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Abstract Data-drivenmodelingof complexdynamical systems is becoming increas-
ingly popular across various domains of science and engineering. This is thanks to
advances in numerical computing, which provides high fidelity data, and to algo-
rithm development in data science and machine learning. Simulations of multicom-
ponent reacting flows can particularly profit fromdata-based reduced-ordermodeling
(ROM). The original system of coupled partial differential equations that describes a
reacting flow is often large due to high number of chemical species involved. While
the datasets from reacting flow simulation have high state-space dimensionality, they
also exhibit attracting low-dimensional manifolds (LDMs). Data-driven approaches
can be used to obtain and parameterize these LDMs. Evolving the reacting system
using a smaller number of parameters can yield substantial model reduction and
savings in computational cost. In this chapter, we review recent advances in ROM of
turbulent reacting flows. We demonstrate the entire ROMworkflow with a particular
focus on obtaining the training datasets and data science and machine learning tech-
niques such as dimensionality reduction and nonlinear regression. We present recent
results from ROM-based simulations of experimentally measured Sandia flames D
and F. We also delineate a few remaining challenges and possible future directions
to address them. This chapter is accompanied by illustrative examples using the
recently developed Python software, PCAfold. The software can be used to obtain,
analyze and improve low-dimensional data representations. The examples provided
herein can be helpful to students and researchers learning to apply dimensional-
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ity reduction, manifold approaches and nonlinear regression to their problems. The
Jupyter notebook with the examples shown in this chapter can be found on GitHub at
https://github.com/kamilazdybal/ROM-of-reacting-flows-
Springer.

1 Introduction

There is growing interest and numerous recent developments in reduced-order mod-
eling (ROM)of complex dynamical systems (Kutz et al. 2016; Taira et al. 2017; Lusch
et al. 2018; Mendez et al. 2019; Raissi et al. 2019; Dalakoti et al. 2020; Ramezanian
et al. 2021; Han et al. 2022; Zhou et al. 2022). While these systems can be character-
ized by a large number of degrees of freedom, they often exhibit low-rank structures
(Maas and Pope 1992; Holmes et al. 1997; Pope 2013; Yang et al. 2013;Mendez et al.
2018). Describing the evolution of those structures provides a powerful modeling
approach with substantial reduction to the number of partial differential equations
(PDEs) solved in computational simulations (Sutherland and Parente 2009; Biglari
and Sutherland 2015; Echekki and Mirgolbabaei 2015; Owoyele and Echekki 2017;
Malik et al. 2018, 2020).

Reacting flow simulations can profit from model reduction due to initially high
state-space dimensionality stemming from large chemical mechanisms. Reacting
systems can often be effectively re-parameterizedwithmuch fewer variables. Numer-
ous physics-based parameterization techniques can be found in the combustion lit-
erature (Maas and Pope 1992; Van Oijen and De Goey 2002; Jha and Groth 2012;
Gicquel et al. 2000). An alternative to the physics-motivated parameterization is a
data-driven approach, where low-dimensional manifolds (LDMs) are constructed
directly from the training data (Sutherland and Parente 2009; Yang et al. 2013). In
particular, dimensionality reduction techniques can be used to define LDMs in the
original thermo-chemical state-space. Among many available linear and nonlinear
techniques, principal component analysis (PCA) (Jolliffe 2002) is commonly used
in combustion to obtain a linear mapping between the original variables and the
LDM (Sutherland and Parente 2009; Mirgolbabaei and Echekki 2013; Echekki and
Mirgolbabaei 2015; Isaac et al. 2015; Biglari and Sutherland 2015). In PCA, the
new parameterizing variables, called principal components (PCs), can be obtained
by projecting the training data onto a newly identified basis. A small number of the
first few PCs defines the LDM. ROMs can then be built based on this new parameter-
ization. As one example of ROM, PDEs describing the first few PCs can be evolved
in combustion simulations (Sutherland and Parente 2009) which result in a substan-
tial reduction of computational costs as compared to transporting the original state
variables.

Often, ROM workflows incorporate nonlinear regression to bypass the recon-
struction errors associated with an inverse basis transformation. Regression can thus
provide an effective route back from the reduced space to the original state-space
where the thermo-chemical quantities of interest such as temperature, pressure and
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composition, can be retrieved. Regression models can also provide closure for any
non-conserved manifold parameters. Nonlinear regression techniques such as artifi-
cial neural network (ANN) (Mirgolbabaei and Echekki 2014; Dalakoti et al. 2020),
multivariate adaptive regression splines (MARS) (Biglari and Sutherland 2015) or
Gaussian process regression (GPR) (Isaac et al. 2015; Malik et al. 2018, 2020) were
used in the past in the context of ROM.

In this chapter, we present the complete ROM workflow for application in react-
ing flow simulations. We begin with a concise mathematical description of a general
multicomponent reacting flow. Understanding the governing equations of the ana-
lyzed system is a crucial starting point for applying data science tools on the resulting
thermo-chemical state vector. After a discussion of training datasets, we present the
derivation of the ROM in the context of reacting flows. We review the combina-
tion of dimensionality reduction techniques with nonlinear regression. We discuss
three popular choices for nonlinear regression: ANNs, GPR and kernel regression.
Finally, we review recent results from a priori and a posteriori ROM of challenging
combustion simulations.

Throughout this chapter, we delineate a few outstanding challenges that remain
in ROM of combustion processes. For instance, projecting the data onto a lower-
dimensional basis, as is done in many ROMs, can introduce undesired behaviors
on LDMs. Observations that are distant in the original space can be collapsed into a
single, overlapping region. In the overlapping region, those observations are indistin-
guishable and the projection can becomemulti-valued.When the identified manifold
is used as regressor, these topological behaviors on LDMs can make the regression
process more difficult. Ideally, we would like to search for such parameters defining
the LDM, that the resulting regression function uniquely represents all dependent
variables. Recent work by Zhang et al. (2020) has demonstrated that regressing vari-
ables that have significant spatial gradients can be challenging using ANN. Steep
gradients can be particularly associated with minor species whose non-zero mass
fractions can be located on small portions of themanifold. ProblemswithANNrecon-
struction ofminor species on a PCA-derivedmanifold have recently been reported by
Dalakoti et al. (2020). Nevertheless, the attempts to link the poor regression perfor-
mance with the manifold topology are still scarce in the existing literature, with only
a few studies emerging recently (Malik et al. 2022a; Perry et al. 2022; Zdybał et al.
2022c). We show examples of quantitative measures to assess the quality of LDMs
that can help bridge this gap. We argue that the future research efforts should focus
on advancing strategies that improve regression on manifolds. This should allow to
better leverage the capability of techniques such as ANNs or GPR to approximate
even highly nonlinear relationships between variables (Hornik et al. 1989).
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PCAfold examples
The present chapter includes illustrative examples using PCAfold (Zdy-
bał et al. 2020), a Python software package for generating, analyzing
and improving LDMs. It incorporates the entire ROM workflow from
data preprocessing, through dimensionality reduction to novel tools for
assessing the quality of LDMs. PCAfold is composed of three main
modules: preprocess, reduction and analysis. In brief, the
preprocess module allows for data preprocessing such as centering
and scaling, sampling, clustering and outlier removal. The reduction
module introduces dimensionality reduction using PCA. The available
variants are global and local PCA, subset PCA and PCA on sampled
datasets. Finally, the analysis module combines functionalities for
assessing LDM quality and nonlinear regression results. Each mod-
ule is accompanied by plotting functions that allow for efficient view-
ing of results. For instructions on installing the software and for fur-
ther illustrative tutorials, the reader is referred to the documentation:
https://pcafold.readthedocs.io/. In the PCAfold exam-
ples that follow, we present a complete workflow that can be adopted for a
combustion dataset, using all three modules in series: preprocess →
reduction → analysis. We begin by importing the three modules:

from PCAfold import preprocess
from PCAfold import reduction
from PCAfold import analysis

