
Chapter 26 
Remote Sensing Tools for Monitoring 
Forests and Tracking Their Dynamics 

Richard Massey, Logan T. Berner, Adrianna C. Foster, Scott J. Goetz, 
and Udayalakshmi Vepakomma 

Abstract Remote sensing augments field data and facilitates foresight required 
for forest management by providing spatial and temporal observations of forest 
characteristics at landscape and regional scales. Statistical and machine-learning 
models derived from plot-level field observations can be extrapolated to larger areas 
using remote sensing data. For example, instruments such as light detection and 
ranging (LiDAR) and hyperspectral sensors are frequently used to quantify forest 
characteristics at the stand to landscape level. Moreover, multispectral imagery and 
synthetic aperture radar (SAR) data sets derived from satellite platforms can be 
used to extrapolate forest resource models to large regions. The combination of 
novel remote sensing technologies, expanding computing capabilities, and emerging 
geospatial methods ensures a data-rich environment for effective strategic, tactical, 
and operational planning and monitoring in forest resource management.
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26.1 Introduction 

Forests play a primary role for life on Earth. Measuring and quantifying the state of 
forests at the landscape scale is critical from both a strategic and tactical perspective. 
Management-oriented forest monitoring efforts include complex and evolving objec-
tives, such as timber production, environmental protection, biodiversity preservation, 
forest fire prevention, wilderness and open spaces, and adaptation to a changing 
climate. Forest monitoring approaches have continuously improved over the last few 
decades with innovations in remote sensing and computing methods. Although field 
surveys and inventories remain invaluable sources of information, the use of in situ 
methods to monitor critical forest metrics is limited at larger scales. However, with 
spaceborne and airborne remote sensing technology, forest monitoring efforts have 
advanced rapidly in terms of capacity, scale, and detail. For example, large swaths of 
land are imaged every day by Earth observation (EO) satellites, enabling the constant 
monitoring of global forest conditions (Mitchell et al., 2017). Such sizable remote 
sensing data sets provide opportunities to extrapolate the results of models derived 
from spatially limited field data to the landscape level and permit the observation of 
large-scale changes. 

26.2 Remote Sensing of Forests 

Earth observation satellites offer great opportunities to quantify landscape and 
regional land cover, composition, and change. Some of the commonly used satel-
lite imagery include that from the National Aeronautics and Space Administration 
(NASA), National Oceanic and Atmospheric Administration (NOAA), European 
Space Agency (ESA), Indian Space Research Organization (ISRO), Canadian Space 
Agency (CSA), China National Space Administration (CNSA), and Japan Aerospace 
Exploration Agency (JAXA) (Table 26.1). Additionally, several commercial satellite 
imagery providers offer cutting-edge satellite data with higher spatial and temporal 
resolution and, in many cases, customized monitoring solutions. Some prominent 
commercial satellite imagery providers include DigitalGlobe from Maxar, Planet 
Labs, and Airbus. Commercial and openly available EO data are used in a wide 
variety of Earth science, forestry, agriculture, and geological applications by research, 
government, and commercial entities.

Some of the most common types of EO data include multispectral and synthetic 
aperture radar (SAR) systems. Examples of multispectral satellites include Sentinel-
1 and 2, Landsat, the Moderate Resolution Imaging Spectroradiometer (MODIS), 
and the Advanced Very High-Resolution Radiometer (AVHRR). Of these, the higher 
spatial resolution satellites (e.g., Landsat and Sentinel) are generally more useful 
from a forest management perspective.



26 Remote Sensing Monitoring of Forests and Their Dynamics 639

Ta
bl
e 
26
.1
 
L
is
t o

f 
sa
te
lli
te
 a
nd

 a
ir
bo

rn
e 
re
m
ot
e 
se
ns
in
g 
in
st
ru
m
en
ts
 f
re
qu

en
tly

 u
se
d 
fo
r 
fo
re
st
ry
 a
nd

 la
nd

-c
ov
er
 a
pp

lic
at
io
ns
; R

G
B
, r
ed
, g
re
en
, b
lu
e;
 N
IR
, n
ea
r 

in
fr
ar
ed
; S

W
IR
, s
ho
rt
w
av
e 
in
fr
ar
ed
; T

IR
, t
he
rm

al
 in

fr
ar
ed
, M

IR
, m

id
dl
e 
in
fr
ar
ed
; P

an
, p

an
ch
ro
m
at
ic
; S

A
R
, s
yn
th
et
ic
 a
pe
rt
ur
e 
ra
da
r;
 L
iD
A
R
, l
ig
ht
 d
et
ec
tio

n 
an
d 

ra
ng
in
g;
 N
A
SA

, 
N
at
io
na
l 
A
er
on

au
tic

s 
an
d 
Sp

ac
e 
A
dm

in
is
tr
at
io
n;
 N
O
A
A
, 
N
at
io
na
l 
O
ce
an
ic
 a
nd

 A
tm

os
ph

er
ic
 A

dm
in
is
tr
at
io
n;
 E
SA

, 
E
ur
op
ea
n 
Sp

ac
e 
A
ge
nc
y;
 

