
Chapter 14 
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Abstract Successful stand regeneration is one of the keystone elements of sustain-
able forest management. It ensures that ecosystems submitted to stand-replacing 
disturbances return to a forested state so that they can maintain the provision of wood 
fiber, biodiversity, carbon sequestration, and other ecosystem services. This chapter 
describes how plantation forestry, including tree breeding, and novel tools, such as 
genomic selection, can support the sustainable management of boreal forests in the 
face of climate change by, among other benefits, reducing management pressure on 
natural forests and favoring ecosystem restoration.

N. Thiffault (B) 
Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, 1055 du 
PEPS, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada 
e-mail: nelson.thiffault@nrcan-rncan.gc.ca 

Centre for Forest Research, Université du Québec à Montréal, P.O. Box 8888, Stn. Centre-Ville, 
Montréal, QC H3C 3P8, Canada 

IUFRO Task Force on Resilient Planted Forests Serving Society and Bioeconomy, Marxergasse 2, 
A-1030 Vienna, Austria 

P. R. N. Lenz 
Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, 1055 rue du 
PEPS, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada 
e-mail: patrick.lenz@nrcan-rncan.gc.ca 

K. Hjelm 
Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 
SE-234 22 Lomma, Sweden 
e-mail: karin.hjelm@slu.se 

© The Author(s) 2023 
M. M. Girona et al. (eds.), Boreal Forests in the Face of Climate Change, 
Advances in Global Change Research 74, 
https://doi.org/10.1007/978-3-031-15988-6_14 

383

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15988-6_14&domain=pdf
mailto:nelson.thiffault@nrcan-rncan.gc.ca
mailto:patrick.lenz@nrcan-rncan.gc.ca
mailto:karin.hjelm@slu.se
https://doi.org/10.1007/978-3-031-15988-6_14


384 N. Thiffault et al.

14.1 Introduction 

Natural disturbances, such as wildfire, insect outbreaks, and windthrow, and anthro-
pogenic disturbances, such as harvesting, are common in the boreal biome (Brandt 
et al., 2013; Shorohova et al., 2009). These events modify stand structure and affect 
the availability of environmental resources. Canopy removal increases light levels in 
the understory, modifying the microenvironment, plant community, and tree regener-
ation. These changes can have cascading effects on the capacity of forests to sustain 
their provision of ecosystem services. Vegetation can rapidly colonize the disturbed 
areas and prevent regeneration of the desired tree species or forest composition. 
For example, in some black spruce (Picea mariana (Mill.) BSP) stands of eastern 
Canada, the effects of harvesting on light levels and water table depth can trigger the 
growth of bryophyte communities; this shift favors paludification (Fenton & Berg-
eron, 2006), which in turn reduces forest productivity (Leroy et al., 2016). Similarly, 
site encroachment by ericaceous species such as Kalmia angustifolia L. or Empetrum 
hermaphroditum Hagerup can lead to a significant decline in soil fertility and conifer 
growth rates on some forest sites (Mallik, 2003). 

Because successful stand regeneration can mitigate these effects, it is one of 
the keystone elements of sustainable forest management. In Canada, for example, 
regeneration success is used to monitor changes in conditions relevant to sustainable 
forest management under the Montreal Process (NRC 2020). It is also mandatory in 
Norway, Finland, and Sweden. 

Successful regeneration, both from natural propagules and plantation practices, 
ensures that ecosystems submitted to stand-replacing disturbances return to a forested

Fig. 14.1 Schematic representation of the relative effects of forest management intensity, including 
plantation silviculture, on the procurement of some ecosystem services. Concepts are detailed in 
Nijnik et al. (2014) and Freer-Smith et al. (2019) 
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state so that they can maintain wood fiber supply, biodiversity, carbon sequestra-
tion, wildlife habitat, spiritual values, social values, and other ecosystem services 
(Fig. 14.1). 