2 Governing Equations for Multicomponent Mixtures

In this section,we beginwith the description of the governing equations for low-Mach
multicomponent mixtures, whose solution is the starting point for obtaining training
datasets for ROMs in reacting flow applications. In the discussion that follows,∇ · φφφ
denotes the divergence of a vector quantity φφφ, ∇φφφ (or ∇φ) denotes the gradient of a
vector quantityφφφ (or a scalar quantity φ) and the: symbol denotes tensor contraction.
The material derivative is defined as D/Dt := ∂/∂t + v · ∇. We let v be the mass-
averaged convective velocity of the mixture, defined as

v :=
n∑

i=1

Yiui , (1)

where Yi is the mass fraction of species i , ui is the velocity of species i and n is the
number of species in the mixture. At a given point in space and time, transport of
physical quantities in a multicomponent mixture can be described by the following
set of governing equations written in the conservative (strong) form:
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• Continuity equation:
∂ρ

∂t
= −∇ · ρv , (2)

where ρ is the mixture density.
• Species mass conservation equation:

∂ρYi
∂t

= −∇ · ρYiv − ∇ · ji + ωi for i = 1, 2, . . . , n − 1 , (3)

where ji is themass diffusive flux of species i relative to themass-averaged velocity
and ωi is the net mass production rate of species i due to chemical reactions.
Note, that summation of Eqs. (3) over all n species yields the continuity equation
(Eq. (2)) since

∑n
i=1 Yi = 1,

∑n
i=1 ji = 0 and

∑n
i=1 ωi = 0. For this reason, only

n − 1 independent species mass conservation equations are solved. Mass fraction
of the nth species can be computed from the constraint

∑n
i=1 Yi = 1.

• Momentum equation:

∂ρv
∂t

= −∇ · ρvv − ∇ · τττ − ∇ · pI + ρ

n∑

i=1

Yi fi , (4)

where τττ is the viscous momentum flux tensor, p is pressure, I is the identity tensor
and fi is the net acceleration from body forces applied on species i .

with one of the following forms of the energy equation:

• Total internal energy equation:

∂ρe0
∂t

= −∇ · ρe0v − ∇ · q − ∇ · τττ · v − ∇ · pv +
n∑

i=1

fi · ni , (5)

where e0 is the mixture specific total internal energy, q is the heat flux and ni :=
ρYiui is the total mass flux of species i .

• Internal energy equation:

∂ρe

∂t
= −∇ · ρev − ∇ · q − τττ : ∇v − p∇ · v +

n∑

i=1

fi · ji , (6)

where e is the mixture specific internal energy.
• Enthalpy equation:

∂ρh

∂t
= −∇ · ρhv − ∇ · q − τττ : ∇v + Dp

Dt
+

n∑

i=1

fi · ji , (7)

where h is the mixture specific enthalpy.
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• Temperature equation:

∂ρT

∂t
= −∇ · ρT v − 1

cp
∇ · q + αT

cp

Dp

Dt
− 1

cp
τττ : ∇v + 1

cp

n∑

i=1

(
hi (∇ · ji − ωi ) + fi · ji

)
, (8)

where T is the temperature, α is the coefficient of thermal expansion of themixture
(α = 1/T for an ideal gas), cp is the mixture isobaric specific heat capacity and
hi is the enthalpy of species i .

The governing equations can also be re-formulated using a reference velocity differ-
ent from the mass-averaged velocity used here. A different mixture velocity would
not only affect the terms involving v explicitly, but also an appropriate diffusive flux
will have to be formulated.

The set of governing equations is closed by a few additional relations. The first
one is an equation of state. For an ideal gas, we have

p = ρRuT

M
, (9)

where Ru is the universal gas constant and M = ( ∑n
i=1 Yi/Mi

)−1
is the molar mass

of the mixture where Mi is the molar mass of species i . For a chemically reacting
flow, we also require a chemical mechanism that relates temperature, T , pressure, p,
and composition, [Y1,Y2, . . . ,Yn], to the chemical source terms, ωi . The heat flux,
q, requires modeling as it in general can include all possible means of heat transfer.
One encountered model for q can be written using the standard Fourier term and the
term representing heat transfer through molecular diffusion of species:

q = −λ∇T +
n∑

i=1

hi ji , (10)

where λ is themixture thermal conductivity.We also require amodel for the diffusive
fluxes, ji . Assuming Fick’s law as a model for diffusion, we can express the mass
diffusive flux as

ji = −ρDDD∇Yi , (11)

whereDDD is a matrix of Fickian diffusion coefficients that are functions of the binary
diffusion coefficients and composition. Finally, we require a model for the viscous
momentum flux tensor, τττ . Assuming Newtonian fluids, τττ can be expressed as:

τττ = −μ
(∇v + (∇v)�

) +
(2
3
μ − κ

)
(∇ · v)I , (12)

whereμ is themixture viscosity. κ is themixture dilatational viscosity and� denotes
matrix transpose. The reader is referred to numerous great resources for a deeper
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discussion of multicomponent mass transfer or derivation of the equations above
(Taylor and Krishna 1993; Giovangigli 1999; Bird et al. 2006; Kee et al. 2005).

The governing equations given by Eqs. (2)–(8) can be written in a general matrix
form:

∂X�

∂t
= −∇ · C� − ∇ · D� + S� , (13)

whereX ∈ R
N×Q is the thermo-chemical state vector,C ∈ R

d×N×Q is the convective
fluxvector,D ∈ R

d×N×Q is the diffusivefluxvector andS ∈ R
N×Q is the source terms

vector. Here, Q is the number of transported properties, d is the number of spatial
dimensions of the problem and N is the number of observations. The observations
can for instance be linked to measurements on a spatio-temporal grid of a discretized
domain. Typically, N � Q, but the magnitude of Q strongly depends on the number
of species in the mixture. In combustion problems, Q can easily reach the order
of hundreds when large chemical mechanisms are used (Lu and Law 2009). The
appropriate formulation of X, C, D and S will depend on a given problem and the
assumed simplifications to the governing equations. In the most general case, when
all transport equations are solved and no further simplifications are made to the
governing equations as given by Eqs. (2)–(8), we form the columns of X, C, D and
S as per Table1. Note, that the order of columns in X does not matter, as long as the
corresponding column in C, D and S carries an appropriate term. Since the thermo-
chemical state of a single-phase multicomponent system is defined by Q = n + 1

Table 1 Formulation of the thermo-chemical state vector, X, the convective flux vector, C, the
diffusive flux vector, D, and the source terms vector, S, in the most general case, where no further
assumptions are imposed to the strong form of the governing equations given by Eqs. (2)–(8)

Equation State vector Convective flux
vector

Diffusive flux
vector

Source terms
vector

(Columns of X) (Columns of C) (Columns of D) (Columns of S)

Continuity ρ ρv 0 0

Species mass ρYi ρYiv ji ωi

Momentum ρv ρvv τττ + pI ρ
∑n

i=1 Yi fi
Total internal
energy

ρe0 ρe0v q + τττ · v + pv
∑n

i=1 fi · ni

Internal energy ρe ρev q −τττ : ∇v − p∇ ·
v + ∑n

i=1 fi · ji
Enthalpy ρh ρhv q −τττ : ∇v + Dp

Dt +∑n
i=1 fi · ji

Temperature ρT ρT v 0 − 1
cp

∇ · q +
αT
cp

Dp
Dt − 1

cp
τττ :

∇v +
+ 1

cp

∑n
i=1

(
hi (∇ ·

ji − ωi ) + fi · ji
)
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variables, an example state vector that follows from the conservative form of the
governing equations can be: X = [ρ, ρe, ρY1, ρY2, . . . , ρYn−1] (the conserved state
vector). For the reasons explained earlier, we only include n − 1 independent species
mass fractions. Mass fraction of the most abundant species is most often removed
(Niemeyer et al. 2017). Historically, specific momentum quantity (ρv) has not been
included in the state vector in ROM of reacting flows (Sutherland and Parente 2009).
Various other definitions of the state vector, X, can be adopted with the caveat that
the system given by Eq. (13) should not be over-specified (Giovangigli 1999; Hansen
and Sutherland 2018). In the next section, we review several strategies to obtain data
matrices X, C, D and S.