JA
X
A
, J
ap
an
 A
er
os
pa
ce
 E
xp
lo
ra
tio

n 
A
ge
nc
y;
 U
SG

S,
 U
ni
te
d 
St
at
es
 G
eo
lo
gi
ca
l S

ur
ve
y;
 IS

R
O
, I
nd

ia
n 
Sp

ac
e 
R
es
ea
rc
h 
O
rg
an
iz
at
io
n;
 C
SA

, C
an
ad
ia
n 
Sp

ac
e 
A
ge
nc
y 

Pl
at
fo
rm

Se
ns
or

A
ge
nc
y

Im
ag
in
g 
m
od
es

B
an
ds

R
ev
is
it 
tim

e 
(d
ay
s)
 

Sp
at
ia
l 

re
so
lu
tio

n 
(m

) 
Fu

rt
he
r 
in
fo
rm

at
io
n 

L
an
ds
at
-5

T
he
m
at
ic
 m

ap
pe
r 

(T
M
) 

N
A
SA

/U
SG

S
M
ul
tis
pe
ct
ra
l

R
G
B
, N

IR
, 

SW
IR

, T
IR

 
16

30
ht
tp
s:
//w

w
w
.u
sg
s.
 

go
v/
la
nd
-r
es
ou
rc
es
/ 

nl
i/l
an
ds
at
/la

n 
ds
at
-5
 

L
an
ds
at
-7

E
nh

an
ce
d 
th
em

at
ic
 

m
ap
pe
r 
Pl
us
 

(E
T
M
+
) 

N
A
SA

/U
SG

S
M
ul
tis
pe
ct
ra
l

R
G
B
, N

IR
, 

SW
IR

, T
IR

 
16

30
ht
tp
s:
//w

w
w
.u
sg
s.
 

go
v/
la
nd
-r
es
ou
rc
es
/ 

nl
i/l
an
ds
at
/la

n 
ds
at
-7
 

L
an
ds
at
-8

O
pe
ra
tio

na
l l
an
d 

im
ag
er
 (
O
L
I)
 

N
A
SA

/U
SG

S
M
ul
tis
pe
ct
ra
l

R
G
B
, N

IR
, 

SW
IR

, T
IR

, P
an
, 

A
er
os
ol
 

16
30

ht
tp
s:
//w

w
w
.u
sg
s.
 

go
v/
la
nd
-r
es
ou
rc
es
/ 

nl
i/l
an
ds
at
/la

n 
ds
at
-8
 

Te
rr
a,
 A
qu
a

M
od

er
at
e 
re
so
lu
tio

n 
sp
ec
tr
or
ad
io
m
et
er
 

(M
O
D
IS
) 

N
A
SA

M
ul
tis
pe
ct
ra
l

R
G
B
, N

IR
, 

SW
IR

, T
IR

, 
V
ap
or
, C

lo
ud
s,
 

A
er
os
ol
, S

no
w
, 

Ic
e,
 O
zo
ne
 

1–
2

25
0,
 5
00
, 1

00
0

ht
tp
s:
//m

od
is
.g
sf
c.
 

na
sa
.g
ov

(c
on
tin

ue
d)

https://www.usgs.gov/land-resources/nli/landsat/landsat-5
https://www.usgs.gov/land-resources/nli/landsat/landsat-5
https://www.usgs.gov/land-resources/nli/landsat/landsat-5
https://www.usgs.gov/land-resources/nli/landsat/landsat-5
https://www.usgs.gov/land-resources/nli/landsat/landsat-7
https://www.usgs.gov/land-resources/nli/landsat/landsat-7
https://www.usgs.gov/land-resources/nli/landsat/landsat-7
https://www.usgs.gov/land-resources/nli/landsat/landsat-7
https://www.usgs.gov/land-resources/nli/landsat/landsat-8
https://www.usgs.gov/land-resources/nli/landsat/landsat-8
https://www.usgs.gov/land-resources/nli/landsat/landsat-8
https://www.usgs.gov/land-resources/nli/landsat/landsat-8
https://modis.gsfc.nasa.gov
https://modis.gsfc.nasa.gov


640 R. Massey et al.

Ta
bl
e
26
.1

(c
on
tin

ue
d)

Pl
at
fo
rm

Se
ns
or

A
ge
nc
y

Im
ag
in
g
m
od
es

B
an
ds

R
ev
is
it
tim

e
(d
ay
s)

Sp
at
ia
l

re
so
lu
tio

n
(m

)
Fu

rt
he
r
in
fo
rm

at
io
n

N
O
A
A
-s
at
el
lit
es
 

6–
19
 

A
dv
an
ce
d 
ve
ry
 

hi
gh
-r
es
ol
ut
io
n 

ra
di
om

et
er
 

(A
V
H
R
R
) 

N
O
A
A

M
ul
tis
pe
ct
ra
l

R
, N

IR
, M

IR
, 

T
IR
 

<
1

1,
00
0

ht
tp
s:
//w

w
w
.a
vl
. 