Boreal ecosystems are dominated by conifer species having long-lived aerial seed 
banks, reproduction from vegetative growth (e.g., the formation of layers around 
trees), established dense understory seedling banks, or a combination of these char-
acteristics (Thiffault et al., 2015). Depending on jurisdictions and years, natural 
regeneration can thus play a substantial role in forest renewal. For example, in 
Sweden, about 24% of the area harvested between 1999 and 2019 regenerated natu-
rally, although showing a declining trend (SFA, 2020). In Canada, the average was 
about 44% between 2000 and 2020 (NRC, 2020). The remaining areas are regenerated 
with plantations, which can take various forms. They include intensively managed, 
even-aged forest areas planted with one or two species at a regular spacing. The 
primary objective of these regenerated areas is wood production (Fig. 14.2a, b), 
although there is also a consideration of environmental and societal values in most 
boreal jurisdictions. In contrast, less intensively managed plantations, resembling 
natural forests at stand maturity, have the main purpose of ecosystem restoration, 
the protection of soil and water values, and/or support of socioeconomic objectives 
(Fig. 14.2c). Globally, intensively managed and other planted forests cover about 
291 million ha, an area that represents 7% of the world’s forests (FAO, 2020).

The capability of forest plantations to fulfill their role relies on interdependent 
decisions and actions. In most forestry contexts in the boreal zone, this means 
selecting appropriate genotypes and seedling size, managing the soil and humus 
to create appropriate microsites, controlling competing vegetation, managing stand 
density, and, in some cases, increasing nutrient availability. Tree breeding, silvicul-
ture, and their interactions drive the production of ecosystem services from planted 
forests (e.g., Burdon et al., 2017). This chapter describes the actual and potential role 
that plantation silviculture, tree breeding, and novel tools such as genomic selection 
can play in supporting the sustainable management of boreal forests in the face of 
climate change. First, we summarize some of the fundamentals of plantation silvicul-
ture and show how various treatments support sustainable forest management objec-
tives. Then, we explore the role of tree breeding and genomic tools in assisting forest 
management. Third, we provide examples illustrating the role plantation forestry 
plays in maintaining various ecosystem services from boreal stands in the context 
of global change. Finally, we identify some issues and challenges facing plantation 
forestry in the context of sustainable forest management. 

14.2 Plantation Establishment and Silviculture 

When a forest stand is harvested, the energy previously captured by the canopy now 
reaches the understory and the soil (Fig. 14.3); this exposure increases soil and air 
temperature and the evaporative demand of the air. For newly planted seedlings, a 
higher soil temperature can positively affect root growth and the uptake of water and
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Fig. 14.2 Examples of various plantations, showing a an intensively managed white spruce (Picea 
glauca (Moench) Voss.) plantation in eastern Canada, b a mature Norway spruce (Picea abies (L.) 
Karst.) plantation in Sweden, c an extensively managed white spruce plantation in eastern Canada 
containing natural balsam fir (Abies balsamea (L.) Mill.) regeneration, and d a Norway spruce 
plantation in Sweden that was submitted to cleaning with the retention of naturally regenerated 
Scots pine (Pinus sylvestris L.). Photo credits a, c Nelson Thiffault, b, d Karin Hjelm

nutrients and reduce the risk of frosts. On the other hand, the increased evaporative 
demand and higher air temperatures can increase the risk of drought. Although soil 
water availability increases when trees are removed and more precipitation reaches 
the ground, colonizing vegetation competes for water in the rooting zone. Because 
the root functioning of newly planted seedlings is often poor (Grossnickle, 2005), this 
may further increase the impact of drought. Moreover, rapid changes in temperature 
between day and night can cause frost damage. Many nutrients are removed by 
harvesting the standing trees, although changes in the energy balance can heighten 
some nutrient cycle processes such as nitrification (Jerabkova et al., 2011).

In this context, plantation success in supporting sustainable forest management 
objectives relies on the proper selection and use of stock type and silviculture treat-
ments (Rubilar et al., 2018). These decisions ensure that the planted seedlings have 
access to sufficient environmental resources from the time of planting until maturity
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Fig. 14.3 Some environmental factors influenced by harvesting or natural disturbances that deter-
mine the establishment success of newly planted seedlings in the boreal forest. These factors can be 
manipulated using silvicultural treatments, such as mechanical site preparation, vegetation manage-
ment, and fertilization, so that plantations can support sustainable forest management objectives. 
Tree-breeding programs can also select genotypes best adapted to sustain specific environmental 
conditions

so that survival is maximized and growth rates meet the silviculture and management 
objectives. 

