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Abstract. The OpenMP 5 standard defines OMPT—an application
programming interface for tools that includes a set of introspection rou-
tines. At any point in time, a sampling-based performance tool may
invoke these introspection routines from a signal handler to inquire about
the nesting of parallel and task regions. Unfortunately, the OpenMP 5
standard doesn’t precisely specify what one may observe with these rou-
tines when monitoring a program as it executes nested parallel regions.
To address this shortcoming, we propose that the OpenMP standard
require that an OpenMP implementation supports introspection consis-
tency. This paper defines introspection consistency, describes why tools
need it, and explains a novel strategy for implementing it using wait-free
coordination between an OpenMP implementation and its OMPT intro-
spection routines. We describe an implementation of this technique in the
LLVM OpenMP runtime and evaluate the runtime overhead of support-
ing introspection consistency in LLVM OpenMP using a microbenchmark
for nested parallel regions and SPEC OMP2012.
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1 Introduction

The OpenMP Application Programming Interface (API) defines a directive-
based programming model for harnessing parallelism within nodes that employ
one or more multicore processors and sometimes accelerators. Since the incep-
tion of OpenMP, providing tools that support two or more OpenMP implemen-
tations has been a challenge. The substantial semantic gap between an OpenMP
program and its implementation, compounded by differences between OpenMP
implementations, makes it difficult for tools to attribute performance metrics
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to a source-level calling contexts. To bridge this gap, Eichenberger et al. [5]
proposed OMPT—an API for performance analysis and correctness tools. In
2018, OMPT became an integral part of the OpenMP 5.0 standard [10].

The OMPT API defines a set of runtime entry points designed to support
asynchronous introspection of the state of an executing OpenMP program by
a sampling-based performance tool. To retrieve information about the current
parallel (respectively, task) region, a sampling-based performance tool asyn-
chronously invokes the ompt_get_parallel info (ompt_get_task_info) runtime
entry point passing ancestor_level = 0; information about enclosing parallel
(task) regions can be obtained by specifying values of ancestor_level > 0.
To date, not enough attention has been paid to the semantics of these rou-
tines. The standard simply states that ompt_get_parallel_info (respectively,
ompt_get_task_info) returns

— 2 if a parallel (task) region exists at the specified ancestor level and informa-
tion about the parallel (task) region is available,

— 1if a parallel (task) region exists at the specified ancestor level but informa-
tion is currently unavailable, and

— 0 otherwise.

While integrating support for the OMPT interface into Rice Univer-
sity’s HPCToolkit performance tools [1,13], which use asynchronous sam-
pling to collect call path profiles and traces [12] for CPU threads as a pro-
gram executes, it became clear that this definition of the semantics for the
ompt_get_parallel_info (ompt_get_task_info) introspection routines is too
weak. There are several problems.

— After an OpenMP program (1) enters a parallel (respectively, task) region
and (2) the OpenMP implementation provides information about that region
to a tool by returning 2 to an introspection query, there is no requirement
that the OpenMP introspection routine must continue to return information
about the region until the program begins to exit the region.

— If a tool stores into the ompt_datat parallel data (respectively,
ompt_task_data) word maintained by an OpenMP implementation for a par-
allel (task) region, a tool will not be reliably able to use an OpenMP intro-
spection routine to retrieve this data throughout the lifetime of the region.

These problems are not just theoretical. We have observed both issues in practice
while using HPCToolkit to profile an OpenMP program linked againts the LLVM
OpenMP runtime. When a thread receives a sample, it executes HPCToolkit’s
signal handler code and unwinds the call stack to determine the context that
incurs cost. Worker threads of OpenMP parallel regions can only determine
partial call paths because they are unaware of the region’s invocation context
known only to the primary thread. To compute a full, user-level calling context,
a worker thread subscribes to receive the region context from the primary thread
by updating a tool data structure whose pointer is stored in the active region’s
parallel _data word. At the end of the parallel region, the primary thread reads
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parallel _data to obtain the pointer to the tool data structure, unwinds the call
stack to determine the region’s context, and shares it with subscribed worker
threads that then asynchronously assemble full call paths for samples received
while executing the region.