cl
as
s.
no
aa
.g
ov
/r
el
 

ea
se
/d
at
a_
av
ai
la
bl
e/
 

av
hr
r/
in
de
x.
ht
m
 

A
L
O
S-
2

Ph
as
ed
 a
rr
ay
 ty

pe
 

L
-b
an
d 
sy
nt
he
tic
 

ap
er
tu
re
 r
ad
ar
 

(P
A
L
SA

R
) 

JA
X
A

SA
R

L
-b
an
d

14
>
7

ht
tp
s:
//w

w
w
.e
or
c.
 

ja
xa
.jp

/A
L
O
S/
en
/ 

ab
ou

t/p
al
sa
r.h

tm
 

Se
nt
in
el
-1
a 
an
d 
1b

C
-b
an
d 
sy
nt
he
tic
 

ap
er
tu
re
 r
ad
ar
 

(C
-S
A
R
) 

E
SA

SA
R

C
-b
an
d

6
>
5

ht
tp
s:
//s
en
tin

el
.e
sa
. 

in
t/w

eb
/s
en
tin

el
/ 

m
is
si
on

s/
se
nt
in
el
-1
 

Se
nt
in
el
-2
a 
an
d 
2b

M
ul
tis
pe
ct
ra
l 

in
st
ru
m
en
t (
M
SI
) 

E
SA

M
ul
tis
pe
ct
ra
l

R
G
B
, N

IR
, 

R
ed
-e
dg
e,
 

A
er
os
ol
, S

W
IR
 

5
10
, 2

0,
 6
0

ht
tp
s:
//s
en
tin

el
.e
sa
. 

in
t/w

eb
/s
en
tin

el
/ 

m
is
si
on

s/
se
nt
in
el
-2
 

A
ir
bo
rn
e

A
ir
bo
rn
e 

vi
si
bl
e/
in
fr
ar
ed
 

im
ag
in
g 

sp
ec
tr
om

et
er
 

(A
V
IR
IS
) 

N
A
SA

H
yp
er
sp
ec
tr
al

22
4 
ba
nd
s

–
20

ht
tp
s:
//a
vi
ri
s.
jp
l.n

as
 

a.
go
v 

A
ir
bo
rn
e

L
an
d,
 v
eg
et
at
io
n,
 

an
d 
ic
e 
se
ns
or
 

(L
V
IS
) 

N
A
SA

L
iD
A
R
 

al
tim

et
er
 

–
–

5
ht
tp
s:
//l
vi
s.
gs
fc
.n
as
 

a.
go
v

(c
on
tin

ue
d)

https://www.avl.class.noaa.gov/release/data_available/avhrr/index.htm
https://www.avl.class.noaa.gov/release/data_available/avhrr/index.htm
https://www.avl.class.noaa.gov/release/data_available/avhrr/index.htm
https://www.avl.class.noaa.gov/release/data_available/avhrr/index.htm
https://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm
https://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm
https://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm
https://sentinel.esa.int/web/sentinel/missions/sentinel-1
https://sentinel.esa.int/web/sentinel/missions/sentinel-1
https://sentinel.esa.int/web/sentinel/missions/sentinel-1
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://aviris.jpl.nasa.gov
https://aviris.jpl.nasa.gov
https://lvis.gsfc.nasa.gov
https://lvis.gsfc.nasa.gov


26 Remote Sensing Monitoring of Forests and Their Dynamics 641

Ta
bl
e
26
.1

(c
on
tin

ue
d)

Pl
at
fo
rm

Se
ns
or

A
ge
nc
y

Im
ag
in
g
m
od
es

B
an
ds

R
ev
is
it
tim

e
(d
ay
s)

Sp
at
ia
l

re
so
lu
tio

n
(m

)
Fu

rt
he
r
in
fo
rm

at
io
n

In
te
rn
at
io
na
l S

pa
ce
 

St
at
io
n 

G
lo
ba
l e
co
sy
st
em

 
dy
na
m
ic
s 

in
ve
st
ig
at
io
n 

(G
E
D
I)
 

N
A
SA

L
iD
A
R

Fu
ll 
w
av
ef
or
m

–
25

ht
tp
s:
//g

ed
i. 

um
d.
ed
u 

IC
E
Sa

t-
2

A
dv
an
ce
d 

to
po
gr
ap
hi
c 
la
se
r 

al
tim

et
er
 s
ys
te
m
 

(A
T
L
A
S)
 

N
A
SA

L
iD
A
R

–
–

13
ht
tp
s:
//i
ce
sa
t-
2.
 

gs
fc
.n
as
a.
go
v 

C
ar
to
sa
t-
3

M
ul
tis
pe
ct
ra
l V

N
IR

 
(M

X
),
 

Pa
nc
hr
om

at
ic
 

in
st
ru
m
en
t (
PA

N
) 

IS
R
O

M
ul
tis
pe
ct
ra
l, 

Pa
nc
hr
om

at
ic
 

Pa
n,
 R
G
B
, N

IR
, 

M
IR
 

4
0.
25
, 1

.2
, 6

, 1
2

ht
tp
s:
//w

w
w
.is
ro
. 

