV:

Square wave voltammetry

T:

Template molecule

TNTs:

TiO2 nanotubes

UA:

Uric acid

UV:

Ultraviolet

VOCs:

Volatile organic compounds

W-Au:

Tungsten coated with gold

WE:

Working electrode

WGM:

Whispering-gallery microcavities

WHO:

World Health Organization

References

  1. Shirakawa H (1986) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x. Chem Commun 57:343

    Google Scholar 

  2. Reduwan Billah SM (2019) Composites and Nanocomposites. In: Jafar Mazumder MA, Sheardown H, Al-Ahmed A (eds) Functional Polymers. Cham: Springer International Publishing, pp 1–67

    Google Scholar 

  3. Dai G, Mishnaevsky L Jr (2014) Graphene reinforced nanocomposites: 3D simulation of damage and fracture. Comput Mater Sci 95:684–692

    Article  CAS  Google Scholar 

  4. Fu S, Sun Z, Huang P, Li Y, Hu N (2019) Some basic aspects of polymer nanocomposites: a critical review. Nano Mater Sci 1(1):2–30

    Article  Google Scholar 

  5. de Oliveira A, Beatrice CG (2018) Polymer nanocomposites with different types of nanofiller. Nanocomposites-recent evolutions. Intech Open, Rijeka

    Google Scholar 

  6. Yan Y, Yang G, Xu J-L, Zhang M, Kuo C-C, Wang S-D (2020) Conducting polymer-inorganic nanocomposite-based gas sensors: a review. Sci Technol Adv Mater 21(1):768–786

    Article  CAS  Google Scholar 

  7. Sharma AK, Kaith BS (2021) Polymer nanocomposite matrices: classification, synthesis methods, and applications. In: Handbook of polymer and ceramic nanotechnology. Springer, Cham, pp 403–428

    Chapter  Google Scholar 

  8. Wang J, Xu S, Sun P, Du H, Wang L (2022) Enhanced electrochemical performance of screen-printed carbon electrode by RF-plasma-assisted polypyrrole modification. J Mater Sci Mater Electron 33(25):19923–19936

    Article  CAS  Google Scholar 

  9. Baiju J (2020) Polymer nanocomposite-based electrochemical sensors and biosensors, Chapter 9. In: Ghamsari MS, Dhara S (eds) Nanorods and nanocomposites. IntechOpen, Rijeka

    Google Scholar 

  10. Fan Y, Liu J-H, Yang C-P, Yu M, Liu P (2011) Graphene–polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol. Sensors Actuators B Chem 157(2):669–674

    Article  CAS  Google Scholar 

  11. Rico-Yuste A, Carrasco S (2019) Molecularly imprinted polymer-based hybrid materials for the development of optical Sensors. Polymers 11(7):1173

    Article  Google Scholar 

  12. Tse Sum Bui B, Haupt K (2010) Molecularly imprinted polymers: synthetic receptors in bioanalysis. Anal Bioanal Chem 398(6):2481–2492

    Article  Google Scholar 

  13. Karim K, Breton F, Rouillon R, Piletska EV, Guerreiro A, Chianella I, Piletsky SA (2005) How to find effective functional monomers for effective molecularly imprinted polymers? Adv Drug Deliv Rev 57(12):1795–1808

    Article  CAS  Google Scholar 

  14. Rampey AM, Umpleby RJ, Rushton GT, Iseman JC, Shah RN, Shimizu KD (2004) Characterization of the imprint effect and the influence of imprinting conditions on affinity, capacity, and heterogeneity in molecularly imprinted polymers using the Freundlich isotherm-affinity distribution analysis. Anal Chem 76(4):1123–1133

    Article  CAS  Google Scholar 

  15. Ertürk G, Mattiasson B (2017) Molecular imprinting techniques used for the preparation of biosensors. Sensors 17(2):288

    Article  Google Scholar 

  16. Martín-Esteban A (2009) Molecularly imprinted polymers: providing selectivity to sample preparation. J Chromatogr Sci 47(3):254–256