In the LLVM OpenMP runtime, we noticed timing windows while creat-
ing nested parallel regions during which HPCToolkit receives wrong information
about enclosing parallel regions, causing a sampled thread to be unable to deter-
mine if it is a worker thread that should subscribe to receive the region’s con-
text. Furthermore, runtime might override the content of an enclosing region’s
parallel_data while creating a nested parallel region; this causes the loss of the
worker threads’ subscriptions, which causes the profiler to fail.

Such issues can be avoided by improving the OpenMP specification and tightly
integrating the implementation of OpenMP parallel and task regions with their
OMPT introspection routines. This paper makes the following contributions:

— We propose that the OpenMP specification requires that an OpenMP imple-
mentation supports introspection consistency; in brief, this requires that when
a program is executing in an OpenMP parallel or task region, the region must
be visible to OMPT introspection routines.

— We explain why introspection consistency is needed to support reliable
sampling-based performance tools for call path profiling.

— We describe a novel approach for implementing introspection consistency
using wait-free coordination between an OpenMP implementation and its
OMPT introspection routines.

— We overview an implementation of introspection consistency in LLVM
OpenMP.

— We evaluate the runtime overhead of supporting introspection consistency
in LLVM OpenMP using a microbenchmark for nested parallel regions and
SPEC OMP2012.

Section 2 briefly describes the implementation of parallel regions, tasks!, and
OpenMP introspection routines in LLVM OpenMP to provide context for under-
standing our contributions. The remaining sections motivate introspection con-
sistency, describe a high-level approach to providing it, describe our implemen-
tation in LLVM OpenMP, evaluate its cost, discuss related work, and present
our conclusions.

2 Background

This section briefly describes the implementation of parallel regions, serialized
parallel regions, implicit and explicit tasks, and OMPT introspection support
for nested parallel and task regions in LLVM OpenMP runtime.

Parallel Regions and Implicit Tasks. When a thread encounters a parallel region
construct that at least two threads should execute, it must form a team of threads

! We use the word “task” as a synonym for a task region for brevity.
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that will execute that region. The encountering thread becomes the primary
thread of the region’s team. Prior to entering this region, the primary thread
initializes the team descriptor, records the number of threads in the team, sets
the descriptor’s parent pointer to the enclosing parallel region (if any), assembles
a team of threads for the region, shares the descriptor with the team of threads,
and sets its own current team descriptor to the region’s team descriptor. Then,
each thread of the region’s team begins an implicit task that executes the code for
the region. Before scheduling the implicit task for execution, a thread assembles
the task descriptor, updates its team and scheduling parent pointers to link
the parallel region’s team descriptor and the enclosing task, respectively, and
finally sets its own current task descriptor to the assembled task descriptor.
After every thread completes the work of its implicit task and synchronizes with
a final barrier, it destroys the current implicit task descriptor. Afterward, the
primary thread destroys the parallel region’s team descriptor and resumes work
in the context of the region’s parent.

Ezxplicit Tasks. An explicit task may suspend its execution after the creation.
Furthermore, multiple threads may schedule and suspend the execution of an
untied explicit task, causing the runtime to update the task’s scheduling parent
pointer in its task descriptor when the untied task was rescheduled.

Serialized Parallel Regions. A serialized parallel region is executed by a single
thread. Serialized parallel regions occur frequently enough that OpenMP imple-
mentations often provide a tailored implementation for high performance. Here,
we discuss the implementation of nested serialized parallel regions in the LLVM
OpenMP runtime.

When a thread executing a serialized parallel region R; encounters a parallel
region construct that yields another serialized region Ra, it reuses the current
team descriptor associated with Ry for Ry rather than allocating and initializ-
ing a separate descriptor for Rs. Similarly, the thread reuses the current task
descriptor associated with the R;’s implicit task to represent the Rs’s implicit
task. This approach is roughly 80% faster than using separate descriptors; how-
ever, it leads to problematic behaviors for both ompt_get_parallel_info and
ompt_get_task_info.