In general, seedling stock types vary in the size of the shoot/above ground biomass 
and the morphology of their root system. The choice of stock type size is generally 
based on the competing environment in which the seedlings are to be outplanted, as 
initial seedling size influences their inherent growth and capacity to compete for envi-
ronmental resources (Jobidon et al., 2003). Larger seedlings are generally preferred 
on sites dominated, or that have the potential to be dominated, by fast-growing, light-
demanding species. Smaller seedlings are ideal for sites where competition for light 
is low, as generally found at high latitudes where competing species consist mainly 
of shrubs, mosses, and lichens (Bell et al., 2011). 

Most harvesting treatments alter vegetation dynamics; species well adapted to the 
new environmental conditions establish rapidly, occupy the site, and compete with 
planted seedlings for resources (Fig. 14.3). Vegetation management aims to direct 
the evolution of the forest succession to achieve a range of management objectives. 
The use of mechanical, chemical, biological treatments, or a combination thereof, 
applied during the various stages of early stand development can improve planted 
tree growth, vigor, resistance to damage from insects, survival, nutrient status, crown
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length and width, and stand volume growth (Wiensczyk et al., 2011). In most cases, 
vegetation management treatments are carried out to increase the wood production of 
desired species; however, vegetation management enables achieving other objectives, 
such as restoring declining species or diversifying stand composition and structure. 

Mechanical site preparation is used to improve site factors and reduce seedling 
stress following planting (Fig. 14.3), leading to positive effects on seedling survival 
and growth (Sikström et al., 2020). In boreal contexts, mechanical site prepara-
tion increases the availability of site resources by reducing competition from other 
species colonizing the regeneration area and improves factors such as microclimate, 
nutrient mineralization, soil temperature, and soil water availability (e.g., Johansson 
et al., 2013). Site-specific characteristics and the management context influence the 
intensity of mechanical site preparation treatments and the impact severity of these 
treatments on the forest floor and the soil (Löf et al., 2012). For example, the applied 
treatment can consist of disturbing (locally) the organic layers through the use of 
motor manual equipment, mounding to create elevated planting spots, disk trenching 
to create linear rows of furrows and berms, soil inverting to produce planting spots 
with the mineral soil lying above an inverted humus layer, harrowing to completely 
mix the organic layers and incorporate them into the underlying soil, or blading, 
which completely removes the organic layer over large areas of soil. 

Stand density (the number of stems growing per unit of space) influences produc-
tivity at the tree and stand levels. The size of individual trees is largest at low density 
because trees are exposed to low levels of intraspecific competition. At higher tree 
densities, volume production at the stand level is maximized because site occupancy 
is optimized (Groot & Cortini, 2016). Density management thus offers the opportu-
nity to manipulate resource allocation to best fit the sustainable forest management 
objectives being pursued. In plantations, stand density is managed at the establish-
ment phase by prescribing the planting distance between the seedlings. Thinning 
or cleaning treatments can later be used, either at the precommercial or commer-
cial stage of stand development, to maintain or reduce stand density and select crop 
trees (Fig. 14.2d; Pelletier & Pitt, 2008). Thinning operations reduce competition 
between crop trees; hence, they improve the growth of the remaining stems. Although 
increased volume and radial growth rates generally lead to decreased wood density 
(Jaakkola et al., 2005), these effects can be nonsignificant (Franceschini et al., 2018; 
Vincent et al., 2011). The pruning of dead or living branches can also be used to 
increase wood quality and value (Mäkinen et al., 2014). 

The availability of soil nitrogen is one of the major growth-limiting factors in 
boreal forests (Tamm, 1991). Fertilizers can be applied at planting, in the later stages 
of stand rotation, or at several points in time to promote plantation growth and 
achieve sustainable forest management objectives. Using fertilizers at planting can 
promote the rapid establishment and high initial growth of trees; for example, positive 
effects of amendments have been documented when used in combination with site 
preparation (Thiffault & Jobidon, 2006) or with nutrient irrigation (Johansson et al., 
2012). The fertilization of mature stands, for its part, is seen as one of the most 
economically important measures to increase wood production. By adding nitrogen
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to middle-aged or older stands, usually a few years after the last thinning, tree growth 
can be increased significantly (Jacobson & Pettersson, 2010). 