3 Obtaining Data Matrices for Data-Driven Approaches

High-dimensional datasets, that are typical to reacting flow applications, can come
from numerical simulations or experiments. A few types of numerical datasets of
varying complexity often used in the context ofROMare presented in Fig. 1. In partic-
ular, solving the governing equations presented in Sect. 2 for simple reacting systems
is one computational strategy to obtain training data for ROM. Those simple systems
can include zero-dimensional reactors, strained laminar flamelets (Peters 1988), one-
dimensional flames or one-dimensional turbulence (ODT) (Kerstein 1999; Suther-
land et al. 2010; Echekki et al. 2011). With sufficient amount of assumptions made
to the governing equations, we can obtain those datasets at a relatively cheap com-
putational cost. Relaxing some of those assumptions, on the other hand, can move us
along the axis of an increasing complexity of the training data, incorporating more
information about the turbulence-chemistry interaction. At the end of the complexity
spectrum, we have a full direct numerical simulation (DNS), which results in high-
fidelity data with all spatial and temporal scales directly resolved. Resorting to more
expensive numerical simulations, such as large eddy simulation (LES) orDNS,might
not be necessary for ROM purposes. For instance, ODT datasets have been shown
to reproduce the DNS conditional statistics well (Punati et al. 2011; Abboud et al.
2015; Lignell et al. 2015; Punati et al. Oct 2016) and have therefore been frequently
used in the context of ROM (Mirgolbabaei and Echekki 2014; Mirgolbabaei et al.
2014; Mirgolbabaei and Echekki 2015; Biglari and Sutherland 2015) since they are
computationally cheaper to obtain. For an additional overview of datasets presented
in Fig. 1 the reader is referred to (Zdybał et al. 2022a).

As an illustrative example, the governing equations for an adiabatic, incompress-
ible, zero-dimensional reactor simplify to:

∂T

∂t
= − 1

ρcp

n∑

i=1

hiωi ,
∂Yi
∂t

= ωi

ρ
for i = 1, 2, . . . , n − 1.
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Zero-dimensional
reactors

Counterflow
diffusion flame, 
steady laminar

flamelet 

Fuel

Oxidizer

Data complexity

One-dimensional
turbulence (ODT)

Large eddy
simulation (LES)

Direct numerical
simulation (DNS)

Reynolds-averaged
Navier-Stokes

(RANS)

Fig. 1 Schematic overviewof training datasets forROM.Aswemove along the axis of an increasing
complexity, more physical detail is incorporated into the reacting flow simulation

Since a zero-dimensional reactor represents combustion happening in a single point in
space, all spatial derivatives present inEqs. (2)–(8) vanish.Collecting all observations
of T and Yi into a matrix X, and collecting all observations of −1/ρcp

∑n
i=1 hiωi

and ωi/ρ into a matrix S, we get

X =

⎡

⎢⎢⎣

...
...

...
...

T Y1 Y2 . . . Yn−1
...

...
...

...

⎤

⎥⎥⎦ and S =

⎡

⎢⎢⎣

...
...

...
...

− 1
ρcp

∑n
i=1 hiωi

ω1
ρ

ω2
ρ

. . .
ωn−1

ρ

...
...

...
...

⎤

⎥⎥⎦ .

Note, that even though we have removed the transport equation for the nth species,
the temperature equation still couples all species through the −∑n

i=1 hiωi term,
which represents the heat release rate.

4 Reduced-Order Modeling

At this point, we have learned how to construct training datasets which are the start-
ing point for applying data-driven approaches. It has been a frequent trend in recent
years to apply dimensionality reduction techniques to combustion datasets, both for
ROM and for data analysis. In the context of combustion, techniques such as PCA
(Sutherland and Parente 2009), local PCA (Parente et al. 2009, 2011), kernel PCA
(Mirgolbabaei and Echekki 2014), t-distributed stochastic neighbor embedding (t-
SNE) (Fooladgar and Duwig 2018), independent component analysis (ICA) (Gitushi
et al. 2022), non-negative matrix factorization (NMF) (Zdybał et al. 2022a) or aut-
encoders (Zhang et al. 2021) have been used. In this chapter, we focus on using
dimensionality reduction techniques solely to model reduction. We use the premise
that the original dataset, X, of high rank can be efficiently approximated by a matrix
of a much lower rank. The data can then be re-parameterized with the new mani-
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fold parameters (Sutherland et al. 2007). Dimensionality reduction is often coupled
with nonlinear regression to provide a more robust mapping between the manifold
parameters and the quantities of interest. In this section, we review ROM strategies
for reacting flows that include dimensionality reduction and nonlinear regression.

4.1 Data Preprocessing

The first step towards applying dimensionality reduction is data preprocessing. The
most straightforwardway is data normalization (centering and scaling), which allows
to equalize the importance of physical variables of different numerical ranges. Any
variable φ in a dataset can be centered and scaled using the general formula φ̃ =
(φ − c)/d, where c is the center computed as the mean value of φ and d is the scaling
factor. Other data preprocessingmeans can include data sampling to tackle imbalance
in sample densities, data subsetting (feature selection), or outlier removal. The effect
of data preprocessing, including scaling and outlier removal, on the resulting LDMs
was studied in (Parente and Sutherland 2013). In the discussion that follows, we
assume that the training datasets have been appropriately preprocessed.

4.2 Reducing the Number of Governing Equations

Data-driven model reduction has emerged in recent years with applications to com-
plex dynamical systems. Model reduction of complex systems typically starts with
changing the basis to represent the original high-dimensional system. LetA ∈ R

Q×Q

be the matrix of modes defining the new basis. The matrix A can be found directly
from the training data using a dimensionality reduction technique, such as PCA. As
long asA is constant in space and time, the governing equations of the form presented
in Eq. (13) can be written as:

∂A · X�

∂t
= −∇ · A · C� − ∇ · A · D� + A · S� , (14)

where X can in general contain all state variables as presented in Sect. 2, or a subset
of those. Equation (14) represents transformation of the original governing equations
to the new basis defined by A.