go
v.
in
/S
pa
ce
cr
af
t/ 

ca
rt
os
at
-3
 

R
A
D
A
R
SA

T-
2

C
-b
an
d 
sy
nt
he
tic
 

ap
er
tu
re
 r
ad
ar
 

C
SA

SA
R

C
-b
an
d

24
1–
10
0

w
w
w
.a
sc
-c
sa
.g
c.
ca
/ 

en
g/
sa
te
lli
te
s/
ra
d 

ar
sa
t2
 

D
ov
e,
 S
up
er
D
ov
e,
 

C
ub

eS
at
s 

Pl
an
et
sc
op
e 

im
ag
er
y 
pr
od
uc
t 

Pl
an
et
 L
ab
s 
In
c

M
ul
tis
pe
ct
ra
l

R
G
B
, N

IR
<
1

3
ht
tp
s:
//w

w
w
.p
la
ne
t. 

co
m
/p
ro
du

ct
s/
pl
a 

ne
t-
im

ag
er
y/

Sk
yS

at
Sk

yS
at

Pl
an
et
 L
ab
s 
In
c

M
ul
tis
pe
ct
ra
l, 

V
id
eo
 

R
G
B
, N

IR
, P

an
4–
5

0.
5 

R
ap
id
E
ye

R
ap
id
E
ye

Pl
an
et
 L
ab
s 
In
c

R
G
B
, N

IR
, 

R
ed
-e
dg
e 

5–
6

5–
6.
5 

W
or
ld
vi
ew

-2
W
or
ld
vi
ew

-2
M
ax
ar
 

Te
ch
no
lo
gi
es
 

M
ul
tis
pe
ct
ra
l

Pa
n,
 R
G
B
, 

R
ed
-e
dg
e,
 

C
oa
st
al
, N

IR
 

0.
5,
 2

ht
tp
s:
//w

w
w
.d
ig
ita

 
lg
lo
be
.c
om

/p
ro
 

du
ct
s/
sa
te
lli
te
-i
m
a 

ge
ry

(c
on
tin

ue
d)

https://gedi.umd.edu
https://gedi.umd.edu
https://icesat-2.gsfc.nasa.gov
https://icesat-2.gsfc.nasa.gov
https://www.isro.gov.in/Spacecraft/cartosat-3
https://www.isro.gov.in/Spacecraft/cartosat-3
https://www.isro.gov.in/Spacecraft/cartosat-3
http://www.asc-csa.gc.ca/eng/satellites/radarsat2
http://www.asc-csa.gc.ca/eng/satellites/radarsat2
http://www.asc-csa.gc.ca/eng/satellites/radarsat2
https://www.planet.com/products/planet-imagery/
https://www.planet.com/products/planet-imagery/
https://www.planet.com/products/planet-imagery/
https://www.digitalglobe.com/products/satellite-imagery
https://www.digitalglobe.com/products/satellite-imagery
https://www.digitalglobe.com/products/satellite-imagery
https://www.digitalglobe.com/products/satellite-imagery


642 R. Massey et al.

Ta
bl
e
26
.1

(c
on
tin

ue
d)

Pl
at
fo
rm

Se
ns
or

A
ge
nc
y

Im
ag
in
g
m
od
es

B
an
ds

R
ev
is
it
tim

e
(d
ay
s)

Sp
at
ia
l

re
so
lu
tio

n
(m

)
Fu

rt
he
r
in
fo
rm

at
io
n

W
or
ld
vi
ew

-3
W
or
ld
vi
ew

-3
M
ax
ar
 

Te
ch
no
lo
gi
es
 

M
ul
tis
pe
ct
ra
l

Pa
n,
 R
G
B
, 

R
ed
-e
dg
e,
 

C
oa
st
al
, N

IR
, 

SW
IR
, C

lo
ud
, 

A
er
os
ol
, V

ap
or
, 

Ic
e,
 s
no
w
 

0.
5,
 2
 

W
or
ld
vi
ew

-4
W
or
ld
vi
ew

-4
M
ax
ar
 

Te
ch
no
lo
gi
es
 

M
ul
tis
pe
ct
ra
l

Pa
n,
 R
G
B
, N

IR
0.
31
, 1

.2
4



26 Remote Sensing Monitoring of Forests and Their Dynamics 643

The Sentinel satellites are part of ESA’s Copernicus Program, one of the most 
recent and ambitious EO programs. Currently, there are two series of Sentinel satel-
lites that provide data to users around the globe: Sentinel-1 and Sentinel-2. The 
former consists of a constellation of two satellites, 1A and 1B, carrying C-band SAR 
with a lower spatial resolution limit at 5 m. Spaceborne SAR is an active radar system 
that can image the Earth’s surface with or without cloud cover and through smoke 
and other aerosols. Depending on the wavelength, microwaves from a SAR system 
can even penetrate the top layers of soil and vegetation and provide useful informa-
tion regarding the soil’s physical properties, such as soil moisture. The Sentinel-1 
constellation can revisit the same location about every six days. Sentinel-2 consists 
of two multispectral satellites, 2A and 2B, having a spatial resolution of 10 m and 
a revisit time of five days. Multispectral satellite sensors measure how sunlight is 
reflected by the Earth’s surface across a range of wavelengths and are passive in 
nature, i.e., without an active source of electromagnetic radiation. Figure 26.1 shows 
an example of SAR and multispectral images showing variations in backscatter and 
reflectance, respectively. 