14.3 Tree Breeding and Genomic Selection 

Millions of seedlings are planted each year in the boreal forest, with more than 450 
million and 350 million seedlings planted annually in Canada and Sweden, respec-
tively. In most northern countries, seedling material is improved for growth, or at least 
comes from known origins, to ensure its quality and adaptation to specific planting 
environments. This practice enhances plantation success and timely restocking so that 
ecosystem services can be fulfilled as quickly as possible after harvesting (Fig. 14.1). 
The use of improved planting material also protects investments and guarantees a 
future fiber supply of sufficient quantity and quality (Jansson et al., 2017). 

Tree-breeding programs for boreal conifers have been established in many coun-
tries in the northern hemisphere to deliver improved seedlings for reforestation 
purposes (see Mullin et al., 2011 for an extensive review). The first tree breeding 
efforts comparing the growth of seed sources from different geographic origins go 
back to the early twentieth century. Structured tree-breeding programs for many 
commercial spruce (Picea spp.) and pine (Pinus spp.) species were initiated in the 
1950 and 1960s by systematically sampling the genetic base (Fig. 14.4a). Hence, 
seeds and grafts from plus trees (particularly well-growing trees in natural stands) 
were collected from the species’ full distribution and planted in common garden 
experiments. These provenance studies determined the genetic variation within 
species to identify the best-growing seed sources and to study the genetic response 
to the environment (e.g., Li et al., 1997; Rehfeldt et al., 1999). These studies also 
established the foundation for crossing the best-performing individuals, leading to 
the beginning of a breeding population (Fig. 14.5).

Genetic trials of provenances or crosses follow distinct experimental designs that 
control within-site variation, determine genetic effects, and rank individual trees, 
families of crosses or their parents on the basis of their genetic merit (Fig. 14.4b). 
Measuring traits of interest in these experiments allows estimates of the different 
genetic parameters, e.g., their heritability, that determine the genetic gain expected 
through selection. For instance, height growth is typically between 20%–30% genet-
ically controlled (e.g., Gamal El-Dien et al., 2015; Hong et al., 2014; Lenz et al., 
2020a), whereas wood quality is under even stronger genetic control. In some cases, 
more than half of the observed variation in wood density and fiber dimension is 
attributed to genetics (e.g., Chen et al., 2014; Ivkovich et al., 2002). Adverse corre-
lations between desired traits, such as growth and wood quality, require multitrait 
selection approaches to prevent wood quality degradation in planting stocks with 
enhanced growth (Hong et al., 2014; Lenz et al., 2020b). 

Conventional tree breeding employs a recurrent cycle of evaluation, selection, and 
crossing of the best individuals, which are then re-evaluated (Fig. 14.5). Traditionally, 
selected individuals are multiplied and grafted into clone banks for next-generation
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Fig. 14.4 a A 50-year-old mature white spruce (Picea glauca) provenance trial established at 
the Petawawa Research Forest in Ontario, Canada; and b a 16-year-old genetic trial of controlled 
crosses of Norway spruce (P. abies), an introduced species to eastern Canada for which several 
breeding programs are maintained. Trees in a and b were pruned to facilitate access for recurrent 
measurements of growth and for easier wood quality assessments. Pruning is also common practice 
in plantations for increasing wood quality. This treatment leads to fewer and smaller knots and 
hence stronger wood from the first log. Photo credits a Isabelle Duchesne, b Patrick Lenz

crosses and into seed orchards for seed production (White et al., 2007). For economic 
reasons, most seeds used for mass seedling production originate from open-pollinated 
seed orchards where only the maternal genetic value is well controlled. Other multi-
plication methods rely on sowing seeds and planting seedlings from controlled 
crosses or growing seedlings into hedges to produce rooted cuttings. Seedlings from 
cuttings or emblings obtained through somatic embryogenesis are significantly more 
expensive than standard material (Chamberland et al., 2020). Nevertheless, these 
clonal reproduction methods allow for the full control of the genetic makeup and, 
thus, maximize genetic gain (Park et al., 2016).
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Fig. 14.5 Schematic illustration of the tree-breeding process, in which plus trees are identified to 
set the groundwork for crossing the best-performing individuals and, hence, establish a breeding 
population. Genomic selection (GS) can shorten the breeding cycle by decades. The genetic gain 
of a desired parameter (e.g., height) is thus dependent on the genetic control and the selection 
differential s, which is the difference between the general mean µ and the mean of the selected 
subpopulation