4.2.1 Principal Component Transport

PCA is one dimensionality reduction technique that can be used to obtain the basis
matrix A by performing eigendecomposition of the data covariance matrix. PCA can
provide optimal reaction variables, PCs, that are linear combinations of the original
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thermo-chemical state variables (Sutherland 2004; Sutherland and Parente 2009;
Parente et al. 2009). We can define the matrix of PCs, Z ∈ R

N×Q , as Z = XA, which
represents the transformation of X to the new PCA-basis. The governing equations
written in the form of Eq. (13) can be linearly transformed to this new PCA-basis as
per Eq. (14). This yields a new set of transport equations for the PCs:

∂Z�

∂t
= −∇ · CZ

� − ∇ · DZ
� + SZ

� , (15)

where CZ = CA are the projected convective fluxes, DZ = DA are the projected
diffusive fluxes and SZ = SA are the PC source terms – the source terms of the
original state-space variables transformed to the new PCA-basis. We will further
refer to the j th PC (the j th column of Z) as Z j and to the j th PC source term
(the j th column of SZ) as SZ , j . By solving the transport equations for the first q
PCs only, we can significantly reduce the number of PDEs in Eq. (15) as compared
to Eq. (13). PCA further guarantees that the q first PCs are the most important
ones in terms of the variance retained in the data. From the Eckart-Young theorem
(Eckart and Young 1936), we know that approximating the dataset X with only q
first PCs gives the closest rank-q approximation to X. This approximation can be
obtained through an inverse basis transformation: X ≈ ZqAq

−1, where the subscript
q denotes truncation to q components. With the PCA modeling approach, the first q
PCs become the reaction variables that re-parameterize the original thermo-chemical
state-space. They also define the q-dimensionalmanifold, embedded in the originally
Q-dimensional state space.

Formulation of PC-transport was first proposed by Sutherland and Parente (2009).
Since then, numerous a priori (Biglari and Sutherland 2012; Mirgolbabaei and
Echekki 2013; Mirgolbabaei et al. 2014; Malik et al. 2018; Ranade and Echekki
2019; Dalakoti et al. 2020; D’Alessio G et al. 2022; Zdybał et al. 2022c) and a pos-
teriori (Isaac et al. 2014; Biglari and Sutherland 2015; Echekki and Mirgolbabaei
2015; Coussement et al. 2016; Owoyele and Echekki 2017; Ranade and Echekki
2019; Malik et al. 2020, 2022a, b) studies have been conducted. The advantage of
PCA-based modeling is that models can be trained on datasets coming from sim-
pler systems that are cheap to compute (such as zero-dimensional reactors or laminar
flamelets, see Sect. 3). This has been shown to be a feasible modeling strategy (Malik
et al. 2018, 2020), as long as the training data covers the possible states of the reacting
system that might be accessed during simulation of real systems.

There are a few additional ingredients of the PC-transport modeling approach.
First, sinceEq. (15) is solved for thePCswhich donot have anyphysical relevance,we
require a mapping back to the original thermo-chemical state-space, where physical
quantities of interest can be retrieved. Second, we need to parameterize the source
terms, SZ, of any non-conserved manifold parameters (Sutherland 2004; Sutherland
and Parente 2009).While in the original state spacewe have known relations between
the transported variables and their source terms, we lack such explicit relations in the
space of PCs. Both these points can be handled by coupling nonlinear regressionwith
the PC-transport model—this will be further discussed in Sect. 4.4. Finally, in the
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presence of diffusion, diffusive fluxes need to be represented in the new PCA-basis
as well. Treatment of PC diffusive fluxes was proposed byMirgolbabaei and Echekki
(2014) and by Biglari and Sutherland (2015). A study by Echekki and Mirgolbabaei
(2015) further looked into mitigating the multicomponent effects associated with
diffusion of PCs. Another study by Coussement et al. (2016) looked at the influence
of differential diffusion on PCA-based models. The work done in (Coussement et al.
2016) looked at how rotation of the PCs can diagonalize the PCs diffusion coefficients
matrix and thus make the treatment of diffusion of PCs easier.

Computing the PCs and the PC source terms
In this example, we demonstrate how one can obtain the PCs and the
PC source terms from the state vector, X, and the source terms vector,
S, respectively. We use a syngas/air steady laminar flamelet dataset and
generate its two-dimensional (2D) projection onto the PCA-basis. The
dataset was generated using Spitfire Python library (Hansen et al.
2022) and the chemical mechanism by Hawkes et al. (2007).
Load the dataset, removing the nth species, N2:

import numpy as np
X = np.genfromtxt(’syngas-air-SLF-state-space.csv’, delimiter=’,’)

[:,0:-1]
S = np.genfromtxt(’syngas-air-SLF-state-space-sources.csv’, delimiter

=’,’)[:,0:-1]
f = np.genfromtxt(’syngas-air-SLF-mixture-fraction.csv’, delimiter

=’,’)
chi = np.genfromtxt(’syngas-air-SLF-dissipation-rates.csv’, delimiter

=’,’)
(n_observations, n_variables) = X.shape

Perform PCA on the dataset:

pca = reduction.PCA(X, scaling=’auto’, n_components=2)

Transform the state vector, X, to the new PCA basis:

Z = pca.transform(X)

Transform the source terms vector, S, to the new PCA basis (note the
nocenter=True flag):

S_Z = pca.transform(S, nocenter=True)

Visualize the 2D projection of the dataset, colored by the two PC source
terms, SZ ,1 and SZ ,2 (Fig. 2):

plt = reduction.plot_2d_manifold(Z[:,0], Z[:,1],
color=S_Z[:,0],
s=15,
x_label=’$Z_{1}$ [$-$]’, y_label=’

$Z_{2}$ [$-$]’,
colorbar_label=’$S_{Z, 1}$\n[$-$]’,
color_map=’inferno’,
grid_on=True,
figure_size=(6,4))
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Fig. 2 Outputs of analysis.plot_2d_manifold

It is visible from the plot above that this 2D projection introduces sig-
nificant non-uniqueness that particularly affects the dependent variable
SZ ,1. At the same time, this visible overlap in the (Z1, Z2) space does not
coincide with the region of the largest variation in the second PC source
term, SZ ,2, values. We can expect that SZ ,1 will be much more strongly
affected by the manifold non-uniqueness than SZ ,2.

4.3 Low-Dimensional Manifold Topology

Apart from PCA, numerous manifold learning methods can help identify LDMs
in high-dimensional combustion datasets. Although the approach presented in
Sect. 4.2.1 allows for substantial model reduction, several manifold challenges need
to be addressed. In particular, during projection of data to a lower-dimensional basis,
non-uniqueness can be introduced in the manifold topology which can hinder suc-
cessful model definition. A good model should provide unique definition of all rele-
vant dependent variables as functions of the manifold parameters (Sutherland 2004;
Pope 2013). With this premise, the future research directions can be twofold. First,
we require techniques to characterize the quality of LDMs. Second, we should seek
strategies that provide an improved manifold topology. Both points should feed one
another and can be tackled simultaneously.

Measures such as the coefficient of determination (Biglari and Sutherland 2012)
or manifold nonlinearity (Isaac et al. 2014) have been used in the past to assess man-
ifold parameterizations a priori. A recently proposed normalized variance derivative
metric (Armstrong and Sutherland 2021) is muchmore informative in comparison. It
can characterize manifold quality with respect to two important aspects: feature sizes
and multiple scales of variation in the dependent variable space. Multiple scales of
variation can often indicate non-uniqueness in manifold parameterization. A more
compact metric based on the normalized variance derivative has also been proposed
recently (Zdybał et al. 2022b). It reduces the manifold topology to a single number
and can be used as a cost function in manifold optimization tasks.
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Some topological challenges can be mitigated through appropriate data prepro-
cessing prior to projecting to a lower-dimensional space. The most straightforward
strategy is data scaling, with Pareto (Noda 2008) or VAST (Hector et al. 2003) scal-
ingsmost commonly used (Biglari and Sutherland 2015; Isaac et al. 2015;Malik et al.
2018, 2020). Other authors have tackledmanifold challenges by training combustion
models on only a subset of the original thermo-chemical state-space variables (Chat-
zopoulos and Rigopoulos 2013;Mirgolbabaei and Echekki 2013, 2014; Echekki and
Mirgolbabaei 2015; Isaac et al. 2015; Owoyele and Echekki 2017; Malik et al. 2020;
Nguyen et al. 2021; Gitushi et al. 2022). Recent work developed a strategy for a
manifold-informed state vector subset selection (Zdybał et al. 2022b). A study done
by Coussement et al. (2012) suggests that tackling initial imbalance in data density
can yield a more accurate low-dimensional representation of the flame region.