The lack of separate team and task descriptors leads to losing important
OMPT information about nested serialized parallel regions and corresponding
implicit tasks. To overcome this problem, LLVM runtime developers introduced
a separate lightweight team descriptor (lwt) to store OMPT information about
nested serialized parallel regions and associated implicit tasks. When creating
nested serialized parallel region Rs, the current team and task descriptors con-
tain OMPT information about R; and its implicit task. The thread allocates a
new lwt descriptor, fills it with OMPT information associated with R; and the
corresponding task from the current team and task descriptors, and then over-
writes the OMPT information in those descriptors with information about Rs
and its implicit task. The lwt descriptor for R; is then pushed into a linked list,
known hereafter as the lwt list. After executing Rs’s implicit task, the process
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is reversed. The thread removes R1’s Iwt descriptor from the lwt list and copies
OMPT information about R; and its implicit task back to the current team and
task descriptors, overwriting the OMPT information about region R, and the
corresponding task which recently completed.

Tool Support for Parallel and Task Regions. For each ancestor_level level at
which information is available, ompt_get_parallel_info will return the team
size for the parallel region and a pointer to a parallel _data word provided
for the region by an OpenMP implementation for use by a tool. Similarly,
a tool might inspect the OMPT state of an active task region by invoking
ompt_get_task_info. This routine reveals the type of the task, procedure frame
information for that task, and the number of the thread in the parallel region
executing the task. ompt_get_task_info provides the task_data word associ-
ated with the task and maintained by the runtime for use by a tool as well as
parallel _data word for the region that contains the task.

While a thread executes a parallel region, ompt_get_parallel_info reads
OMPT information from the current team descriptor and either follows the par-
ent pointers of region team descriptors or a chain of lightweight team descriptors
that contain information about enclosing serialized parallel regions. The rou-
tine ompt_get_task_info is similar, returning information about the nesting of
explicit tasks, implicit tasks, and their associated parallel regions. It reads the
information from the current task and team descriptor and eventually follows
the chain of task and team (lwt) descriptors in pairs.

3 Approach

As described in the Introduction, having tool data associated with parallel
and/or task regions be lost or unavailable as a program executes is unacceptable
for tools. To address these issues, we propose introspection consistency to avoid
having tool data become unavailable while a parallel region or task is active.

An OpenMP implementation provides introspection consistency if it obeys
the following principles:

— A thread that is part of a team for a parallel region must provide information
about the region and its implicit task to the OMPT introspection routines
ompt_get parallel info and/or ompt_get_task_info upon request from the
time of its implicit-task-begin event until the implicit-task-end event of the
primary thread in the region.

— A thread must provide information about a tied explicit task to the OMPT
introspection routine ompt_get_task_info upon request from the time the
task is scheduled on a thread until the task completes.

— A thread must provide information about an untied explicit task to the
OMPT introspection routine ompt_get_task_info upon request from the time
the task is scheduled for execution on a thread until it suspends.
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When creating a parallel region, one must associate a thread with descrip-
tors for both a team and an implicit task. One approach for entering a parallel
region is to atomically push a (team, task) pair of descriptors representing a par-
allel region and its implicit task. However, that approach will require that the
runtime always accesses the descriptors with an additional level of indirection.
The LLVM OpenMP runtime maintains the current task and team descriptors
separately to avoid this extra level of indirection. When creating a new parallel
region, the runtime first updates the current team descriptor to the new region
and then the current task descriptor to the region’s implicit task. With this
approach, one must be careful, or ompt_get_task_info might, for instance, read
OMPT information from the current team descriptor matching the new inner-
most parallel region and the current task descriptor corresponding to an implicit
task of an enclosing parallel region (if any). In the upstream LLVM OpenMP,
this causes inconsistent results from ompt_get_task_info.

To avoid such inconsistencies, in our improved implementation, ompt_get_
task_info first reads OMPT information from the current task descriptor and
then accesses the current team descriptor. Each task descriptor links the descrip-
tor of the team to which it belongs. Suppose ompt_get_task_info finds that the
current task descriptor does not reference the current team descriptor, meaning
that the current task descriptor corresponds to the implicit task of an enclosing
parallel region. In that case, ompt_get_task_info will report the presence of the
inner parallel region but indicate that it cannot provide information about the
region. ompt_get_task_info will not provide information about a parallel region
and its implicit task until the runtime updates both the team and task descrip-
tors for the region and its task. A tool can still access the information about the
inner parallel region by invoking ompt_get_parallel_info, and thus detect the
creation/destruction of the region.

