Skip to main content

Lab-on-a-Chip Devices for Medical Diagnosis II: Strategies for Pathogen Detection

  • Chapter
  • First Online:
Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine

Abstract

The development of lab-on-a-chip technology is regarded as one of the most potent and reliable technologies for rapid and early detection of the pathogen with portable and on-site detection devices, the so-called point-of-care (PoC) detection systems. These are essentially easy to handle and cheap and offer rapid sample-to-answer results to nontechnical operators in a fast and accurate manner. A summary to provide an explanation about why lab-on-a-chip technology is one of the strategies for early detection of pathogens for medical diagnosis has been presented. The fabrication of the devices includes the three most important factors that are described. The devices are also implemented for the detection of various pathogens such as bacteria, protozoa, and virus, and also how each of the systems has specific ways to get the results. Furthermore, newly established detection sensing principles and application of the lab-on-a-chip and microfluidic devices are presented, and the remaining technical challenges and limitations are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afshari A, Schrenzel J, Ieven M, Harbarth S. Bench-to-bedside review: rapid molecular diagnostics for bloodstream infection – a new frontier? Crit Care. 2012;16:222.

    Article  Google Scholar 

  • Ahn CH, Choi J-W, Beaucage G, Nevin J, Lee J-B, Puntambekar A, Lee RJY. Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc IEEE. 2004;92:154–73.

    Article  CAS  Google Scholar 

  • Amexo M, Tolhurst R, Barnish G, Bates I. Malaria misdiagnosis: effects on the poor and vulnerable. Lancet. 2004;364:1896–8.

    Article  Google Scholar 

  • Bakajin O, Fountain E, Morton K, Chou SY, Sturm JC, Austin RH. Materials aspects in micro- and nanofluidic systems applied to biology. MRS Bull. 2006;31:108–13.

    Article  CAS  Google Scholar 

  • Breman JG, Alilio MS, Mills A. Conquering the intolerable burden of malaria: what’s new, what’s needed: a summary. Am J Trop Med Hyg. 2004;71:1–15.

    Article  Google Scholar 

  • Burke MW. Image acquisition. 1996. https://doi.org/10.1007/978-94-009-0069-1

  • Castillo-León J. Microfluidics and lab-on-a-chip devices: history and challenges. In: Castillo-León J, Svendsen WE, editors. Lab-on-a-chip devices and micro-total analysis systems. Cham: Springer; 2015. p. 1–15.

    Google Scholar 

  • Craw P, Balachandran W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip. 2012;12:2469.

    Article  CAS  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem. 1998;70:4974–84.

    Article  CAS  Google Scholar 

  • Foudeh AM, Fatanat Didar T, Veres T, Tabrizian M. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab Chip. 2012;12:3249.

    Article  CAS  Google Scholar 

  • Giannitsis AT, Min M. Usage of microfluidic lab-on-chips in biomedicine. In: 2010 12th biennial baltic electronics conference. Tallinn: IEEE; 2010. p. 249–52.

    Google Scholar 

  • Gupta S, Ramesh K, Ahmed S, Kakkar V. Lab-on-chip technology: a review on design trends and future scope in biomedical applications. IJBSBT. 2016;8:311–22.

    Article  Google Scholar 

  • Hopkins H, González IJ, Polley SD, et al. Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. J Infect Dis. 2013;208:645–52.

    Article  CAS  Google Scholar 

  • Izadi D, Nguyen T, Lapidus L. Complete procedure for fabrication of a fused silica ultrarapid microfluidic mixer used in biophysical measurements. Micromachines. 2017;8:16.

    Article  Google Scholar 

  • Kant K, Shahbazi M-A, Dave VP, Ngo TA, Chidambara VA, Than LQ, Bang DD, Wolff A. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens. Biotechnol Adv. 2018;36:1003–24.

    Article  CAS  Google Scholar 

  • Khanarian G. Optical properties of cyclic olefin copolymers. Opt Eng. 2001;40:1024.

    Article  CAS  Google Scholar 

  • Kovarik ML, Ornoff DM, Melvin AT, Dobes NC, Wang Y, Dickinson AJ, Gach PC, Shah PK, Allbritton NL. Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal Chem. 2013;85:451–72.

    Article  CAS  Google Scholar 

  • Lafleur JP, Jönsson A, Senkbeil S, Kutter JP. Recent advances in lab-on-a-chip for biosensing applications. Biosens Bioelectron. 2016;76:213–33.

    Article  CAS  Google Scholar 

  • Liang C, Chu Y, Cheng S, Wu H, Kajiyama T, Kambara H, Zhou G (2012) Multiplex Loop-Mediated Isothermal Amplification Detection by Sequence-Based Barcodes Coupled with Nicking Endonuclease-Mediated Pyrosequencing. Anal Chem 84:3758–3763.