Another important decision that needs to be made at the modeling stage is what
manifold dimensionality, q, should we select? Additional number of parameters
may be required for more complex manifold topologies. While techniques such
as PCA provide orthogonal manifold parameters (PCs), each bringing information
about variance in another orthogonal data dimension, it is not clear how many PCs
is sufficient to provide a good quality, regressible manifold topology. From the
computational cost point of view, keeping low manifold dimensionality is desired.
However, keeping q small should not be at the expense of the parameterization
quality. Admittedly, more work is required to provide answers to those questions.

Low-dimensional manifold assessment
Below, we demonstrate how we can assess the quality of LDMs obtained
from PCA using the novel normalized variance derivative metric (Arm-
strong and Sutherland 2021). We will assess the generated 2D projections
and we take the two PC source terms as the two dependent variables.
Define the bandwidth values, σ :

bandwidth_values = np.logspace(-5, 1, 100)

Specify the names of the dependent variables:

variable_names=[’$S_{Z,1}$’, ’$S_{Z,2}$’]

Compute the normalized variance derivative, D̂(σ ):

variance_data = analysis.compute_normalized_variance(Z, S_Z,
variable_names,

bandwidth_values
=bandwidth_values)

Plot the D̂(σ ) curves for the two PC source terms (Fig. 3):

analysis.plot_normalized_variance_derivative(variance_data,
color_map=’Greys’,

figure_size=(10,2.5)
)
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Fig. 3 Output of analysis.plot_normalized_variance_derivative

The normalized variance derivative, D̂(σ ), quantifies the information con-
tent on a manifold at various length scales specified by the bandwidth,
σ . The peaks in the D̂(σ ) profile happening at very small length scales
can often be linked to non-uniqueness in manifold topologies. In the plot
above, we can observe two distinct peaks corresponding to the D̂(σ ) curve
for the first PC source term, SZ ,1. The peak happening for smaller σ can
be understood from our visualization of the manifold topology in Fig. 2.
In our visualization we have seen clear overlap, where the observations
corresponding to highly negative values of SZ ,1 were projected directly
above observations corresponding to SZ ,1 ≈ 0. The information provided
by D̂(σ ) is valuable at the modeling stage, as it allows to quantitatively
assess the quality of low-dimensional data projections.

4.4 Nonlinear Regression

Nonlinear regression is often used to provide an effectivemapping between themani-
fold parameters and the dependent variables of interest (Biglari and Sutherland 2015;
Mirgolbabaei and Echekki 2015; Malik et al. 2018; Dalakoti et al. 2020). The set of
dependent variables, φφφ, typically include the PC source terms, SZ, and the thermo-
chemical state-space variables, such as temperature, density and composition. Unlike
the inverse basis transformation discussed in Sect. 4.2.1, regression has the poten-
tial to yield much more accurate dependent variable reconstructions (Mirgolbabaei
and Echekki 2015). Nonlinear regression techniques allow us to encode nonlinear
relationships between the manifold parameters and the dependent variables. This
characteristic is especially desired for modeling source terms, which are highly non-
linear functions of the independent variables. In the past research, reconstruction of
the PC source terms has been shown to bemuchmore challenging than reconstruction
of the state variables (Biglari and Sutherland 2012, 2015). This is due to the fact that
the state-space variables evolve nonlinearly according to the Arrhenius relations.
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In this section, we are concerned with a set of nφ dependent variables defined
as φφφ = [SZ, T, ρ, Yi ], where Yi is a vector of n − 1 species mass fractions, Yi =
[Y1,Y2, . . . ,Yn−1]. In mathematical terms, the goal of nonlinear regression is to find
a function F , such that:

φ ≈ F (Zq) , (16)

where φ is a dependent variable and Zq are the q first PCs. It is worth noting that
some regression techniques allow to obtain all dependent variables at once; other
require regressing dependent variables one-by-one. Three popular nonlinear regres-
sion techniques are reviewed in this section. Our main focus is in presenting how the
function F is defined in each technique.

Nonlinear regression
In the examples that follow, we will perform and assess ANN, GPR and
kernel regression of the two PC source terms defined earlier. The nonlinear
regressionmodels will be trained on 80% and tested on the remaining 20%
of the data. Below,we use the sampling functionalities to randomly sample
train and test data:
sample_random = preprocess.DataSampler(np.zeros((n_observations,)).

astype(int),
random_seed=100,
verbose=True)

(idx_train, idx_test) = sample_random.random(80)
Z_train = Z[idx_train,:]; Z_test = Z[idx_test,:]
S_Z_train = S_Z[idx_train,:]; S_Z_test = S_Z[idx_test,:]

4.4.1 Artificial Neural Network

Artificial neural networks (ANNs) are a network of connected layers that compute
the output(s) based on some convolution of the layer’s input(s) (Russell and Norvig
2002). The layer’s inputs and outputs are called neurons. ANNs form a parametric
technique that can be used both for regression and classification and are broadly used
in the context ofROM.This applies to both reacting (Mirgolbabaei andEchekki 2013,
2014, 2015; Echekki and Mirgolbabaei 2015; Ranade and Echekki 2019; Dalakoti
et al. 2020; Zhang et al. 2020) and non-reacting (pure fluid) applications (Farooq
et al. 2021).

For an architecture with a single neural layer (input → output), the regression
function F at some query point P can be written as:

F
∣∣
P = g1(Zq

∣∣
PW1 + b1) , (17)

where W1 ∈ R
q×nφ is the matrix of weights and b1 ∈ R

1×nφ is the vector of biases,
and g1 is the activation function. BothW1 and b1 are learned from the training data by
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solving an optimization problem. For a deep neural network (DNN) which allow for
multi-layer architecture, the regression function becomes a composition of functions
of the form shown in Eq. (17). Assuming m neural layers, we can write that

F
∣∣
P = gm(gm−1(· · · g2(g1(Zq

∣∣
PW1 + b1)W2 + b2) · · · Wm−1 + bm−1)Wm + bm) ,

(18)

where all matrices Wl as well as all vectors bl for layers l = 1, 2, . . . ,m, do not need
to be of the same size, since the number of neurons can vary in different layers. Also
the activation functions gl can vary for different layers. The Eq. (18) essentially states
inmatrix notation that the output of one layer becomes an input of the following layer.

The advantage of using ANN regression is that predictions are relatively cheap to
compute once the ANNmodel has been trained. As can be seen from Eqs. (17)–(18),
predicting a single observation ofφφφ given a set of query inputs,Zq

∣∣
P
, requires vector-

matrix multiplication(s), where Wl is typically a small matrix. This makes ANNs
very appealing from the computational cost point of view. However, the optimization
used to determine weights and biases is prone to reaching local minimum. The best
one can hope for is that the local minimum will result in reasonable predictions. The
overall performance of the trained network is dependent on many factors that the
user can tune, such as the architecture or the choice of the activation function(s).
The ANN predictions are also dependent on the random initial guess for the weights
and biases which can greatly affect gradient descent -based algorithms. To improve
the network performance, Bayesian optimization can be used to determine the ANN
hyper-parameters (Mockus 2012; Bergstra et al. 2013; Barzegari and Geris 2021).