We encountered a different obstacle to providing introspection consistency
for nested serialized parallel regions. As described in Sect.2, the implementa-
tion of nested serialized parallel regions is optimized to avoid allocation and
full initialization of a descriptors for nested serialized parallel regions and cor-
responding implicit tasks. However, the runtime fails to preserve introspection
consistency for an enclosing serialized parallel region R; and its implicit task
during the creation (and respectively, destruction) of a nested serialized parallel
region Rsy. The signal handler might interrupt the runtime during Rs’s creation
and store a value for parallel data for R; (for task_data for R;’s implicit
task) after the runtime has captured parallel_data for R; (task.data for Ry’s
implicit task) to move it into a lightweight team (lwt) descriptor, causing a value
of parallel data (task_data) to be lost.

The runtime can trivially overcome this problem by blocking all signals dur-
ing the creation/destruction of a nested serialized parallel region to prevent sig-
nal delivery and tool introspection while information about a serialized parallel
region and its implicit task is being updated. However, in the case of frequent
short nested serialized parallel regions, blocking and unblocking signals can sig-
nificantly interfere with sampling and cause a tool to collect unrepresentative
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data. Instead, we have the runtime and an introspection routine invoked from a
signal handler employ wait-free coordination [7] to achieve consensus about the
information associated with R; and Rs. The next section describes a protocol
that enables a call to ompt_get_parallel_info or ompt_get_task_info from a
signal handler to recognize when the runtime is in the process of moving data
to prepare for a nested parallel region. In that case, the introspection routine
finishes preparing the nested region so it can return information about both the
nested and enclosing regions. It atomically writes this information into the run-
time’s current team, task, and Iwt descriptors to ensure that the runtime will
observe it after the introspection routine finishes.

4 Implementation

In this section, we describe the implementation of a novel wait-free protocol for
coordinating the LLVM OpenMP runtime with its OMPT introspection routines
to maintain introspection consistency for nested serialized parallel regions. For
this purpose, we extended each of the team, task, and lwt descriptors with a
pair of OMPT descriptors (depicted and numbered with 1 and 2 in Fig. 1) and
a pointer (shown as ptr in Fig.1) that indicates which descriptor of the pair
contains valid OMPT information about the OpenMP parallel/task construct.
The runtime and an introspection routine called from a tool’s signal handler
use wait-free coordination to achieve consensus about which OMPT descriptor
associated with a nested serialized parallel region (and its implicit tasks) contains
valid state by atomically updating the value of the ptr pointer to reference one
of the pair’s descriptors.

Figure 1a depicts the descriptors containing information associated with two
serialized parallel regions, R1 and R2, and their corresponding implicit tasks
when the primary thread executes the nested region R2. As the ptr pointer
(shown in blue) of the heap-allocated team descriptor indicates, the R2’s OMPT
information resides in the first OMPT descriptor of the pair. The ptr (shown in
red) of the task descriptor allocated on heap indicates that the second OMPT
descriptor of the corresponding pair contains the information associated with
R2’s implicit task. The first OMPT descriptor of the pair belonging to the stack-
allocated 1wt descriptor depicted in the right half of Fig. 1a contains information
about the enclosing parallel region R1 and its implicit task. This lwt descriptor
is the only element of the lwt list at the moment, meaning that the list’s head
pointer (1wt_list) references this descriptor.

When a primary thread encounters a parallel construct yielding another seri-
alized region R3 while executing region R2, it starts executing runtime code
responsible for assembling a new serialized parallel region. The thread allocates
a new lwt descriptor (bottommost in the Fig. 1b) for storing the OMPT infor-
mation associated with region R2 and its implicit task. As Fig. 1b depicts, the
thread sets the lwt’s ptr to 0, meaning that consensus is not achieved yet. Simi-
larly, this thread marks the ptr pointers of the current team and task descriptors
by setting their least significant bits to 1 to announce that the information about
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Fig. 1. Migrating data from the current team and task descriptors to a newly allocated
Iwt descriptor while creating a nested serialized region. OMPT descriptors belonging
to the current team, task and lwt descriptors are numbered with the corresponding
index in the pair (1 or 2). A slash over a pointer indicates the pointer has been marked
by setting its least significant bit to 1. Shaded fields do not contain information of
interest. (Color figure online)

the R2 region and its implicit task will be moved shortly after. Suppose a tool
receives a sample at this moment. In that case, the signal handler invokes the
introspection routine to inspect the information about R2 and its implicit task.
The routine masks team and task ptr pointers by removing marks and reads
the contents of the addresses referenced by masked pointers.