The Landsat satellite program offers the richest and longest-running historical 
archive of satellite data with observations since the 1970s (Wulder et al., 2019). 
This archive provides unique opportunities to study the mechanisms and extent of 
past and present forest dynamics. The moderately fine (30 m) spatial resolution 
of the Landsat Thematic Mapper sensors and their revisit time of 16 days make 
them uniquely suited for longer-term forest monitoring and management applications 
from space (Hansen & Loveland, 2012). The Landsat data archive became publicly 
available in 2008, which, combined with ready access via Google’s Earth Engine

Fig. 26.1 Forest clear-cuts in western Oregon, United States, shown using (left) a Sentinel-1 SAR 
image composite with spring, late spring, and summer images as three bands in VV polarization 
and (right) a true-color image from a Sentinel-2 composite image using red, green, and blue bands 
from the summer 2018. SAR data are sensitive to topography, biomass, and water content. Recent 
timber harvest units have a higher color intensity in the SAR and lose seasonal variation as the 
forest regrows 
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platform (Gorelick et al., 2017), promoted the widespread use of these data for many 
research and commercial applications. Coarser spatial resolution satellites, such as 
MODIS and AVHRR, have historically been used to map and classify land cover 
at spatial resolution scales ranging between 250 m and 10 km. These coarse spatial 
resolution satellites have a high temporal resolution, with near-daily imagery, but 
their coarse resolution makes it challenging to derive reliable map-based estimates 
of forest characteristics and change (Chen et al., 2018). Although they have limited 
utility at local scales, MODIS and AVHRR satellites provide frequent remote sensing 
data that are useful for disaster monitoring systems and as inputs and validation for 
ecosystem models evaluating land-cover changes over large areas. 

In addition to multispectral imagery, newer remote sensing technologies, such 
as light detection and ranging (LiDAR), provide emerging opportunities to assess 
boreal forest characteristics and can be used to quantify changes in forests over 
time (Dubayah & Drake, 2000). LiDAR can be used to estimate a variety of forest 
structural attributes across large areas, including canopy height, cover, volume, and 
biomass. Unlike multispectral sensors, LiDAR instruments actively emit photons via 
infrared lasers and then measure the amount of time required for the photons to strike 
a target and return to the sensor. Photon return time indicates the distance between 
the sensor and the target. LiDAR can be used to assess forest structure, including 
forest aboveground biomass (AGB), and reproduce subcanopy surface topography. 
LiDAR instruments can be airborne, spaceborne, or land-based (terrestrial) and can 
be used at different levels of detail to provide forestry-relevant management and 
inventory information (Magnussen et al., 2018; Shendryk et al., 2014; Zhao et al., 
2018). Spaceborne LiDAR is increasingly being used to assess forest structure and 
biomass around the world. It has become progressively more feasible with photon-
counting technology onboard ICESat-1/GLAS (2003–2009) and ICESat-2 (2017– 
present) (Popescu et al., 2018), and with the full waveform capability of the GEDI 
instrument (2019–present) (Dubayah et al., 2020). These new technologies are typi-
cally used to infer forest attributes at field sampling locations, which are further 
extended via remote sensing imagery across a larger area of interest on the basis of 
empirical relationships (Margolis et al., 2015; Neigh et al., 2013). Such methods can 
enable the rapid, robust, and cost-effective characterization of forest attributes across 
large areas. 

In combination with the ever-increasing geospatial data being made available by 
multiple remote sensing and non–remote sensing sources, geographic information 
systems (GIS) are used as visualization, data manipulation, and processing tools for a 
wide range of data sets. The coevolution of GIS and remote sensing technologies has 
augmented field and inventory data with satellite imagery for map production, spatial 
visualization and query, and decision support (Sonti, 2015). Linking field inventory, 
aerial surveys, and remote sensing with GIS tools has helped foresters and ecologists 
develop more accurate records of forest cover, composition, and configuration for 
strategic (long-term) and tactical (short-term) planning.
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26.3 Forest Biodiversity 

Forest biodiversity is an essential consideration for sustainable forest management. 
Assessments of spatial heterogeneity in biodiversity commonly use satellite and 
aerial remote sensing data. In boreal environments, which have a moderate to low tree 
species diversity, such assessments may involve supervised and unsupervised classi-
fications of high spatial resolution multispectral and hyperspectral data (Baldeck & 
Asner, 2013). Recent advances in data fusion techniques have enabled the use of 
high spatial and temporal resolution data combined with LiDAR (Fig. 26.2) from  
aerial platforms to measure and relate plot-level variations of species composition 
to environmental and physical factors (Powers et al., 2013; Rocchini et al., 2015). In 
addition to the analysis of tree species, remote sensing indicators have been used to 
model and map animal species diversity across large landscapes (Davies & Asner, 
2014); for example, Coops et al. (2009) predicted bird species richness in Ontario, 
Canada, using productivity, topography, and land cover derived from remote sensing. 
Similarly, Kerr et al. (2001) modeled butterfly species richness on the basis of remote 
sensing–derived land cover and climate data. These studies also indicate that although 
biodiversity assessments can incorporate remote sensing approaches, it is seldom 
trivial to select remotely sensed indicators of biodiversity, and this approach requires 
a combination of traditional ecological knowledge and mathematical modeling. 