ANN regression
In this example, we create an ANN model to obtain the parameterizing
function, F . We will use a popular Python library for ANN, Keras
(Chollet et al 2015), which is a backend of the TensorFlow software
(Abadi et al. 2015). Below, we import the necessary libraries:
from keras.models import Sequential
from keras.layers import Dense
from keras import optimizers
from keras import losses

We use a relatively simple architecture with two hidden layers with five
neurons each:

model = Sequential([
Dense(5, input_dim=2, activation=’sigmoid’),
Dense(5, activation=’sigmoid’),
Dense(2, activation=’linear’)])

Normalize the ANN outputs to the 〈−1; 1〉 range:

(normalized_S_Z, centers, scales) = preprocess.center_scale(S_Z, ’-1
to1’)
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Sample the normalized train data outputs:

normalized_S_Z_train = normalized_S_Z[idx_train,:]

Compile the ANN model with the given architecture :

model.compile(optimizers.Adam(lr=0.001),
loss=losses.mean_squared_error,
metrics=[’mse’])

Fit the compiled ANN model with the training data, specifying the
hyper-parameters:

history = model.fit(Z_train,
normalized_S_Z_train,
batch_size=100, epochs=500,
validation_split=0.2, verbose=0)

Finally, we predict the two PC source terms, remembering to invert the
〈−1; 1〉 normalization applied initially:

S_Z_ANN_predicted = model.predict(Z)
S_Z_ANN_predicted = preprocess.invert_center_scale(S_Z_ANN_predicted,

centers, scales)

We can visualize the regression result in 3D (Fig. 4):

analysis.plot_3d_regression(Z[:,0],
Z[:,1],
S_Z[:,0],
S_Z_ANN_predicted[:,0],
elev=30,
azim=200,
x_label=’$Z_1$ [$-$]’,
y_label=’$Z_2$ [$-$]’,
z_label=’$S_{Z, 1}$ [$-$]’,
figure_size=(12,6))

Fig. 4 Outputs of analysis.plot_3d_regression

The figure above demonstrates qualitatively how regression can strug-
gle to regress dependent variables on an ill-behaved manifold. We can
observe regions with large mismatch between the observed and the pre-
dicted values of the two PC source terms. In particular, highly negative
values of SZ ,1 are poorly predicted. This behavior can be linked to our
manifold topology assessments in the earlier examples, where we have
seen non-uniqueness affecting highly negative values of SZ ,1.
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4.4.2 Gaussian Process Regression

Gaussian process regression (GPR) is a kernel-based, semi-parametric regression
technique (Williams and Rasmussen 2006). A powerful characteristic of GPR is
that prior knowledge about the functional relationship between the independent and
dependent variables can be injected at the modeling stage. For instance, if the system
dynamics is known to have an oscillatory behavior, the kernel can be built using a
periodic function. Another important feature of GPR is that it provides uncertainty
bounds on the predicted variables,while techniques such asANNor kernel regression
only provide predictions.

In GPR, the regression function F is learned from the data:

F (Zq) = GP(m(Zq), K(Zq, Zq
′)) , (19)

whereGP denotes aGaussian process,m is themean function andK is the covariance
matrix. The covariance matrix, K ∈ R

nx×ny , can be populated using any kernel of
choice as long as the elements in K satisfy ki, j = k j,i , ∀i �= j . Typically, kernels are
functions of the distance between data observations, xi and x j . Squared exponential
kernel is commonly used to populate K:

ki, j = h2 exp

(
(xi − x j )

2

λ2

)
, (20)

where h is the scaling factor and λ is the bandwidth of the kernel. Figure5a visu-
alizes the effect of increasing the kernel bandwidth, λ, on the resulting covariance
matrix structure. With a larger λ, we are allowing observations that are further apart

Fig. 5 The effect of kernel bandwidth on smoothing the Gaussian process regression predictions.
In this example, the scaling factor h = 0.1. a Heatmaps of three covariance matrices, K, generated
using the squared exponential kernel with an increasing kernel bandwidth, λ. b Example regression
function realizations resulting from each covariance matrix. c Histogram of one hundred function
realizations corresponding to the λ = 5 case with the mean equal to 10. The mean dictates the most
probable function value
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to correlate. The structure of K is then reflected in possible regression function real-
izations (Fig. 5b). With a very narrow kernel (here λ = 0.2), the resulting realization
looks very noisy—even nearby observations can have very different function values.
The larger the kernel bandwidth, the smoother the realization function (Duvenaud
2014). With λ = 5 we can expect stronger correlation in function values even for
observations that are further away. Figure5c additionally shows a histogram of one
hundred regression function realizations resulting from λ = 5. Since in this example
we have chosen the mean equal to 10, the histogram has a Gaussian distribution
centered around 10.

GPR regression
In this example, we create a GPR model to obtain the parameterizing
function,F . We will use a Python package george (Ambikasaran et al.
2016) to perform GPR:
import george

Create the squared exponential kernel:

kernel = george.kernels.ExpSquaredKernel(20, ndim=2)

Fit the GPR model with the training data:

gp = george.GP(kernel)
gp.compute(Z_train, yerr=1.25e-12,)

Predict the two PC source terms:

S_Z1_GPR_predicted, S_Z1_GPR_var = gp.predict(S_Z_train[:,0], Z,
return_var=True)

S_Z2_GPR_predicted, S_Z2_GPR_var = gp.predict(S_Z_train[:,1], Z,
return_var=True)

We visualize the predicted PC source terms (Fig. 6):

Fig. 6 Outputs of analysis.plot_3d_regression

In the plot above, we observe similar misprediction of the first PC source
term, SZ ,1, as we have seen with ANN regression.
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4.4.3 Kernel Regression

Kernel regression is a nonparametric technique that does not include the “training”
step. Function F is inferred for each query point, P , directly from the training
data samples in some vicinity of P . The regression function F is built from the
Nadaraya-Watson estimator (Härdle 1990) as:

F
∣∣
P =

∑N
i=1 Ki,P(Zq, σ )φi∑N
i=1 Ki,P(Zq, σ )

, (21)

where K is the kernel function and σ is the kernel bandwidth. The Eq. (21) essentially
represents a linear combination of the weighted observations of φ. Similarly as in
GPR, various kernels can be used in place of K . The most popular Gaussian kernel
yields:

Ki,P(Zq, σ ) = exp

(−||Zq
∣∣
i − Zq

∣∣
P ||22

σ 2

)
, (22)

The larger the kernel bandwidth, σ , the larger the resulting coefficients Ki multi-
plying each data observation, φi . In other words, an increasing σ yields a stronger
influence of data observations distant from P on the predicted function value at P . An
implication of a larger σ on regression means thatF becomes a smoother function –
note the similarity of this conceptwith the covariancematrix discussion in Sect. 4.4.2.

Kernel regression
In this example, we create a kernel regression model to obtain the param-
eterizing function, F . We specify the kernel bandwidth, σ , for the
Nadaraya-Watson estimator:
bandwidth = 0.5

Fit the kernel regression model with the training data:

model = analysis.KReg(Z_train, S_Z_train)

Predict the two PC source terms:

S_Z_KReg_predicted = model.predict(Z, bandwidth=bandwidth)

Similarly as before, we visualize the predicted PC source terms (Fig. 7):

Fig. 7 Outputs of analysis.plot_3d_regression
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Since kernel regression makes predictions by “smoothing out” function
values over some neighborhood of a query point, the non-uniqueness in
SZ ,1 values affected regression performance, similarly to what we have
observed with ANN and GPR regression.