Afterward, the primary thread sets the new Iwt’s parent pointer to refer-
ence the lwt_list head pointer, marks the address of the lwt, and updates the
lwt_list pointer with the marked address. As a result, the Iwt is inserted at the
end of the lwt list. The updated marked 1lwt_list head pointer indicates that
the process of copying OMPT information requiring wait-free coordination is in
progress, meaning that the introspection routine is responsible for finishing it if
called from the signal handler.
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As Fig. 1c depicts, the primary thread copies the OMPT information associ-
ated with region R2 and its implicit task from the locations indicated by the ptr
pointers of the team and task descriptors to the first OMPT descriptor of the
pair belonging to the recently allocated lwt. Subsequently, the thread tries to
atomically update the value of the lwt’s ptr with the address of the previously
updated OMPT descriptor by using compare-and-swap. As shown in Fig. lc,
the primary thread decides that the first OMPT descriptor of the pair contains
valid information associated with R2 and its implicit task. Otherwise, suppose a
tool receives a sample before the primary thread updates the lwt’s ptr. In that
case, the introspection routine invoked by the tool’s signal handler and executed
by the same primary thread decides that the second OMPT descriptor of lwt’s
pair contains the valid information, and the compare-and-swap executed by the
runtime fails.

Afterward, the primary thread tries to reuse the current team and task
descriptors depicted on the left in Fig. 1d for storing the information associated
with the new R3 region and corresponding implicit task. To do so, it initializes
the content of the first OMPT descriptors of team and task descriptor pairs
(solid red and dark grey, respectively) to store the desired OMPT information.
Subsequently, it tries to update the values of the corresponding ptr pointers to
reference the initialized OMPT descriptors using compare-and-swap. As in the
case of copying the OMPT information about the R2 and its task to the lwt
descriptor, the update succeeds if no call to the introspection routine by a tool’s
signal handler interrupts the runtime execution. Otherwise, the first call to an
introspection routine finishes the update by deciding that the second OMPT
descriptor of the team (task) descriptor’s pair contains the valid information
about the region R2 (R2’s implicit task). Finally, the primary thread clears the
mark bit of lwt_1list, indicating that the preparation of the new serialized par-
allel region R3 is complete.

If an introspection routine sees that lwt_list is marked, it recognizes that
the runtime is in the process of updating and initializing OMPT information
about the two innermost serialized parallel regions (and associated tasks). The
introspection routine finishes the update. Since the primary thread executes the
introspection routine atomically with respect to the runtime code, the introspec-
tion routine need not use compare-and-swap to update the ptr pointers shared
with the runtime. The introspection routine examines whether the lwt’s ptr is
equal 0 to observe if the runtime finished moving OMPT information from the
current team and task descriptors to the lwt. Similarly, it examines if the ptr
pointers of team and task descriptors are marked, meaning the runtime still has
not reused the team and task descriptors for storing OMPT information about
the innermost parallel region and its task. The introspection routine uses the
second OMPT descriptors of the pairs that belong to the team, task, and lwt
descriptors while moving and initializing OMPT information associated with
the innermost serialized regions. After finishing the process of migrating the
OMPT information for these regions, the introspection routine provides OMPT
information about all active parallel regions and tasks to the tool.
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5 Evaluation

This section evaluates four standard-compliant versions of the LLVM OpenMP
runtime. The versions differ in how they implement nested serialized parallel
regions and support OMPT introspection. Consider how they handle a program
executing serialized parallel region Ry that enters another nested serialized par-
allel region R,.