    Article  Google Scholar 

  17. García-Calzón J, Díaz-García M (2007) Characterization of binding sites in molecularly imprinted polymers. Sensors Actuators B Chem 123(2):1180–1194

    Article  Google Scholar 

  18. BelBruno JJ (2018) Molecularly imprinted polymers. Chem Rev 119(1):94–119

    Article  Google Scholar 

  19. Gui R, Jin H, Guo H, Wang Z (2018) Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens Bioelectron 100:56–70

    Article  CAS  Google Scholar 

  20. Sharma PS, Pietrzyk-Le A, D’souza F, Kutner W (2012) Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal Bioanal Chem 402(10):3177–3204

    Article  CAS  Google Scholar 

  21. Yang H, Li L, Ding Y, Ye D, Wang Y, Cui S, Liao L (2017) Molecularly imprinted electrochemical sensor based on bioinspired Au microflowers for ultra-trace cholesterol assay. Biosens Bioelectron 92:748–754

    Article  CAS  Google Scholar 

  22. Blanco-Lopez M, Gutierrez-Fernandez S, Lobo-Castanon M, Miranda-Ordieres A, Tunon-Blanco P (2004) Electrochemical sensing with electrodes modified with molecularly imprinted polymer films. Anal Bioanal Chem 378(8):1922–1928

    Article  CAS  Google Scholar 

  23. Karimian N, Stortini AM, Moretto LM, Costantino C, Bogialli S, Ugo P (2018) Electrochemosensor for trace analysis of perfluorooctanesulfonate in water based on a molecularly imprinted poly (o-phenylenediamine) polymer. ACS Sens 3(7):1291–1298

    Article  CAS  Google Scholar 

  24. Dong X, Zhang C, Du X, Zhang Z (2022) Recent advances of nanomaterials-based molecularly imprinted electrochemical sensors. Nano 12(11):1913

    CAS  Google Scholar 

  25. Ayankojo AG, Reut J, Ciocan V, Öpik A, Syritski V (2020) Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta 209:120502

    Article  CAS  Google Scholar 

  26. Kadhem AJ, Gentile GJ, Fidalgo de Cortalezzi MM (2021) Molecularly imprinted polymers (MIPs) in sensors for environmental and biomedical applications: a review. Molecules 26(20):6233

    Article  CAS  Google Scholar 

  27. Sundhoro M, Agnihotra SR, Amberger B, Augustus K, Khan ND, Barnes A, BelBruno J, Mendecki L (2021) An electrochemical molecularly imprinted polymer sensor for rapid and selective food allergen detection. Food Chem 344:128648

    Article  CAS  Google Scholar 

  28. Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A (2019) Molecularly imprinted polymer based sensors for medical applications. Sensors 19(6):1279

    Article  CAS  Google Scholar 

  29. Zhang D, Yu D, Zhao W, Yang Q, Kajiura H, Li Y, Zhou T, Shi G (2012) A molecularly imprinted polymer based on functionalized multiwalled carbon nanotubes for the electrochemical detection of parathion-methyl. Analyst 137(11):2629–2636

    Article  CAS  Google Scholar 

  30. Liu W, Ma Y, Sun G, Wang S, Deng J, Wei H (2017) Molecularly imprinted polymers on graphene oxide surface for EIS sensing of testosterone. Biosens Bioelectron 92:305–312

    Article  CAS  Google Scholar 

  31. Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nano 5(4):2054–2130

    CAS  Google Scholar 

  32. Șerban MV, Nazarie S-R, Dinescu S, Radu I-C, Zaharia C, Istrătoiu E-A, Tănasă E, Herman H, Gharbia S, Baltă C (2022) Silk proteins enriched nanocomposite hydrogels based on modified MMT clay and poly (2-hydroxyethyl methacrylate-co-2-acrylamido-2-methylpropane sulfonic acid) display favorable properties for soft tissue engineering. Nano 12(3):503