Nonlinear regression assessment
Here,we continue the kernel regression example anduse variousmetrics to
assess the regression performance. Two commonmetrics that are available
are the coefficient of determination, R2, and the normalized root mean
squared error (NRMSE). For vector quantities, such as the PC source
terms vector, another useful metric might be the good direction estimate
(GDE) which is a measure derived from cosine similarity.
Compute the regression metrics for the two PC source terms:

metrics = analysis.RegressionAssessment(S_Z, S_Z_KReg_predicted,
variable_names=variable_names

,
norm=’std’,
tolerance=0.05)

Display the regression metrics in a table format (Fig. 8):

metrics.print_metrics(table_format=[’pandas’], metrics=[’R2’, ’NRMSE
’, ’GDE’])

Fig. 8 Output of analysis.RegressionAssessment print_metrics.

The RegressionAssessment class also allows to compare two
regression results. It can color-code the displayed table and mark the
metrics that got worse red and those that got better green.
In addition to a single value of each metric for the entire dataset, we can
also compute stratified metrics values, in bins (clusters) of a dependent
variable. This allows us to observe how regression performed in specific
regions of the manifold. Below, we compute the stratified metrics in four
bins of the first PC source term, SZ ,1. We then look at the kernel
regression of the first PC source term in each bin.
We first use the function from the preprocess module that allows to
manually partition the dataset into bins of a selected variable. Compute
the bins:

(idx, _) = preprocess.predefined_variable_bins(S_Z[:,0],
split_values=[-10000,

0, 10000],
verbose=False)
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Those data bins (clusters) are visualized below on the syngas/air flamelet
dataset in the space of mixture fraction and temperature (Fig. 9):

preprocess.plot_2d_clustering(f, X[:,0], idx,
x_label=’$f$ [-]’, y_label=’$T$ [$K$]’,
first_cluster_index_zero=False,
color_map=’coolwarm’,
figure_size=(8,4))

Fig. 9 Output of preprocess.plot_2d_clustering

Compute the stratified regression metrics:

metrics = analysis.RegressionAssessment(S_Z[:,0], S_Z_KReg_predicted
[:,0],

idx=idx,
use_global_mean=True,
norm=’std’,
use_global_norm=True)

Display the stratified regression metrics in a table format (Fig. 10):

metrics.print_stratified_metrics(table_format=[’pandas’], metrics=[’
NRMSE’])

Fig. 10 Output of analysis.RegressionAssessmentprint_
stratified_metrics.
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The stratified metrics let us see that kernel regression performed rela-
tively well for SZ ,1 > −10, 000 with NRMSE values less than 1.0 in bins
k2, k3 and k4. However, we see that for observations in bin k1, correspond-
ing to the smallest values of SZ ,1, the NRMSE is significantly higher. The
results of the stratified NRMSE values are consistent with what we have
seen in Fig. 7 that visualized the regression result. We have seen a signif-
icant departure from the observed and predicted data surface for highly
negative values of SZ ,1. Finally, we note that the stratified regression met-
rics can be computed in bins obtained using any data clustering technique
of choice. A good overview of data clustering algorithms can be found in
(Thrun and Stier 2021). Some of those techniques are also implemented
in the scikit-learn Python library (Pedregosa 2011).

5 Applications of the Principal Component Transport
in Combustion Simulations

Using large detailed chemicalmechanisms inside a numerical simulation can become
a tedious task, especially when other complex phenomena are involved, such as tur-
bulence or pollutant formation. Therefore, parameterization of the thermo-chemical
state of a reacting system using a reduced set of optimally chosen variables is very
appealing. In this context, the use of PCA is well-suited. PCA allows to automat-
ically reduce dimensionality and retain most of the variance of the system. As we
have seen in Sect. 4.2.1, substantial reduction in the number of governing equations
of the system can be made by transporting only a subset of the PCs in a numeri-
cal simulation. In this section, we present recent applications of the PC-transport
approach as reported in (Malik et al. 2018, 2020).

5.1 A Priori Validations in a Zero-Dimensional Reactor

We first show the application of the PC-transport approach in the context of zero-
dimensional perfectly stirred reactor (PSR) calculations (Malik et al. 2018). The
model validation was done a priori, meaning that the model training and validation
were made using the same PSR configuration. Two different fuels were investigated:
methane (CH4) and propane (C3H8). For each fuel, the dataset for PCA was gener-
ated with unsteady PSR simulations, varying the residence time in the reactor from
extinction to equilibrium. For each residence time inside the reactor, the entire tem-
poral solution from initialization to steady-state was saved. The dataset for PCA
generated in this way contained approximately 100,000 observations for each state
variable for the methane case, and 420,000 observations for each state variable for
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the propane case. In methane simulations, the GRI-3.0 chemical mechanism (Smith
et al. 2022) was used, with the nth species, N2, removed, resulting in 34 species.
For the propane case, the Polimi_1412 chemical mechanism (Humer et al. 2007)
was used, containing 162 species. PCA-basis was computed using the species mass
fractions alone (X = [Y1,Y2, . . . , Yn−1]). The solution of the PC-transport model (as
per Eq. (15)) without coupling with nonlinear regression was first obtained, where
the predicted quantities were computed using an inverse PCA-basis transformation.
Then, the PC-transport approach was coupled with GPR regression (PCA-GPR) in
order to increase the dimensionality reduction potential of PCA. Both PC-transport
approacheswere comparedwith the full solution obtained by transporting the original
species mass fractions (as per Eq. (3)).

5.1.1 Simulation Results for Methane/Air Combustion

Figure11 shows the PSR solution for the temperature and the H2O and OH mass
fractions for the methane case. The results are obtained with the PC-transport model
without nonlinear regression usingq = 24,q = 25 andq = 34PCs (Fig. 11a) and the
PC-transport coupledwithGPR regression usingq = 1 andq = 2PCs (Fig. 11b). For
comparison, full solution solving governing equations for the original state variables
is shown with the solid line. Using the PC-transport approach without nonlinear
regression, at least q = 25 components out of 34 were required to obtain an accurate
solution, which correspond to amodel reduction of 26%.On the other hand, when the
PC-transport model was coupled with GPR regression, the results show remarkable
accuracy using only q = 2 PCs for the prediction of temperature, and both major
and minor species. It can also be seen that the PCA-GPR model with q = 1 does
not provide sufficient accuracy in the ignition region, under-estimating the ignition
delay.