Over the last decade, genomic selection has been tested in forest tree breeding, with 
several proof-of-concept studies being published for boreal conifers (e.g., Beaulieu 
et al., 2014; Gamal El-Dien et al., 2015). Genomic selection relies on linking the 
genomic marker profiles of trees to their phenotypes. Once the models are cali-
brated, predictions are made only on the basis of marker profiles, which can already 
be obtained at the seedling stage or from embryonic tissue; this avoids the imper-
ative establishment of field tests (Park et al., 2016). Hence, the evaluation time is 
reduced to a minimum, and completing a selection cycle lasts only 10–15 years 
until improved seedlings are available (Lenz et al., 2020a) (Fig. 14.5). Genetic gain 
is enhanced further when vegetative reproduction is used for valuable genotypes. 
Genomic selection also facilitates the screening for expensive phenotypes, such as 
resistance, and quality traits in breeding populations. Models can be calibrated for a 
representative subset of a breeding program, and predictions can be made for other 
genotyped trees in the same population.
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14.4 Benefits of Plantation Forestry in Sustainable 
Management 

Plantations can provide high yields and offer the opportunity to select for species, 
genotypes, stand density, and spatial arrangements. They therefore play an impor-
tant role in augmenting, maintaining, and restoring forest productivity in boreal 
landscapes and improving the provision of other ecosystem services (Freer-Smith 
et al., 2019). 

14.4.1 Increasing Wood Production 

Plantations increase wood production per unit of area relative to natural forests 
because they make better use of the space by the desired species, and they are based 
on genetically improved material. Overall, fiber production of desired quality can be 
tripled in a plantation compared with that obtained from unmanaged natural stands 
(Paquette & Messier, 2010). The amount of gain in each breeding cycle depends 
on the genetic control of growth traits and on the selection intensity. Despite the 
low to moderate heritability of growth, substantial gains have been achieved in 
one to two selection cycles in northern conifer breeding programs. For example, 
Isaac-Renton et al. (2020) reported almost 30% volume gain in first-generation top-
crosses of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) in western Canada. 
For Norway spruce in Sweden, Liziniewicz et al. (2018) reported volume gains 
of nearly 30% in realized gain trials in second-cycle seed orchards. Multivarietal 
forestry offers volume gains greater than 50% by multiplying top-performing clones 
(Weng et al., 2008). At the landscape level, and when integrated within a functional 
zoning approach, the enhanced productivity of plantations can reduce the manage-
ment pressure on natural forests without affecting wood production within the forest 
management unit (Messier et al., 2003). Enhanced growth also leads to shorter rota-
tions, thus reducing the duration that trees are exposed to biotic and abiotic risk 
factors, including those related to climate change. 

14.4.2 Adapting Forests to Future Conditions with Trait 
Selection and Assisted Gene Flow 

In addition to growth and stem form, tree breeding can screen for other traits adapted 
to novel climate or market conditions. More frequent and severe drought events and 
late and early frosts in the more northern regions will negatively affect tree regen-
eration at boreal latitudes (Boucher et al., 2020). Plantation forestry, using adapted 
planting stock, can help maintain forest productivity in these challenging conditions. 
Breeding and modern genomic tools make it possible to accelerate the selection
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for various breeding goals (Fig. 14.5), including improved resilience, adaptation, 
and resistance to climate extremes and more frequent biotic stresses, or particular 
wood attributes to respond to emerging markets. In recent years, several studies have 
coupled dendroecology with genetics and genomics to forecast the adaptive potential 
of populations on the basis of past growth responses extracted from tree-ring data 
(e.g., Montwé et al., 2018). Moreover, new classes of phenotypes have improved 
our understanding of the genetic underpinning of adaptation (Housset et al., 2018). 
Growth resilience and recovery after drought stress are under significant genetic 
control and can thus be used as breeding criteria for adapting seedling material to 
future climate conditions; thus, this selection of seedling material can support sustain-
able forest management (Depardieu et al., 2020). Breeding also provides opportu-
nities to enhance the resistance of conifers to biotic stressors, such as insects (e.g., 
Lenz et al., 2020b). 