— The U version uses a lightweight implementation of serialized parallel regions
for speed but lacks special support for introspection consistency. This version
is basically upstream LLVM OpenMP? adjusted to not provide incorrect infor-
mation about enclosing serialized parallel regions during creation of an inner
region. As a result, it may report that information about R; is Unavailable
while R is being created.

— The W version, described in the previous section, uses a lightweight imple-
mentation of serialized parallel regions and supports introspection consistency
by using Wait-free coordination between the LLVM OpenMP runtime and its
OMPT introspection routines.

— The F version is modified from the U version to implement serialized parallel
regions using Full team descriptors. With our changes to avoid mismatched
team and task information for parallel regions described in the Sect. 3, this
version supports introspection consistency.

— The B version provides introspection consistency by Blocking all signals dur-
ing the creation/destruction of a nested serialized region, preventing intro-
spection while state is inconsistent. We modified the U version to block
signals using the Linux sigprocmask routine while a serialized region is
created /destroyed.

We compared the performance of the runtime versions on a system with one
Intel Xeon Phi 7250 processor with 68 4-way SMT cores with 115 GB of DRAM
running CentOS Linux 7.2.1511. The system was chosen principally because of its
availability for isolated experiments. To avoid performance variability caused by
different code and data layout in our experiments, we disabled Linux Address
Space Layout Randomization. On the system’s x86_64 processors, we imple-
mented the compare-and-swap used for wait-free coordination in the W run-
time version using the cmpxchg instruction. No lock prefix is necessary since
the compare-and-swap coordinates between the OpenMP runtime and a signal
handler making introspection calls executed by the same thread.

We conducted two groups of experiments. The first group uses one synthetic
microbenchmark, S (Listing1), designed to measure the worst-case overhead
of maintaining nested serialized parallel regions. S contains a serialized paral-
lel region that spawns 16 million trivial nested serialized parallel regions. For
the second group of experiments, we used the SPEC OMP 2012 [9] benchmark
suite. We compiled all runtime implementations U, W, F, and B with Clang

2 Forked from the commit with the hash b552adf8b388a4fbdaa6fb46bdedc83fc738fc2b
on March 11th 2021.
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#pragma omp parallel num_threads(1)
for (int i = 0; i < 16000000; i++)
#pragma omp parallel num_threads (1)
volatile int x = 0;

Listing 1. Microbenchmark S measures the overhead of creating nested serialized
parallel regions.

12.0.0 into four shared libraries in Release mode with -O3 optimization and
OMPT _SUPPORT=on and used them in both groups of experiments.

5.1 Stress Testing of OpenMP Runtime Variants

The first group of experiments represents a stress testing of the runtime imple-
mentations overhead. For this purpose, we compiled S microbenchmark with
Clang 12.0.0 using -O3 optimization and -g to provide line maps for tools. We
created four executables by dynamically linking S to each of the U, W, F| and
B runtime shared libraries. In our experiments, we measured each microbench-
mark 30 times, computing its average execution time and standard deviation.
For more representative results, the 30 runs of each microbenchmark are per-
formed by three processes, each measuring ten runs of the microbenchmark after
a warmup run.

Table 1 presents measurements of the S microbenchmark linked to each of
the U, W, F and B runtime versions under three conditions: (a) with no tool
present, (b) with a trivial OMPT tool that performs no measurement but causes
the runtime maintain OMPT state, and (c) a basic OMPT sampling tool that
periodically interrupts the program and invokes the OMPT ompt_get_task_info
introspection routine to inspect every active parallel region and implicit task.?
We discuss the performance of our microbenchmark under each of these three
conditions to assess the cost of providing introspection consistency. The U vari-
ant, which does not support introspection consistency, serves as the baseline for
the other three runtime implementations.

No Tool. Running a program without a tool is the common case, so high perfor-
mance is important. Table 1(a) compares the cost of executing the S microbench-
mark for serialized parallel regions using each of the U, W, F, and B runtime
variants with no tool present. Overhead for Sy, S, and Sp are relative to Sy .
The W version, which uses a wait-free protocol to provide introspection consis-
tency was 1.49% faster than the U version which does not support introspection
consistency. Our claim here is not that W is inherently faster than U but rather
that they have comparable performance with no tool. Although blocking signals
does not happen when the tool is not attached, introducing calls to sigprocmask
changed the code layout resulting in 7% more overhead. One may not observe

3 HPCToolkit uses ompt_get_task_info to assemble user-level calling contexts for all
OpenMP work.
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Table 1. Performance of benchmark S (Listing 1), which repeatedly executes a trivial
nested serialized parallel region using four runtimes: U may report region information
Unavailable; W uses a Wait-free strategy to implement introspection consistency; F'
implements nested parallelism using Full team descriptors; B may Block signals to
support introspection consistency.