5.1.2 Simulation Results for the Propane/Air Combustion

Figure12 shows the PSR solution for the temperature, and the CO2 andO2 mass frac-
tions for the propane case.With the PC-transportmodelwithout regression (Fig. 12a),
at least q = 142 components out of 162 are required in order to get an accurate
description, representing a model reduction of 12%. By combining the PC-transport
model with the potential offered by nonlinear regression (PCA-GPR), the number
required components can be reduced down to q = 2. Although the reduced model
performs well overall, some deviation from the full solution was observed in the igni-
tion/extinction region. The PCA-GPRmodel was then further improved, by dividing
the PCA manifold into two clusters and performing GPR regression locally in each
cluster (PCA-L-GPR). By doing so, the level of accuracy of themodel is significantly
improved, leading to an almost perfect match with only q = 2 components instead
of 162 (reduction of 98%). This improvement can be observed in Fig. 12b.
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Fig. 11 Results of a priori PC-transport simulation of methane/air combustion in a zero-
dimensional PSR reactor. Predictions of the temperature, H2O and OH mass fractions as a function
of the residence time in the reactor with the solid line representing the full solution. The results
are shown for a the PC-transport model without regression using q = 24, q = 25 and q = 34 PCs
and b the PC-transport model coupled with GPR regression using q = 1 and q = 2 PCs. Reprinted
from (Malik et al. 2018) with permission from Elsevier

Fig. 12 Results ofaprioriPC-transport simulationof propane/air combustion in a zero-dimensional
PSR reactor. Predictions of the temperature, CO2 and OH mass fractions as a function of the
residence time in the reactor with the solid line representing the full solution. The results are
shown for a the PC-transport model without regression using q = 142 and q = 162 PCs and b
the PC-transport model coupled with GPR regression performed globally (PCA-GPR) and locally
(PCA-L-GPR) using q = 2 PCs. Reprinted from (Malik et al. 2018) with permission from Elsevier

5.2 A Posteriori Validations on Sandia Flame D and F

After validating the PCA-GPR approach in zero-dimensional calculations shown in
the previous section, the current section shows the application of thePCA-GPRmodel
in the framework of a non-premixed turbulent flame in a fully three-dimensional
LES. The validation was done using the experimental measurements of the Sandia
flames D and F (Barlow and Frank 1998). The Sandia flames D and F are piloted
methane/air diffusion flames. The fuel is a mixture of CH4 and air (25/75% by
volume) at 294K. The fuel velocity is 49.6m/s for flame D and 99.2m/s for flame F,
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Fig. 13 The two-dimensional manifold obtained during PCA model training versus the manifold
accessed during simulation of the Sandia flame D and F. With the training data preprocessing
used here, a the first PC, Z1, is highly correlated with mixture fraction and can be linked to the
mixture stoichiometry, and b the second PC, Z2, is highly correlated with the CO2 mass fraction,
YCO2. Z2 can thus be interpreted as a variable describing reaction progress. c–d Scatter plots of the
PCA manifold obtained from the training dataset (black points) and the manifold accessed during
simulation (pink points) of c the Sandia flameD, and d the Sandia flame F. Points on the simulation-
accessed manifolds were down-sampled to 100,000 observations on each plot for clarity. Reprinted
from (Malik et al. 2020) with permission from Elsevier

the latter representing themost challenging test case, being close to global extinction.
The pilot jet surrounding the fuel consists of burnt gases at 1880K and a low-velocity
coflow of air at 291K surrounds the flame.

Thedataset for PCAmodel training is basedonunsteadyone-dimensional counter-
flow diffusion methane flames. The inlet conditions for the fuel and air were set as in
the experimental setup. Different counter-flow flames were generated by varying the
strain rate, from equilibrium to complete extinction. The dataset generated in thisway
contained approximately 80,000 observations for each of the state-space variables.
The GRI-3.0 chemical mechanism (Smith et al. 2022) (without N2 species) was
used. With the data preprocessing used here (including Pareto scaling and removal
of temperature from the state variables), the first PC (Z1) was highly correlated
to the mixture fraction, whereas the second PC (Z2) can be linked to a progress
variablewith positiveweights for the products and negativesweights for the reactants.
These correlations between the PCs and physical variables is shown in Fig. 13a–b.
It is interesting to point out that PCA identified these controlling variables without
any prior assumptions or knowledge of the system of interest. All the state-space
variables, such as temperature, density, species mass fraction as well as the PCs
source terms, were regressed as function of Z1 and Z2 using GPR (PCA-GPR). A
lookup table was then generated for the simulation.

The analysis of the manifold accessed during simulation is also interesting. In
Fig. 13c–d, we show the training PCA manifold (black points) overlayed with mani-
fold accessed during simulation of flame D and F respectively (pink points). In both
figures, points on the simulation-accessed manifold were down-sampled to 100,000
observations for clarity. It can be observed that both flame D and flame F simulations
polled from points that stayed close to the training manifold. The highest density of
points for flame D (Fig. 13c) is located near the equilibrium solution. This confirms
the experimental findings that flame D does not experience significant extinction and
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re-ignition. On the other hand, it can be observed in Fig. 13d that flame F experiences
a higher level of extinction and re-ignition phenomena, which was expected from
the experimental data. For flame F, the point density is distributed more uniformly
between the equilibrium solution and the extinction regions of the training manifold
than for flame D. Thus, the manifold accessed during simulation of flame F covers
larger region of the training manifold than for flame D.

5.2.1 Simulation Results for Methane/Air Combustion

The simulations were performed inOpenFOAMusing tabulated chemistry approach.
The PCs were transported, and the dependent variables φφφ = [SZq , T, ρ, Yi ] were
recovered from nonlinear regression. Details about the numerical setup can be found
in (Malik et al. 2020). Figure14 shows the temperature and the OH mass fraction
profiles on the centerline (Fig. 14a), close to the burner exit (Fig. 14b) and further
downstream (Fig. 14c) for flame D. It can be observed that the PCA-GPRmodel was
able to reconstruct all variables with great accuracy. Moreover, a comparison is made
between the PCA-basis calculated from the full set of 35 species and the PCA-basis
computed from the reduced set of fivemajor species only. The results are comparable
for both bases, suggesting that using only themajor species in order to build the PCA-
basis results in no major loss of information. Figure15 shows a comparison between
the experimental and numerical profiles of temperature and selected species mass
fraction on the centerline for flame F. The PCA-GPR model accurately predicts the
peak and the decay in temperature and the species mass fraction profiles.

Fig. 14 Results of a posteriori PC-transport simulation of the Sandia flame D. Predictions of the
temperature and the mass fraction of OH species a at the axial and b-c at the radial profiles. Results
show a comparison between the PCA-basis calculated using themajor species (PCA-GPR—major),
the basis obtained using the full set of species (PCA-GPR—all) and the experimental data. Reprinted
from (Malik et al. 2020) with permission from Elsevier
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Fig. 15 Results of a posteriori PC-transport simulation of the Sandia flame F. Predictions of a
the temperature and the major species mass fractions, b CH4 c CO2 and d O2 against the experi-
mental data at the flame centerline. The results are shown for the PC-transport model coupled with
GPR regression where the PCA-basis was calculated using the major species (PCA-GPR—major).
Reprinted from (Malik et al. 2020) with permission from Elsevier

6 Conclusions

In this chapter, we review the complete workflow for data-driven reduced-order mod-
eling of reacting flows.We present strategies for model reduction using dimensional-
ity reduction techniques and nonlinear regression. The originally high-dimensional
datasets can be re-parameterizedwith the newmanifold parameters identified directly
from training data. Themain focus is in the PC-transport approach, where the original
systemof PDEs is projected to a lower-dimensional PCA-basis. This approach allows
for transporting a much smaller number of optimal manifold parameters and yields
substantial model reduction. While in this chapter we review recent results from a
priori and a posteriori combustion simulations using PC-transport, several important
challenges still remain to be addressed in data-driven modeling of complex systems.
For example, topological behaviors on manifolds, such as non-uniqueness or large
spatial gradients of dependent variables, can hinder integration of model reduction
with nonlinear regression. Possible future research directions that we delineate in
this chapter are (1) developing tools for assessing quality of manifolds, (2) devel-
oping strategies to mitigate undesired topological behaviors on manifolds and (3)
improving our understanding and performance of nonlinear regression models.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
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adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
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