14.4.3 Restoring and Maintaining Natural Species, 
Closed-Forest Landscapes, and Ecosystem Functions 

Although forest plantations can be established with the objective of producing a 
maximum of wood fiber in the shortest period, forest plantations in the boreal zone 
are frequently used to compensate for deficient natural regeneration and maintain 
a closed-crown forest cover. For example, in northeastern Canada, black spruce 
seedlings are planted alone or in combination with eastern larch (Larix laricina 
(Du Roi) K. Koch) or other species after wildfires to limit the expansion of lichen 
woodlands (e.g., Thiffault & Hébert, 2017). Plantations are also used as a tool to 
address biodiversity issues under the paradigm of ecosystem-based management 
(Paquette & Messier, 2010). For instance, plantation forestry is used to regenerate 
species that reproduce through serotinous cones and that rarely reproduce without 
wildfire (Bouchard, 2008). Forest plantations are also established to restore or main-
tain certain declining species through enrichment planting (e.g., Neves Silva et al., 
2019). White spruce is an example of a species native to boreal eastern Canada 
that is sensitive to environmental conditions and suffers from needle chlorosis and 
defoliation, a phenomenon that can potentially be accentuated by climate change in 
regions characterized by low base cation availability in the soil (Ouimet et al., 2013). 
Furthermore, natural regeneration of white spruce is impeded by harvesting effects 
on stand structure. In this context, enrichment planting (Fig. 14.2c) increases the 
proportion of white spruce in the landscape to restore the historical forest composi-
tion (Delmaire et al., 2020). Plantations can also serve to restore wildlife habitats; 
for example, ecosystems subjected to heavy browsing pressure from large ungulates 
may experience regeneration failure of palatable tree species (Beguin et al., 2016).
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14.4.4 Capturing and Storing Carbon and Supporting 
the Bioeconomy 

Because of their high productivity, plantations are frequently identified as a means of 
sequestering atmospheric carbon for mitigating climate change (Waring et al., 2020). 
This practice is of particular interest in afforestation contexts, i.e., establishing trees 
on areas previously deprived of a forest cover (e.g., Ouimet et al., 2007). Planta-
tions can, however, show lower net primary production than naturally regenerated 
forests, resulting in a lower carbon stock (Liao et al., 2010). In the boreal biome, the 
benefits of using plantations for carbon sequestration can thus be realized only under 
specific conditions. For example, assuming that the albedo effect is taken into account 
(Bernier et al., 2011), a positive carbon sink can be observed after the reforestation 
of forest heaths, which results from cascades of natural or anthropogenic disturbance 
(Gaboury et al., 2009). Moreover, although site preparation and the planting of boreal 
stands prone to paludification can result in losses of soil carbon, plantations on such 
sites should be beneficial because of the increased carbon storage in tree biomass 
(Lavoie et al., 2005). For example, increasing site preparation intensity on mineral 
soils can significantly increase carbon stock in the forest ecosystem in the long-term 
(Mjöfors et al., 2017). The net effect of mechanical site preparation on carbon stock 
remains, however, dependent upon the initial humus content and the site-specific soil 
characteristics. 

14.5 Risks and Challenges 

Forests play a critical role in addressing many of the largest global challenges. These 
challenges include mitigating climate change, conserving biodiversity, and providing 
a variety of ecosystem services, including nutrient cycling, air and water purification, 
carbon sequestration and storage, and wildlife habitat. Forests also have social and 
spiritual benefits and are key to important cultural activities. Although plantations 
can support the delivery of these services, they are also associated with silvicultural 
regimes that have the greatest potential for the artificialization of natural forests 
(Barrette et al., 2014). 