    Google Scholar 

  • Ma L, Petersen M, Lu X. Identification and antimicrobial susceptibility testing of Campylobacter using a microfluidic lab-on-a-chip device. Appl Environ Microbiol. 2020;86:e00096–20.

    Article  CAS  Google Scholar 

  • Maia Chagas A, Prieto-Godino LL, Arrenberg AB, Baden T. The €100 lab: a 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans. PLoS Biol. 2017;15:e2002702.

    Article  Google Scholar 

  • Mandal PK, Biswas AK, Choi K, Pal UK. Methods for rapid detection of foodborne pathogens: an overview. Am J Food Technol. 2011;6:87–102.

    Article  Google Scholar 

  • Murray CK, Gasser RA, Magill AJ, Miller RS. Update on rapid diagnostic testing for malaria. Clin Microbiol Rev. 2008;21:97–110.

    Article  Google Scholar 

  • Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M, Hamblin MR. Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron. 2018;117:112–28.

    Article  CAS  Google Scholar 

  • Nguyen T, Zoëga Andreasen S, Wolff A, Duong Bang D. From lab on a chip to point of care devices: the role of open source microcontrollers. Micromachines. 2018;9:403.

    Article  Google Scholar 

  • Nguyen T, Anh Ngo T, Duong Bang D, Wolff A. Optimising the supercritical angle fluorescence structures in polymer microfluidic biochips for highly sensitive pathogen detection: a case study on Escherichia coli. Lab Chip. 2019;19:3825–33.

    Article  CAS  Google Scholar 

  • Nguyen T, Chidambara VA, Andreasen SZ, Golabi M, Huynh VN, Linh QT, Bang DD, Wolff A. Point-of-care devices for pathogen detections: the three most important factors to realise towards commercialization. TrAC Trends Anal Chem. 2020;131:116004.

    Article  CAS  Google Scholar 

  • Nikkhoo N, Cumby N, Gulak PG, Maxwell KL. Rapid bacterial detection via an all-electronic CMOS biosensor. PLoS ONE. 2016;11:e0162438.

    Article  Google Scholar 

  • O’Dempsey TJD, McArdla TF, Laurence BE, Lamont AC, Todd JE, Greenwood BM. Overlap in the clinical features of pneumonia and malaria in African children. Trans R Soc Trop Med Hyg. 1993;87:662–5.

    Article  Google Scholar 

  • Obahiagbon U, Smith JT, Zhu M, Katchman BA, Arafa H, Anderson KS, Blain Christen JM. A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications. Biosens Bioelectron. 2018;117:153–60.

    Article  CAS  Google Scholar 

  • Oh SJ, Park BH, Jung JH, Choi G, Lee DC, Kim DH, Seo TS. Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection. Biosens Bioelectron. 2016;75:293–300.

    Article  CAS  Google Scholar 

  • Petralia S, Conoci S. PCR technologies for point of care testing: progress and perspectives. ACS Sens. 2017;2:876–91.

    Article  CAS  Google Scholar 

  • Petralia S, Verardo R, Klaric E, Cavallaro S, Alessi E, Schneider C. In-check system: a highly integrated silicon lab-on-chip for sample preparation, PCR amplification and microarray detection of nucleic acids directly from biological samples. Sensors Actuators B Chem. 2013;187:99–105.

    Article  CAS  Google Scholar 

  • Phillips EA, Moehling TJ, Ejendal KFK, et al (2019) Microfluidic rapid and autonomous analytical device (microRAAD) to detect HIV from whole blood samples. Lab Chip 19:3375–3386.

    Google Scholar 

  • Polley SD, Gonzalez IJ, Mohamed D, et al. Clinical evaluation of a loop-mediated amplification kit for diagnosis of imported malaria. J Infect Dis. 2013;208:637–44.

    Article  CAS  Google Scholar 

  • Reisner W, Larsen NB, Flyvbjerg H, Tegenfeldt JO, Kristensen A. Directed self-organization of single DNA molecules in a nanoslit via embedded nanopit arrays. Proc Natl Acad Sci U S A. 2009;106:79–84.

    Article  CAS  Google Scholar 

  • Sin ML, Gao J, Liao JC, Wong PK. System integration – a major step toward lab on a chip. J Biol Eng. 2011;5:6.

    Article  Google Scholar 

  • Sun Y, Quyen TL, Hung TQ, Chin WH, Wolff A, Bang DD. A lab-on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of Salmonella spp. in food samples. Lab Chip. 2015;15:1898–904.