Fig. 26.2 (left) A LiDAR three-dimensional (3D) point cloud, color-coded by height from a base-
line, of a small area in a Douglas fir–dominated forest. Data obtained from the United States 
Geological Survey’s 3D elevation program (3DEP). (right) Airborne false-color imagery of the 
same area at a 1 m spatial resolution. Data from the United States Department of Agriculture’s 
National Agricultural Imagery Program (NAIP) for 2018. In addition to the spatial location of 
individual trees, airborne LiDAR can capture the 3D structure of the forest
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26.4 Forest Disturbances 

Forest disturbances, such as wildfire, windthrow, and insect outbreaks, are integral 
and natural components of forest ecosystem dynamics. They impact forest species 
composition, structure, above- and belowground carbon storage (Alexander & Mack, 
2016), forest regeneration and successional dynamics (Johnstone et al., 2010), as 
well as water and energy cycling (Goetz et al., 2012). Remote sensing methods 
can be used to detect and monitor forest disturbance across large areas and thus 
inform sustainable forest management policies and practices (Guindon et al., 2018; 
Hall et al., 2016). Ecosystem responses to disturbance events can be assessed using 
data from multiple satellite missions with field and airborne campaigns to monitor 
changes in connectivity, complexity, and heterogeneity across a region (Skidmore 
et al., 2015). The fusion of multilevel and multiresolution data can inform tactical 
and strategic management efforts. Such data collections can also be used to model 
ecosystem response to climate and help the strategic planning of resources in relation 
to future climate scenarios (Whitman et al., 2019). 

26.4.1 Fire Detection and Risk 

Fire occurrence and severity can be detected using multispectral satellite imagery 
by observing the difference in pre- and postfire indices, such as the normalized 
burn ratio (NBR) and infrared bands (Key & Benson, 2005). For fire management 
and detection, satellites such as MODIS. PlanetScope, and SkySat provide a daily 
updated stream of satellite images, which, when combined with aerial imagery, can 
be used to monitor fire progression (Giglio et al., 2016). During tactical planning 
stages, fire risk can be evaluated by assessing species composition, forest density, 
forest structure, and fuel conditions using a combination of airborne and spaceborne 
remote sensing data. The information storage and analysis capabilities of GIS tools 
are particularly useful for decision-making in tactical situations and emergencies 
where fire management and prevention, prescribed burning, and postfire recovery 
actions are planned by integrating GIS and remote sensing data to, for example, 
prepare maps of burn severity (Wulder & Franklin, 2006).

26.4.2 Monitoring Forest Health 

Nonstand replacing disturbances, such as windthrow, insect outbreaks, and disease, 
often disproportionately impact certain tree species or sizes, leading to shifts in 
species composition, stand structure, and productivity (Goetz et al., 2012). Insect 
disturbances are usually observed indirectly in satellite imagery using specialized 
methods for each insect type (Senf et al., 2017; White et al., 2007). For example, once
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Fig. 26.3 Coniferous stands affected by the gradient of percent cumulative insect defoliation in 
a Canadian boreal forest as seen using 10 cm high spatial resolution false-color image and pan-
sharpened shortwave infrared (SWIR) bands from the WorldView-3 satellite

infested by bark beetles, such as the mountain pine beetle (Dendroctonus ponderosae) 
or the spruce beetle (Dendroctonus rufipennis), the tree moisture status is often 
impacted through stomatal closure and secondary infection by fungal pathogens. 
Needle color changes from green to red (red-attack stage) or gray (gray-attack stage) 
depending on the tree species (Hall et al., 2016). The change in needle color, espe-
cially at the red-attack stage, is detectable in high-resolution multispectral imagery 
and can indicate insect infestation (Coops et al., 2006). The calibration and vali-
dation of insect disturbance mapping efforts are often achieved through compar-
isons with field data (Senf et al., 2017). For the long-term monitoring and detection 
of infestations, detection programs can employ annual aerial detection surveys as 
starting points to digitize validation polygons from the photointerpretation of high 
spatial resolution imagery (Meddens et al., 2012). Because of the inherent multi-
scale nature of insect outbreaks, infestations occur at the individual tree scale but can 
quickly spread across landscapes (Raffa et al., 2008). Given that insect outbreaks 
often progress over several years, multidate time-series observations are usually 
required to detect and observe the complete response of a forest to an outbreak (Senf 
et al., 2017). Additionally, many infestation cases warrant the use of higher resolution 
remote sensing imagery (Fig. 26.3) from multispectral satellites, e.g., WorldView, 
hyperspectral imaging satellites, e.g., Hyperion, and aerial-based remote sensing 
instruments, e.g., airborne visible infrared imaging spectrometer, AVIRIS; Senf et al. 
(2017) and Makoto et al. (2013).
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26.4.3 Invasive Species 