(a) No tool (b) Trivial tool (¢) Sampling Tool
Code Time(s) Ovhd (%) Time(s) Ovhd (%) Time(s) Ovhd (%)
Su 8.9846 £ 0.0006 -110.926 £ 0.004 -110.959 £ 0.001 0.30
Sw | 8.8508 £ 0.0009 -1.49 | 12.477 £ 0.007 14.20 | 12.513 £+ 0.008 0.29
Sr 16.077 £ 0.007 78.94 | 16.241 £+ 0.012 48.65 | 16.280 £ 0.002 0.24
SB 9.656 £ 0.002 7.47 | 43.965 £ 0.056 302.40 | 44.062 £+ 0.024 0.22

this cost on other machines with more cache per core. In contrast, F, which
always allocates and initializes full team descriptors, is almost 80% slower than
the others. This shows that the complexity of W’s wait-free coordination needed
for introspection consistency with optimized serialized parallel regions is a good
alternative to F’s simpler protocol based on full region descriptors.

Trivial Tool. We developed a simple tool that uses the ompt_start_tool func-
tion, an initializer, and a finalizer to inform the runtime that a tool is present,
but that’s all; it doesn’t use register for OMPT callbacks or enable sampling.
Table 1(b) compares the cost of executing the S microbenchmark for serialized
parallel regions using each of the U, W, F, and B runtime variants with a trivial
tool, calculating overhead relative to Sy. Compared with the no tool version
in column (a), Sy with a tool, which must maintain lwt descriptors, is 21.6%
slower. On top of that, the wait-free coordination in the W version adds a 14.2%
overhead. This shows that the cost of maintaining the Iwt descriptors with a
wait-free protocol is about 2/3 more costly than introducing lwt descriptors in
the first place. The F version, which does not maintain lwt descriptors, has an
overhead of almost 49%, which is more than 3x- higher than the overhead of
the W version. Again, W delivers introspection consistency much cheaper than
F, which maintains full descriptors for nested serialized regions. Furthermore,
blocking signals while profiling short nested parallel regions is extremely costly.
Namely, the B version is almost 3.5x- slower than the W version, meaning that
providing introspection consistency using wait-free coordination is suitable for
short nested parallel regions.

Sampling Tool. To assess the performance of nested serialized parallel regions
for the four runtime variants while being observed with a sampling-based OMPT
tool, we developed a simple proxy tool for benchmarking. We extended the trivial
tool from the previous experiments with a simple signal handler and configured
each thread to receive 200 samples per second from a Linux CPUTIME timer.
The signal handler calls ompt_get_task_info for each available enclosing parallel
and task region. Unlike the previous experiments in Table 1(a) and Table 1(b),
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for the sampling-based measurements in Table 1(c), we calculate the overhead
of sampling for each code relative to the trivial tool times in Table 1(b). Each
of the runtime versions have similar overhead from sampling, even though for
the W version, invoking ompt_get_task_info might require additional work to
finish assembly of a nested serialized parallel region that was in progress when
the runtime was interrupted. Less than 10% of the asynchronous samples were
received while the runtime was executing the code that requires wait-free syn-
chronization between the runtime and the introspection routine invoked from a
signal handler, which explains why the difference in time between Table 1(b) and
Table 1(c) is similar for the U and W versions.