    Google Scholar 

  33. Na YH (2013) Double network hydrogels with extremely high toughness and their applications. Korea-Aust Rheol J 25(4):185–196

    Article  Google Scholar 

  34. Jacob S, Nair AB, Shah J, Sreeharsha N, Gupta S, Shinu P (2021) Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics 13(3):357

    Article  CAS  Google Scholar 

  35. Furlani F, Rossi A, Grimaudo MA, Bassi G, Giusto E, Molinari F, Lista F, Montesi M, Panseri S (2022) Controlled liposome delivery from chitosan-based thermosensitive hydrogel for regenerative medicine. Int J Mol Sci 23(2):894

    Article  CAS  Google Scholar 

  36. Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, Kshirsagar AS, Wang Z, Yin J, Wang Y (2021) State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15(7):10775–10981

    Article  CAS  Google Scholar 

  37. Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner AP, Patra HK (2019) A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun 55(49):6964–6996

    Article  CAS  Google Scholar 

  38. Kondawar SB, Patil PT (2017) Conducting polymer nanocomposites for sensor applications. In: Conducting polymer hybrids. Springer, Cham, pp 223–267

    Chapter  Google Scholar 

  39. Tschulena GR (2003) Market data—sensors in household appliances. Sensors Update 12(1):231–241

    Article  Google Scholar 

  40. Naresh V, Lee N (2021) A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 21(4):1109

    Article  CAS  Google Scholar 

  41. Peixoto AC, Silva AF (2017) Smart devices: micro- and nanosensors, Chapter 11. In: Rodrigues L, Mota M (eds) Bioinspired materials for medical applications. Woodhead Publishing, Amsterdam, pp 297–329

    Chapter  Google Scholar 

  42. Liao L, Wang S, Xiao J, Bian X, Zhang Y, Scanlon M, Hu X, Tang Y, Liu BH, Girault HH (2014) A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ Sci 7:387–392

    Article  CAS  Google Scholar 

  43. Perdomo SA, Marmolejo-Tejada JM, Jaramillo-Botero A (2021) Bio-nanosensors: fundamentals and recent applications. J Electrochem Soc 168(10):107506

    Article  CAS  Google Scholar 

  44. Munawar A, Ong Y, Schirhagl R, Tahir MA, Khan WS, Bajwa SZ (2019) Nanosensors for diagnosis with optical, electric and mechanical transducers. RSC Adv 9(12):6793–6803

    Article  CAS  Google Scholar 

  45. Miti A, Thamm S, Müller P, Csáki A, Fritzsche W, Zuccheri G (2020) A miRNA biosensor based on localized surface plasmon resonance enhanced by surface-bound hybridization chain reaction. Biosens Bioelectron 167:112465

    Article  CAS  Google Scholar 

  46. Zengin A, Tamer U, Caykara T (2014) Extremely sensitive sandwich assay of kanamycin using surface-enhanced Raman scattering of 2-mercaptobenzothiazole labeled gold@ silver nanoparticles. Anal Chim Acta 817:33–41

    Article  CAS  Google Scholar 

  47. Yildirim N, Long F, Gao C, He M, Shi H-C, Gu AZ (2012) Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples. Environ Sci Technol 46(6):3288–3294

    Article  CAS  Google Scholar 

  48. Wei L, Wang X, Li C, Li X, Yin Y, Li G (2015) Colorimetric assay for protein detection based on “nano-pumpkin” induced aggregation of peptide-decorated gold nanoparticles. Biosens Bioelectron 71:348–352

    Article  CAS  Google Scholar 

  49. Zhao J, Wang L, Fu D, Zhao D, Wang Y, Yuan Q, Zhu Y, Yang J, Yang F (2021) Gold nanoparticles amplified microcantilever biosensor for detecting protein biomarkers with high sensitivity. Sensors Actuators A Phys 321:112563