The expansion of invasive species decreases the diversity of native plants and thus 
presents a threat to overall ecosystem resilience (Harrod & Reichard, 2001). Multi-
date observations of changes in vegetation indices, such as the normalized differ-
ence vegetation index (NDVI) or enhanced vegetation index (EVI), can indicate an 
increased dominance of invasive species, especially where the invasive species are 
spectrally distinct from the native population. In cases where the invasive species are 
not spectrally distinct within multispectral imagery, hyperspectral imagery may be 
required to develop suitable models for detecting and mapping the encroachment of 
these invasive species (Huang & Asner, 2009). When there are structural or height 
differences between the native and invasive species, multispectral or hyperspectral 
data can be augmented using LiDAR or SAR data. 

26.5 Forest Characteristics and Productivity 

Forest management objectives are often achieved by monitoring and controlling 
forest characteristics in a stand to influence growth and yield. As large parts of the 
boreal forest are managed for wood production (Gauthier et al., 2015), remote sensing 
technologies provide effective tools to monitor stands, particularly when combined 
with field surveys and forest inventory data. 

26.5.1 Assessing Forest Productivity with Remote Sensing 

At landscape scales, remote sensing assessments of boreal forest productivity often 
rely on repeat measurements of coarse- or moderate-resolution multispectral data and 
vegetation indices (e.g., NDVI, EVI), SAR data, and airborne LiDAR. At the stand 
scale, however, tree species distributions derived from high-resolution multispectral 
data are often used to describe and project forest growth and yield (Modzelewska 
et al., 2020). Although field surveys traditionally determine species composition 
within stands, remote sensing tools can expand the field-derived models to larger 
scales. Such maps derived from remote sensing data also provide forest managers 
with the spatial distribution of products likely to be produced from the forest and 
also the vulnerability of stands to disturbance on the basis of tree species. 

When it comes to measuring harvest potential and products that can be derived 
from forest stands, terrestrial and airborne LiDAR instruments are of primary impor-
tance. LiDAR data form an important part of growth and yield modeling simulations. 
Furthermore, tree-level data inform on both timber assortments and biodiversity. In 
addition to species distribution, stand density plays a major role in forest yield assess-
ments and the monitoring of growth. In recent decades, airborne laser scanning (ALS)
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has emerged as a promising technology for estimating stand density within forested 
areas. ALS is a LiDAR approach that uses an airborne platform to transmit and 
measure returns from tree canopies in the near-infrared range. These returns can 
be used to accurately estimate the number of trees and stand density using spatial 
relationships between LiDAR points and “point clouds” (Næsset, 2004). 

ALS-derived LiDAR point clouds can also be used to derive aboveground biomass 
and estimate stand age. As trees age, they typically grow in height up to a (usually 
species-specific) point, after which their vertical growth slows even as their carbon 
accumulation rate may continue to increase (Stephenson et al., 2014). Species distri-
bution maps combined with stand-age data can be used to identify the site index, 
which is a measure of projected height at an index age (typically 25, 50, or 100 years). 
The site index is typically used as an indirect measure of site quality and its ability 
to produce specific wood products. Site quality is an essential parameter for forest 
managers as it can help determine the quantification of merchantable timber and 
is an essential input for the strategic planning of forest resources. Stand-age and 
site-index maps derived using remote sensing and GIS can also be used to identify 
harvest locations in the forest by identifying optimal mean annual increments (MAI) 
to maximize sustained volume productivity. 

26.5.2 Mapping Forest Aboveground Biomass Using Remote 
Sensing 

Forest aboveground biomass (AGB) describes the total dry weight of live trees per 
unit area and is related to structural metrics such as tree density, diameter, height, 
and composition. Forest AGB is useful for forest managers to consider because it 
provides additional information for volume estimates for timber production purposes, 
such as stand carbon sequestration and storage. Forest AGB maps may also serve 
as tools to identify areas of high conservation priority or with high intraspecific 
competition having a potential need of management treatments. Forest AGB can be 
mapped over an area of interest by linking plot-level forest inventories with remote 
sensing measurements related to forest canopy cover, structure, and composition 
(Berner et al., 2012; Puliti et al., 2020). Various remote sensing instruments are used 
to measure and map boreal forest AGB, including LiDAR, SAR, and multispectral 
sensors, often in combination with one another. 