    Article  CAS  Google Scholar 

  • Tan JJL, Capozzoli M, Sato M, et al. An integrated lab-on-chip for rapid identification and simultaneous differentiation of tropical pathogens. PLoS Negl Trop Dis. 2014;8:e3043.

    Article  Google Scholar 

  • Taylor BJ, Howell A, Martin KA, et al. A lab-on-chip for malaria diagnosis and surveillance. Malar J. 2014;13:179.

    Article  Google Scholar 

  • Teo J, Pietro PD, Biagio FS, et al. VereFluTM: an integrated multiplex RT-PCR and microarray assay for rapid detection and identification of human influenza A and B viruses using lab-on-chip technology. Arch Virol. 2011;156:1371.

    Article  CAS  Google Scholar 

  • The malERA Consultative Group on Diagnoses and Diagnostics. A research agenda for malaria eradication: diagnoses and diagnostics. PLoS Med. 2011;8:e1000396.

    Article  Google Scholar 

  • Thiha A, Ibrahim F, Muniandy S, Dinshaw IJ, Teh SJ, Thong KL, Leo BF, Madou M. All-carbon suspended nanowire sensors as a rapid highly-sensitive label-free chemiresistive biosensing platform. Biosens Bioelectron. 2018;107:145–52.

    Article  CAS  Google Scholar 

  • Tsougeni K, Kastania AS, Kaprou GD, Eck M, Jobst G, Petrou PS, Kakabakos SE, Mastellos D, Gogolides E, Tserepi A. A modular integrated lab-on-a-chip platform for fast and highly efficient sample preparation for foodborne pathogen screening. Sensors Actuators B Chem. 2019;288:171–9.

    Article  CAS  Google Scholar 

  • van den Berg A. Labs on chips for biomedical applications. In: 2013 IEEE 26th international conference on micro electro mechanical systems (MEMS). Taipei: IEEE; 2013, p. 149–152.

    Google Scholar 

  • Volpatti LR, Yetisen AK. Commercialization of microfluidic devices. Trends Biotechnol. 2014;32:347–50.

    Article  CAS  Google Scholar 

  • Waldauer SA, Wu L, Yao S, Bakajin O, Lapidus LJ. Microfluidic mixers for studying protein folding. JoVE. 2012;3976

    Google Scholar 

  • Wang L-J, Sun R, Chang Y-C, Li L. Ultra low-cost, portable smartphone optosensors for mobile point-of-care diagnostics. In: Raghavachari R, Liang R, Pfefer TJ, editors. Design and quality for biomedical technologies XI. San Francisco: SPIE; 2018. p. 32.

    Chapter  Google Scholar 

  • Watanabe R, Buates S, Tsuboi T, Takeo S, Krasaesub S, Suktawonjaroenpon W, Sattabongkot J, Sirichaisinthop J, Han E-T. Evaluation of loop-mediated isothermal amplification (LAMP) for malaria diagnosis in a field setting. Am J Trop Med Hygiene. 2011;85:594–6.

    Article  Google Scholar 

  • Wittbrodt BT, Glover AG, Laureto J, Anzalone GC, Oppliger D, Irwin JL, Pearce JM. Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers. Mechatronics. 2013;23:713–26.

    Article  Google Scholar 

  • Yager P, Domingo GJ, Gerdes J. Point-of-care diagnostics for global health. Annu Rev Biomed Eng. 2008;10:107–44.

    Article  CAS  Google Scholar 

  • Zhang X, Lowe SB, Gooding JJ. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens Bioelectron. 2014;61:491–9.

    Article  CAS  Google Scholar 

  • Zhi X, Deng M, Yang H, Gao G, Wang K, Fu H, Zhang Y, Chen D, Cui D. A novel HBV genotypes detecting system combined with microfluidic chip, loop-mediated isothermal amplification and GMR sensors. Biosens Bioelectron. 2014;54:372–7.

    Article  CAS  Google Scholar 

  • Zhu H, Fohlerová Z, Pekárek J, Basova E, Neužil P. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens Bioelectron. 2020;153:112041.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Basic Science Research Program supported this work through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1A6A1A03025582, 2019R1D1A3A03103828, and 2022R1I1A3063302), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Taek Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luthfikasari, R., Patil, T.V., Patel, D.K., Ganguly, K., Dutta, S.D., Lim, KT. (2023). Lab-on-a-Chip Devices for Medical Diagnosis II: Strategies for Pathogen Detection. In: Lim, KT., Abd-Elsalam, K.A. (eds) Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine. Springer, Cham. https://doi.org/10.1007/978-3-031-16084-4_12

Download citation

Publish with us

Policies and ethics