    Article  CAS  Google Scholar 

  50. Yağmuroğlu O, Diltemiz SE (2020) Development of QCM based biosensor for the selective and sensitive detection of paraoxon. Anal Biochem 591:113572

    Article  Google Scholar 

  51. Wang R, Li Y (2013) Hydrogel based QCM aptasensor for detection of avian influenzavirus. Biosens Bioelectron 42:148–155

    Article  Google Scholar 

  52. Duan R, Hao X, Li Y, Li H (2020) Detection of acetylcholinesterase and its inhibitors by liquid crystal biosensor based on whispering gallery mode. Sensors Actuators B Chem 308:127672

    Article  CAS  Google Scholar 

  53. Baranwal J, Barse B, Gatto G, Broncova G, Kumar A (2022) Electrochemical sensors and their applications: a review. Chemosensors 10(9):363

    Article  CAS  Google Scholar 

  54. Meti MD, Abbar JC, Lin J, Han Q, Zheng Y, Wang Y, Huang J, Xu X, Hu Z, Xu H (2021) Nanostructured Au-graphene modified electrode for electrosensing of chlorzoxazone and its biomedical applications. Mater Chem Phys 266:124538

    Article  CAS  Google Scholar 

  55. Yoshinobu T, Schöning MJ (2021) Light-addressable potentiometric sensors for cell monitoring and biosensing. Curr Opin Electrochem 28:100727

    Article  CAS  Google Scholar 

  56. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39(5):1747–1763

    Article  CAS  Google Scholar 

  57. D’Orazio P, Meyerhoff ME (2014) Electrochemistry and chemical sensors. In: Tietz fundamentals of clinical chemistry and molecular diagnostics-E-book. Elsevier, St. Louis, p 151

    Google Scholar 

  58. Dominguez-Benetton X, Sevda S, Vanbroekhoven K, Pant D (2012) The accurate use of impedance analysis for the study of microbial electrochemical systems. Chem Soc Rev 41(21):7228–7246

    Article  CAS  Google Scholar 

  59. Lee SP, Ali GAM, Algarni H, Chong KF (2019) Flake size-dependent adsorption of graphene oxide aerogel. J Mol Liq 277:175–180

    Article  CAS  Google Scholar 

  60. Sadegh H, Ali GAM, Makhlouf ASH, Chong KF, Alharbi NS, Agarwal S, Gupta VK (2018) MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. J Mol Liq 258:345–353

    Article  CAS  Google Scholar 

  61. Ferrari AG-M, Carrington P, Rowley-Neale SJ, Banks CE (2020) Recent advances in portable heavy metal electrochemical sensing platforms. Environ Sci Water Res Technol 6(10):2676–2690

    Article  Google Scholar 

  62. Aragay G, Pons J, Merkoçi A (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111(5):3433–3458

    Article  CAS  Google Scholar 

  63. Jakavula S, Biata NR, Dimpe KM, Pakade VE, Nomngongo PN (2022) A critical review on the synthesis and application of ion-imprinted polymers for selective preconcentration, speciation, removal and determination of trace and essential metals from different matrices. Crit Rev Anal Chem 52(2):314–326

    Article  CAS  Google Scholar 

  64. Nnorom IC, Ewuzie U, Eze SO (2019) Multivariate statistical approach and water quality assessment of natural springs and other drinking water sources in Southeastern Nigeria. Heliyon 5(1):e01123

    Article  Google Scholar 

  65. Jakavula S, Biata NR, Dimp M, Pakade VE, Nomngongo PN (2020) A critical review on the synthesis and application of ion-imprinted polymers for selective preconcentration, speciation, removal and determination of trace and essential metals from different matrices. Crit Rev Anal Chem 52:314–326

    Article  Google Scholar 

  66. Kokab T, Shah A, Nisar J, Khan AM, Khan SB, Shah AH (2020) Tripeptide derivative-modified glassy carbon electrode: a novel electrochemical sensor for sensitive and selective detection of Cd2+ ions. ACS Omega 5(17):10123–10132