In addition to LiDAR, SAR data are used to map boreal forest AGB. Live-tree 
growing stock volume (GSV) is an important parameter for predicting forest AGB and 
can be mapped across large areas using SAR data (Santoro et al., 2015). Forest AGB 
can then be predicted by combining GSV with information related to land cover, land 
cover–specific wood density, and biomass allocation (Fig. 26.4; Thurner et al., 2014). 
Multispectral satellite imagery is an inexpensive means of extending AGB estimates 
from plot-level measurements through the use of airborne and terrestrial LiDAR,
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Fig. 26.4 Aboveground biomass mapped across the boreal forest biome using the synthetic aperture 
radar (SAR) and ancillary information (Santoro et al., 2015; Thurner et al., 2014). The boreal biome 
extent is based on the boreal ecoregions mapped by the World Wildlife Fund (Olson et al., 2001) 

very high-resolution imagery, and field inventories. This multisource, multiscale 
approach can also be used to monitor changes in forest AGB over time. LiDAR data 
are particularly useful for augmenting multispectral imagery, as forest canopy closure 
obscures forest structure (Wulder et al., 2020). Ancillary geospatial information can 
also improve model predictions of boreal forest AGB (Puliti et al., 2020). 

The integration of multispectral imagery with repeated LiDAR and SAR also 
provides emerging opportunities to assess boreal forest productivity by quantifying 
net changes in boreal forest AGB over time (ΔAGB), typically using either a direct or 
indirect approach (Karila et al., 2019; McRoberts et al., 2015). The direct approach 
involves predicting ΔAGB on the basis of differences in forest canopy structure 
between successive remote sensing measurements. The indirect approach involves 
predicting forest AGB at two points in time using remote sensing measurements and 
then computing ΔAGB by differencing the two predictions. The direct approach 
requires measurements from the same ground location during each survey, although 
prediction errors are easier to estimate. From an inventory standpoint, both methods 
can increase the precision ofΔAGB estimates relative to relying exclusively on field 
inventory measurements (McRoberts et al., 2015). Remote sensing efforts to quantify
ΔAGB in the boreal forest have primarily relied on repeat airborne LiDAR surveys
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over small landscapes (Hopkinson et al., 2016; McRoberts et al., 2015). Recent efforts 
have also demonstrated the utility of spaceborne SAR to quantify ΔAGB, which 
allows for larger-scale mapping (Askne et al., 2018; Karila et al., 2019). Spaceborne 
LiDAR, e.g., ICESat-2, could also enable large-scale, sample-based estimates of
ΔAGB in the boreal forest. The combination of satellite and airborne remote sensing 
provides a suite of tools for assessing boreal forest productivity at both the local and 
landscape scales. 

26.6 Novel Technologies in Remote Sensing 

Satellite programs such as Landsat, Copernicus, and MODIS provide a high degree 
of homogeneity of the data sets over time by ensuring fixed observation condi-
tions, regular sensor and data calibration, and minimal geolocation errors. Such 
repeat observations are invaluable for evaluating and monitoring forest conditions 
at landscape scales over longer periods. Moreover, commercial petabyte-scale satel-
lite archives of daily high-resolution images from providers such as Planetscope 
and SkySat from Planet Labs provide a constantly updated satellite data stream of 
the entire planet, ensuring global monitoring and data continuity for both tactical 
and strategic planning. These microsatellite constellations allow obtaining multiple 
measures of the same area of interest throughout a single season, which enables the 
study of phenological metrics in forest plots over several years. 

However, large archives of satellite data present a major challenge in regard to 
processing and handling the collected imagery. Although large-capacity computing 
solutions can be built, such tools require significant time and resources and are 
only generally available within large institutions. Recent rapid advances in cloud-
computing technology have increased the availability of on-demand computing capa-
bilities for research and commercial users alike. Recently evolved cloud-computing 
technologies from Google Cloud Platform, Amazon Web Services, and DigitalO-
cean, to name a few commercially available platforms, are enabling researchers 
to push the boundaries of science by providing pay-per-use computing infrastruc-
ture. Cloud-computing services provide managed computational tools and platforms 
that can process large amounts of data without the need to install local computing 
infrastructure. Cloud-computing platforms, e.g., Google Earth Engine (GEE) (Gore-
lick et al., 2017), can help resolve challenges associated with the large amounts of 
computing required for working with and analyzing petabyte-scale satellite imagery 
data without interacting with it on a local computer. Many openly available satellite 
data collections, including Landsat, MODIS, Sentinel-1 and 2, and many derived 
regional and global products, are now available on GEE for user-defined processing 
and computation. Moreover, tools such as GEE are highly scalable and process satel-
lite imagery in parallel, thereby markedly reducing time for many workflows. The 
scalable nature of GEE permits machine-learning workflows for classifying images. 

The ability of forest managers to respond to the effects of changing climate on 
forests depends on effective data collection, processing, and derivation of actionable
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insights. Because it is not feasible to frequently or even infrequently census an entire 
forest using field surveys, it becomes necessary to monitor large tracts of forests for 
changes through remote sensing platforms and instruments. Models developed using 
a combination of field and remote sensing data can provide avenues for keeping forest 
managers informed of changes in biodiversity, biomass, vulnerability, stand density, 
and other forest characteristics. Future advances in remote sensing technologies, 
computing platforms, and geospatial software will further advance monitoring and 
mapping capabilities toward more sustainable planning and management of boreal 
forest resources and better equip forest managers for mitigating the consequences of 
ongoing climatic change. 
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