5.2 OpenMP Runtime Performance in Real-World Scenarios

To test the performance of U, W, F, and B runtime implementations in real-
world scenarios, we used the SPEC OMP 2012 benchmark suite [9]. We created
a configuration file for each runtime shared library to be used by the runspec [9]
running tool. All configuration files specify the usage of intel compilers icc/icpe
and ifort (version 16.0.3) with -O3 optimization for compiling C/C++ and For-
tran benchmarks, respectively. We observed that thread binding sometimes slows
a benchmark’s execution, so we disabled it by setting OMP_PROC_BIND to false. We
supply the configuration files to runspec. By default, runspec runs each bench-
mark three times with the reference workload with no profiling tool attached,
meaning OMPT support is compiled but not used. Runspec finds each bench-
mark’s median run time and divides it by the reference system’s run time to
calculate the normalized ratio. Finally, runspec calculates the geometric mean
of all fourteen benchmark normalized ratios.

For brevity, Table 2 provides only the geometric mean of normalized ratios
for each runspec invocation supplied with configuration files corresponding to
the U, W, F, and B, respectively. The W runtime version employing wait-free
coordination shows a negligible drop in performance compared to the others. We
observed an overhead of about 3% when running the 376-tree benchmark, which
spawns many recursive explicit tasks. Measurements using Linux perf showed
that W causes more branch and instruction cache misses than U. Although
the code we introduced for the wait-free coordination protocol is not executed
when creating explicit tasks, it changes the code and data layout, which has a
surprising effect on the cache performance on the Xeon Phi.

The W implementation outperforms the F and B versions while providing
introspection consistency for short nested serialized parallel regions. However,
the results presented in Table2 show that nested serialized parallel regions are
not widespread in real-world applications.

6 Related Work

The OMPT interface has been widely adopted by open-source performance tools
including Caliper [4], HPCToolkit [12], Tau [11], and Score-P [8] as well as data
race detection tools such as ARCHER [2], ROMP [6], and SWORD |[3].
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Table 2. The final measurements reports of SPEC OMP 2012 benchmark suite run
four times with each of the U, W, F, and B runtime implementation. One run of suite
assumes running all 14 benchmarks link to the same runtime version, determining the
median run time, dividing it by the reference time to calculate normalized ratio, and
calculating the geometric mean of all 14 ratios.

Runtime | Geomean
SPECy 4.23
SPECw 4.22
SPECF 4.23
SPECE 4.23

With the exception of Tau and HPCToolkit, which support asynchronous
sampling, the remainder of these tools use OMPT callbacks and synchronous
calls to introspection routines. Only tools that monitor OpenMP programs with
asynchronous sampling are affected when OpenMP implementations lack sup-
port for introspection consistency.

7 Conclusions

An OpenMP implementation that supports introspection consistency for parallel
and task regions is necessary for sampling-based performance tools to provide
accurate information about nested regions. We have described strategies for sup-
porting introspection consistency, including how to coordinate entry to regular
parallel regions and a wait-free coordination protocol for nested serialized par-
allel regions, which efficiently handles a corner case that was an impediment to
introspection consistency.

Our experiments with the microbenchmark that stresses the runtime imple-
mentation to its limits have shown that the cost of providing introspection
consistency is negligible without a tool. When sampling is enabled, our wait-
free implementation of optimized serialized parallel regions delivers introspec-
tion consistency at a significantly lower cost than allocating and initializing full
region team descriptors or blocking signals to provide introspection consistency.
We found that the runtime overhead for providing introspection consistency
in a representative set of HPC benchmarks is negligible. The drawback of our
approach is the complexity introduced to handle a corner case not commonly
encountered in OpenMP applications. This might encourage runtime develop-
ers to prefer an alternative strategy such as blocking signals while entering or
leaving a nested serialized parallel region.
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In our view, the benefit of introspection consistency for tools greatly out-
weighs its cost. As a result, we believe that the next OpenMP standard should
specify that OpenMP implementations and their OMPT introspection routines
must support introspection consistency to be standard-conforming. It is worth
noting that the OpenMP Debugging API [10] also needs introspection consis-
tency. Since one can interrupt a program execution at any time in a debugger,
the OMPD interface would benefit from being able to determine the nesting of
parallel and task regions at arbitrary points in time using mechanisms described
in this paper.

Although we developed a wait-free coordination protocol to solve a problem
specific to the LLVM OpenMP runtime implementation, our approach is more
broadly applicable. Namely, whenever a program manipulates data that a signal
handler can inspect and change at any time, our wait-free coordination approach
handles the data race between the runtime and a signal handler.
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