    Article  CAS  Google Scholar 

  67. Torkashvand M, Gholivand M, Azizi R (2017) Synthesis, characterization and application of a novel ion-imprinted polymer based voltammetric sensor for selective extraction and trace determination of cobalt (II) ions. Sensors Actuators B Chem 243:283–291

    Article  CAS  Google Scholar 

  68. Wang H, Zhao G, Yin Y, Wang Z, Liu G (2017) Screen-printed electrode modified by bismuth/fe3o4 nanoparticle/ionic liquid composite using internal standard normalization for accurate determination of Cd (II) in soil. Sensors 18(1):6

    Article  Google Scholar 

  69. Torres-Rivero K, Torralba-Cadena L, Espriu-Gascon A, Casas I, Bastos-Arrieta J, Florido A (2019) Strategies for surface modification with Ag-shaped nanoparticles: electrocatalytic enhancement of screen-printed electrodes for the detection of heavy metals. Sensors 19(19):4249

    Article  CAS  Google Scholar 

  70. Barton J, García MBG, Santos DH, Fanjul-Bolado P, Ribotti A, McCaul M, Diamond D, Magni P (2016) Screen-printed electrodes for environmental monitoring of heavy metal ions: a review. Microchim Acta 183(2):503–517

    Article  CAS  Google Scholar 

  71. Karthika A, Nikhil S, Suganthi A, Rajarajan M (2020) A facile sonochemical approach based on graphene carbon nitride doped silver molybdate immobilized nafion for selective and sensitive electrochemical detection of chromium (VI) in real sample. Adv Powder Technol 31(5):1879–1890

    Article  CAS  Google Scholar 

  72. Mahmoudian M, Basirun W, Alias Y, MengWoi P (2020) Investigating the effectiveness of g-C3N4 on Pt/g-C3N4/polythiophene nanocomposites performance as an electrochemical sensor for Hg2+ detection. J Environ Chem Eng 8(5):104204

    Article  CAS  Google Scholar 

  73. Akhtar M, Tahir A, Zulfiqar S, Hanif F, Warsi MF, Agboola PO, Shakir I (2020) Ternary hybrid of polyaniline-alanine-reduced graphene oxide for electrochemical sensing of heavy metal ions. Synth Met 265:116410

    Article  CAS  Google Scholar 

  74. Shi L, Li Y, Rong X, Wang Y, Ding S (2017) Facile fabrication of a novel 3D graphene framework/Bi nanoparticle film for ultrasensitive electrochemical assays of heavy metal ions. Anal Chim Acta 968:21–29

    Article  CAS  Google Scholar 

  75. Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391(5):1509–1519

    Article  Google Scholar 

  76. Pourtaheri E, Taher MA, Ali GA, Agarwal S, Gupta VK (2019) Low-cost and highly sensitive sensor for determining atorvastatin using PbTe nanoparticles-modified graphite screen-printed electrode. Int J Electrochem Sci 14:9622–9632

    Article  CAS  Google Scholar 

  77. Fouad OA, Ali GAM, El-Erian MAI, Makhlouf SA (2012) Humidity sensing properties of cobalt oxide/silica nanocomposites prepared via sol-gel and related routes. Nano 7(5):1250038

    Article  Google Scholar 

  78. Salehi Rozveh Z, Kazemi S, Karimi M, Ali GAM, Safarifard V (2020) Effect of functionalization of metal-organic frameworks on anion sensing. Polyhedron 183:114514

    Article  Google Scholar 

  79. Thalji MR, Ibrahim AA, Chong KF, Soldatov AV, Ali GAM (2022) Glycopolymer-based materials: synthesis, properties, and biosensing applications. Top Curr Chem 380(5):45

    Article  CAS  Google Scholar 

  80. Zhang G-J, Zhang L, Huang MJ, Luo ZHH, Tay GKI, Lim E-JA, Kang TG, Chen Y (2010) Silicon nanowire biosensor for highly sensitive and rapid detection of dengue virus. Sensors Actuators B Chem 146(1):138–144