Silvicultural treatments necessary for establishing successful plantations can have 
undesired effects on ecosystems and result in unforeseen impacts on the silvicultural 
regimes themselves. For example, although site preparation improves the establish-
ment of planted seedlings, the increased area of disturbed soil from this treatment 
favors the establishment of naturally regenerated seedlings (e.g., Johansson et al., 
2013). Whereas natural regeneration can complement or replace planted seedlings 
if mortality occurs, this regeneration can increase the need for precommercial thin-
ning and other silviculture investments. There are also concerns that mechanical 
site preparation can negatively affect long-term productivity by depleting soil nutri-
ents through rapid decomposition and leaching. Although tree growth appears to
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persist many decades after treatment (e.g., Hjelm et al., 2019), long-term research 
is necessary to fully evaluate the legacy effects of mechanical site preparation on 
site productivity. Similarly, fertilization is one of the most questioned silvicultural 
measures. Whereas it is effective at increasing tree growth and stemwood production, 
fertilization may adversely affect the forest ecosystem through, for example, negative 
impacts on soil-solution chemistry. Fertilization usually modifies plant composition 
relative to natural succession because of the increased availability of nutrients and 
reduced light penetration through a denser tree canopy (Hedwall et al., 2010); these 
effects may remain after felling and regeneration (Strengbom & Nordin, 2008) and 
could potentially impact sites at a millennial time scale (Dupouey et al., 2002). 

The breeding process involved in producing successful plant material for planta-
tion forestry also raises issues and challenges. For example, the extended time frame 
that breeders must foresee is one of the greatest challenges for decision-making and 
the selection of the optimal traits. Genomic selection can provide part of the solution. 
Nonetheless, 10 years of breeding cycle added to 20 years until commercial thinning 
of improved plantations remains a long time horizon during which environmental or 
market conditions may likely change with potentially significant social and economic 
impacts and the risk that the selected genomes will not be adapted to unforeseen 
changes in biotic and abiotic disturbances. Currently, genomic selection models are 
not transferable among breeding populations, as they largely trace pedigree and, to a 
minor extent, marker-trait associations (Lenz et al., 2017). There is hence a continued 
need for developing appropriate genotyping and statistical methods. 

The social acceptability of plantation forestry is ambiguous (e.g., Wyatt et al., 
2011). Although plantation forestry is perceived positively in certain circumstances, 
it is often associated with industrial practices, monocultures, the use of chemicals, a 
deterioration of water quality, negative effects on biodiversity, fragmentation of the 
forest matrix, and other landscape-scale impacts (Paquette & Messier, 2010). The 
use of improved planting material through breeding programs and genomic selection 
(Fig. 14.5) may wrongly be associated with the use of genetically modified organisms 
(GMOs). 

14.6 Conclusions and Perspectives 

Overall, the use of plantations in the sustainable forest management of the boreal 
forest undoubtedly raises significant issues related to the scale, localization, and 
spatial arrangement of plantations, the key attributes and resilience of natural forests, 
social acceptability, and the productivity and profitability of plantations, particularly 
in the context of ecosystem-based management (Barrette et al., 2014) (Fig. 14.6). 
Whereas the role of plantations in supporting sustainable forest management in the 
boreal forest is undeniable, their use should thus consider the risks associated with 
their implementation. These risks are increasing as biotic (e.g., native or exotic pests) 
and abiotic (e.g., drought) hazards expand because of global change, while concurrent 
economic and social pressures evolve constantly.



396 N. Thiffault et al.

Fig. 14.6 Some issues related to plantation silviculture in the context of ecosystem-based 
management in the boreal forest. Adapted with permission from Barrette et al. (2014) 

Plantation silviculture is compatible with and can support ecosystem-based 
management objectives (e.g., Barrette et al., 2019). When necessary, adaptive 
approaches can be applied at the stand level, such as establishing mixed- or multi-
species plantations, maintaining biological legacies prior to establishing plantations, 
preserving patches of natural forest during site preparation, and favoring rare fruit-
bearing tree species during cleaning treatments (Barrette et al., 2014). Maintaining 
or restoring the highest possible degree of naturalness within the forest matrix could 
address the complex issues associated with plantations at the landscape level (Tittler 
et al., 2012). 
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