    Article  CAS  Google Scholar 

  81. Amiripour F, Ghasemi S, Azizi SN (2021) A novel non-enzymatic glucose sensor based on gold-nickel bimetallic nanoparticles doped aluminosilicate framework prepared from agro-waste material. Appl Surf Sci 537:147827

    Article  CAS  Google Scholar 

  82. Kasturi S, Eom Y, Torati SR, Kim C (2021) Highly sensitive electrochemical biosensor based on naturally reduced rGO/Au nanocomposite for the detection of miRNA-122 biomarker. J Ind Eng Chem 93:186–195

    Article  CAS  Google Scholar 

  83. Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS (2019) A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 9(16):8778–8881

    Article  CAS  Google Scholar 

  84. Saxena U, Das Asim B (2016) Nanomaterials towards fabrication of cholesterol biosensors: key roles and design approaches. Biosens Bioelectron 75:196–205

    Article  CAS  Google Scholar 

  85. Dey RS, Raj CR (2013) Redox-functionalized graphene oxide architecture for the development of amperometric biosensing platform. ACS Appl Mater Interfaces 5(11):4791–4798

    Article  CAS  Google Scholar 

  86. Lee Y-J, Park J-Y (2010) Nonenzymatic free-cholesterol detection via a modified highly sensitive macroporous gold electrode with platinum nanoparticles. Biosens Bioelectron 26(4):1353–1358

    Article  CAS  Google Scholar 

  87. Khan H, Shah MR, Barek J, Malik MI (2023) Cancer biomarkers and their biosensors: a comprehensive review. TrAC Trends Anal Chem 158:116813

    Article  CAS  Google Scholar 

  88. Hasan MR, Ahommed MS, Daizy M, Bacchu MS, Ali MR, Al-Mamun MR, Saad Aly MA, Khan MZH, Hossain SI (2021) Recent development in electrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron: X 8:100075

    CAS  Google Scholar 

  89. Munteanu R-E, Moreno PS, Bramini M, Gáspár S (2021) 2D materials in electrochemical sensors for in vitro or in vivo use. Anal Bioanal Chem 413(3):701–725

    Article  CAS  Google Scholar 

  90. Jayanthi VSA, Das AB, Saxena U (2017) Recent advances in biosensor development for the detection of cancer biomarkers. Biosens Bioelectron 91:15–23

    Article  CAS  Google Scholar 

  91. Yu L, Zhang Q, Yang B, Xu Q, Xu Q, Hu X (2018) Electrochemical sensor construction based on Nafion/calcium lignosulphonate functionalized porous graphene nanocomposite and its application for simultaneous detection of trace Pb2+ and Cd2+. Sensors Actuators B Chem 259:540–551

    Article  CAS  Google Scholar 

  92. Pourtaheri E, Taher MA, Ali GAM, Agarwal S, Gupta VK (2019) Electrochemical detection of gliclazide and glibenclamide on ZnIn2S4 nanoparticles-modified carbon ionic liquid electrode. J Mol Liq 289:111141

    Article  CAS  Google Scholar 

  93. Teo EYL, Ali GAM, Algarni H, Cheewasedtham W, Rujiralai T, Chong KF (2019) One-step production of pyrene-1-boronic acid functionalized graphene for dopamine detection. Mater Chem Phys 231:286–291

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gado, W.S., Aboalkhair, M.A., Al-Gamal, A.G., Kabel, K.I. (2024). New Trends and Challenges of Smart Sensors Based on Polymer Nanocomposites. In: Ali, G.A.M., Chong, K.F., Makhlouf, A.S.H. (eds) Handbook of Nanosensors. Springer, Cham. https://doi.org/10.1007/978-3-031-16338-8_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16338-8_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16338-8

  • Online ISBN: 978-3-031-16338-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics