
Sim-to-Real Neural Learning
with Domain Randomisation
for Humanoid Robot Grasping

Connor Gäde(B), Matthias Kerzel, Erik Strahl, and Stefan Wermter

Knowledge Technology, Department of Informatics, University of Hamburg,
Vogt-Koelln-Street 30, 22527 Hamburg, Germany

{connor.gaede,matthias.kerzel,erik.strahl,stefan.wermter}@uni-hamburg.de
http://www.knowledge-technology.info

Abstract. Collecting large amounts of training data with a real robot
to learn visuomotor abilities is time-consuming and limited by expensive
robotic hardware. Simulators provide a safe, distributable way to collect
data, but due to discrepancies between simulation and reality, learned
strategies often do not transfer to the real world. This paper examines
whether domain randomisation can increase the real-world performance
of a model trained entirely in simulation without additional fine-tuning.
We replicate a reach-to-grasp experiment with the NICO humanoid robot
in simulation and develop a method to autonomously create training data
for a supervised learning approach with an end-to-end convolutional neu-
ral architecture. We compare model performance and real-world transfer-
ability for different amounts of data and randomisation conditions. Our
results show that domain randomisation improves the transferability of
a model and can mitigate negative effects of overfitting.

Keywords: Sim-to-real transfer · Domain randomisation · Humanoid
robot grasping · Deep learning

1 Introduction

A humanoid robot assisting humans in a complex environment needs a set of
visuomotor abilities, such as grasping, to properly manipulate and interact with
its surroundings. Learning these skills requires the collection of large amounts
of training data. Collecting data with a real robot is time-consuming and can
wear out or damage the expensive hardware [10,13]. Parallelising this process to
speed it up requires multiple copies of the same robot [10]. Therefore, it is often
beneficial to use a simulator, which allows for easy distribution and avoids safety

The authors gratefully acknowledge support from the German Research Foundation
DFG for the projects CML TRR169, LeCAREbot and IDEAS.

The original version of this chapter was revised: this chapter was previously published
non-open access. The correction to this chapter is available at
https://doi.org/10.1007/978-3-031-15919-0 63

c© The Author(s) 2022, corrected publication 2023
E. Pimenidis et al. (Eds.): ICANN 2022, LNCS 13529, pp. 342–354, 2022.
https://doi.org/10.1007/978-3-031-15919-0 29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15919-0_29&domain=pdf
https://doi.org/10.1007/978-3-031-15919-0_63
https://doi.org/10.1007/978-3-031-15919-0_29

Sim-to-Real Neural Learning for Humanoid Robot Grasping 343

concerns. However, simulated environments are not a fully accurate representa-
tion of the real robot and its environment, often making additional fine-tuning
necessary to transfer a policy to the real world [1]. A way to reduce this reality
gap is domain randomisation [14]. By altering aspects of the simulation such as
dynamics and visual features, learned strategies become more robust to changes
in the environment, allowing an easier transfer to the real world.

We examine how domain randomisation affects the transferability of a grasp-
ing approach from simulation to a real-world setup. We develop a simulated
approach to autonomously generate data for end-to-end training of a deep con-
volutional architecture, replicating a real-world reach-to-grasp experiment [7]
with the NICO (Neuro-Inspired COmpanion) humanoid robot [6], and create
three datasets with varying degrees of randomisation which we compare to a
real-world dataset. First, we test whether our simulated data is suitable to solve
the task. We show that models trained with our simulated data can reach a tar-
get object with similar accuracy in simulation as a model trained with real data
could in the real world. We then evaluate whether a model trained on simulated
data can solve the task in the real world and if domain randomisation affects it.
For this, we compare the performance of models trained on canonical simulation
data to ones trained with either randomised colours or camera angles when eval-
uated with real-world data. Our randomised samples reach a better real-world
performance than the unaltered ones. We discover that an increasing amount
of canonical training data leads to overfitting, which hurts the transferability of
the model. Domain randomisation can mitigate this effect.

2 Related Work

2.1 Robot Grasping

Developing robotic grasping and manipulation agents is an important challenge
in research [9]. Many approaches are trying to solve this task. Pinto and Gupta
[13] developed a multistage learning algorithm to train a Convolutional Neural
Network (CNN) to predict the probability of a grasp at a given position and
angle. Each resulting model was used to collect additional data for subsequent
training iterations. Levine et al. [10] used a CNN architecture to predict the
likelihood of a given image and motion to produce a successful grasp. The robot
could then choose the path with the highest predicted probability. In the method
proposed by Kerzel and Wermter [7], a CNN is used to predict the motor posi-
tions to reach an object in a given image. A NICO robot produced training data
autonomously by placing an object on a table and recording the motor values of
the arm as well as an image of the object. Our work expands this approach by
Kerzel and Wermter by replicating their experiment in a simulated environment
and evaluating its transferability to the real world.

2.2 Domain Randomisation for Physical Manipulation

Domain randomisation has been shown to improve the transferability of physical
manipulation tasks. James et al. [3] produced training data in simulation by

344 C. Gäde et al.

calculating a set of trajectories with inverse kinematics to have a robotic arm
pick up a cube and put it into a basket. Images of the scene and motor velocities
were recorded to train a neural model to predict velocities from images. They
showed that by randomising colours, textures, light sources, and object sizes
as well as introducing additional clutter, they could significantly improve the
performance of the transferred model in the real environment. Similarly, Matas
et al. [11] utilised domain randomisation to train a set of cloth manipulation
tasks entirely on a simulated robotic arm and transfer it to a real-world setup.
They altered textures, lighting, and camera orientation as well as the location
and size of objects and starting position of the arm. These results show, that
domain randomisation can greatly increase the transferability of a model.

3 Approach

(a) real

(b) simulation

Fig. 1. Real and simulated NICO
robot seated at a table with the
target object on top.

To analyse the real-world applicability of a
strategy learned in simulation, we recreate
a reach-to-grasp experiment with the NICO
humanoid robot in a simulated environment.
We develop an approach to autonomously col-
lect training data with a simulated NICO
robot placing the target object at random
positions on a table, which we use to cre-
ate three datasets. One of them serves as a
canonical baseline, without domain randomi-
sation, while the others have either the colours
or the camera angle altered for each image.
As a real-world comparison and test of trans-
ferability, we use a fourth dataset, collected
with a physical NICO robot. We implement a
deep convolutional architecture and optimise
its hyperparameters for each dataset under
the same conditions to ensure comparabil-
ity. The resulting models are first evaluated
within their domain to see how the simulated
and real data compare to each other. We then
evaluate the sim-to-real transfer through their
performance on our real-world data.

3.1 Experimental Setup

We examine the same reach-to-grasp task as presented by Kerzel and Wermter
[7]. A NICO humanoid robot has to grab a cylindrical object that is randomly
placed on the table in front of it by performing a side grasp with its left arm.
We also use a NICO humanoid robot in our experiments. Both of its arms offer
four degrees of freedom to control the shoulder and elbow angles. Each arm also

Sim-to-Real Neural Learning for Humanoid Robot Grasping 345

has a three-fingered SeedRobotics RH4D hand attached with two wrist motors
to adjust the hand’s rotation as well as another two actuators to open and close
the fingers. The head of the robot can be positioned with another two motors
and contains two cameras within its eye sockets.

We replicate the experimental setup within the CoppeliaSim simulator1 with
a simulated NICO robot (see Fig. 1). Both the environment and the robot are
controlled using the PyRep [4] library, which allows manipulation of the simu-
lation with the Python programming language. The free, open-source software
API2 of the NICO robot provides an integrated PyRep mode, which allows for
the same controls as the real robot.

3.2 Dataset Recording

(a) real

(b) simulation

Fig. 2. Sample image taken
with the right eye camera of
a real and a simulated NICO
robot.

With our simulated setup, we generate three
datasets of 2000 samples each. One set main-
tains a canonical visual representation for all tri-
als, whereas the others are randomised for each
sample. The canonical images serve as a baseline
to analyse the benefits of domain randomisation.
Additionally, we use a fourth dataset consisting of
1100 samples collected with the real NICO robot.
The purpose of this set is to test the transferability
of our approach. Each sample consists of an image
of the target object from the robot’s perspective
(see Fig. 2), as well as the associated angles of each
of the six motors of the left arm.

The real-world dataset was collected with the
same method as proposed by Kerzel and Wermter
[7]. Grasping can be viewed as the inversion of
putting an object onto the table. Accordingly,
training samples are produced by the robot plac-
ing the target object at a random position on
the table and memorizing the motor angles of the
arm which were used to reach that position. After
removing the arm, a picture of the target object
on the table is taken with the robot’s eye cam-
eras. The object is then moved to a new location to repeat the process. An
experimenter initially demonstrates reachable positions to the robot by manu-
ally moving its arm over the table. The robot memorises the motor angles, which
it then randomly reproduces to generate training data autonomously.

In our simulated approach, rather than demonstrating valid poses to the
robot, we define ranges for each actuator to randomly generate motor configu-
rations, such that −75.38◦ ≤ l shoulder z ≤ −9.45◦, −39.69◦ ≤ l shoulder y ≤
1 https://coppeliarobotics.com/.
2 https://github.com/knowledgetechnologyuhh/NICO-software.

https://coppeliarobotics.com/
https://github.com/knowledgetechnologyuhh/NICO-software

346 C. Gäde et al.

(a) ε = 0 (b) ε = 15◦ (c) ε = 30◦ (d) ε > 45◦

Fig. 3. Increasing hand orientation difference ε between the baseline (a) and the respec-
tive pose. Poses with ε > 45◦ are rejected as the hand is rotated too much (d).

20.35◦, −3.91◦ ≤ l arm x ≤ 36.79◦, 35.30◦ ≤ l elbow y ≤ 102.90◦, 0.0◦ ≤
l wrist z ≤ 22.44◦ and −50.0◦ ≤ l wrist x ≤ −8.84◦. These limits were obtained
from the minimum and maximum values recorded on the real robot.

Additionally, we ensure with a set of constraints that the generated motor val-
ues result in a valid side grasping pose. Before executing a pose, we calculate its
forward kinematics with the kinematic model provided by gaikpy [5] to obtain
the position and orientation of the hand. First, we define positional bound-
aries around the size of an A4 sheet of paper, such that 0.2037 ≤ x ≤ 0.4231,
−0.2060 ≤ y ≤ 0.1454 and 0.5773 ≤ z ≤ 0.6674, to ensure that the hand is
within the target area on the table at the correct height to grasp the object.
After that, we confirm whether the orientation approximates a valid side grasp.
For this, we define a baseline pose in which the arm is forming an L-shape and
the palm faces right towards the centre of the table (see Fig. 3a). Only poses
with a total angle difference of less than 45◦ between their end-effector orienta-
tion and our baseline are accepted. This angle is calculated between the rotation
axes of the quaternion representation of both orientations. Thus, it measures
the combined rotation along all three dimensions. As depicted in Fig. 3, the con-
straint is chosen such that it still accepts side grasps towards the right side of
the robot, while poses with a strongly rotated hand are rejected.

Once these constraints are met, the simulated robot executes the pose. Rather
than physically moving the object across the table, it is directly placed at the
final location of the hand. The angles of the arm motor are then saved, and the
robot returns to its default pose, leaving the object in the robot’s view to take
an image with its simulated eye cameras.

3.3 Domain Randomisation

To increase robustness and allow transferability to the real world, we randomise
visual features of the scene for two of our simulated datasets. Due to changing
lighting conditions in a real environment, the colours in the simulation do not
match perfectly. This difference could provide difficulties for a trained model.
Randomising the colours of the scene should make the resulting model more
robust to changes in colour and lighting. Therefore, in our first randomised

Sim-to-Real Neural Learning for Humanoid Robot Grasping 347

(a) randomised colours

(b) randomised camera angles

Fig. 4. Sample images from our randomised colour and camera angle datasets

dataset, we alter the colours of the chair and table elements, the target object,
and the floor for each recorded sample (see Fig. 4a). Colours within CoppeliaSim
are defined as an [r, g, b] triple, with each value having a range of [0, 1]. We ran-
domise these colours by sampling each channel from a normal distribution with
a mean corresponding to the canonical colour values and a standard deviation
of 0.1.

As the robot is not completely fixed to the table and the head angle is
influenced by its motion, the position of the camera and thus the distortion
of the image does not align perfectly between simulation and real setup. By
changing the angle of the camera for each sample, the model predictions should
be less dependent on the accurate camera perspective and more on the position
of the object relative to the table. Previous works have shown that randomisation
of the camera position was crucial to successfully transfer a task into the real
world [3,11]. Therefore, in the second randomised dataset, we alter the angles of
head motors and thus the camera angle for each recorded sample (see Fig. 4b).
By default, our data collection positions the head y motor, which rotates around
the y-axis (pitch), at 55◦ and leaves the head z motor, which rotates around the
z-axis (yaw), at 0◦ before taking an image. Our randomisation instead chooses
a pitch between 40◦ and 60◦ and a yaw of up to 10◦ in either direction.

3.4 Network Architecture

We use a Convolutional Neural Network to predict motor positions for a given
image (see Fig. 5), similar to the one proposed by Kerzel and Wermter [7]. Our
models are implemented using the Pytorch library [12]. As input, the model is
given an 80 × 60 RBG image, which was downsampled from a 320 × 240 crop
of the original sample image. Our output layer consists of 6 units to predict the
motor configuration for a given image. The hidden layers are comprised of two

348 C. Gäde et al.

Fig. 5. Optimised model architecture for the canonical dataset

convolutional layers with rectified linear activation and a 3×3 kernel, followed by
two dense layers with hyperbolic tangent activation. To determine the number of
convolutional channels and linear units, as well as training epochs, we conduct a
hyperparameter optimisation for each dataset using Hyperopt [2] (see Sect. 4.2).
Each model is trained using mean squared error as our loss function and the
Adam optimiser [8] with a default learning rate of 0.001 as well as an additional
L2 penalty of 0.001 to prevent overfitting.

4 Experiments and Results

First, we optimise the hyperparameters of our deep convolutional architecture
for each of our datasets and evaluate them separately. The canonical set serves
as a baseline to observe if either of our randomisations affects the performance.
Additionally, we analyse the influence of the dataset size on the performance.
To evaluate the transferability of our models, we train each architecture with its
respective dataset while using the real-world data as a test set.

4.1 Metrics

To determine the capabilities of our trained models, we define some additional
metrics. We measure the distance between the prediction and the target object,
by computing the forward kinematics of both the predicted and target motor
configuration and calculating the Euclidean distance between the respective end-
effector positions. Additionally, we verify whether our models generate valid
side grasping poses by utilising the same constraints we defined for our data
generation (see Sect. 3.2). We calculate the percentage of test cases where the
predicted pose is within the height boundaries and deviates less than a total of
45◦ in orientation from our baseline pose.

4.2 Hyperparameter Optimisation

We conduct a hyperparameter optimisation of 100 trials for each model, choosing
epochs in {10 · n ∈ N | n ≤ 12}, convolutional filters in {2n, n ∈ N | 3 ≤ n ≤ 7}
for the first and n ≤ 6 for the second layer, as well as {2n, n ∈ N | 6 ≤ n ≤ 9}
units for both dense layers. The models are evaluated on 1000 samples of the

Sim-to-Real Neural Learning for Humanoid Robot Grasping 349

respective dataset with 5-fold cross-validation. The best model configurations
and their respective test loss are listed in Table 1.

Table 1. Final model parameters and test performance for each examined dataset

Data Conv Dense Epochs Loss (μ ± σ)

Canonical 8 16 64 512 110 7.3940 × 10−4 ± 6.0177 × 10−5

Randomised colour 64 32 64 256 110 7.1711 × 10−4 ± 5.2067 × 10−5

Randomised angles 8 8 64 512 100 8.8976 × 10−4 ± 5.7630 × 10−5

Real 128 32 128 128 90 5.2640 × 10−4 ± 7.8630 × 10−5

Notably, the architectures for the canonical and randomised-angle dataset
feature a minimal number of convolutional filters, with 8 on the first as well as
16 and 8 on the second layer, whereas the randomised-colour and real dataset
feature 64 and 128 filters on the first and 32 on the second layer. This could
reflect the higher visual complexity of the latter two sets. For the dense units,
the simulated datasets result in similar architectures with 64 units on the first
and 512 on the second layer for the canonical and randomised-angle datasets or
256 for the colour dataset. The real-world dataset differs from this with 128 units
on both layers. The number of epochs is also similar, with 110 for the canonical
and colour datasets, 100 for randomised angles, and 90 for the real data.

4.3 Dataset Performance

Before analysing the transferability of our datasets, we establish how they per-
form on their own. We train each optimised architecture with the full 2000
samples of the respective dataset for the number of epochs determined by our
hyperparameter optimisation and evaluate them with 5-fold cross-validation.
We analyse the influence of the dataset size by training reduced versions of the
canonical dataset with 500 and 1000 samples in the same manner. To maintain
consistency throughout all of our datasets, we apply our orientational constraint
of 45◦ (see Sect. 3.2) to the real-world data, reducing it to 1073 samples.

Table 2. Test loss and percentage of valid generated poses for each examined dataset

Dataset # Samples Loss (μ ± σ) Valid poses (μ ± σ)

Canonical 500 7.7718 × 10−4 ± 9.3450 × 10−5 100.0% ± 0.00

1000 8.2458 × 10−4 ± 1.7685 × 10−4 96.4% ± 7.20

2000 7.6861 × 10−4 ± 1.0146 × 10−4 100.0% ± 0.00

Colours 2000 1.2258 × 10−3 ± 2.7900 × 10−4 100.0% ± 0.00

Angles 2000 1.0962 × 10−3 ± 2.5002 × 10−4 93.8% ± 8.23

Real 1073 5.5526 × 10−4 ± 4.3983 × 10−5 100.0% ± 0.00

350 C. Gäde et al.

Fig. 6. Mean distance error after evaluating each dataset with 5-fold cross-validation
(a) and a selection of actual and predicted positions for the best-performing model (b)

Table 2 shows the training results for all examined datasets. The model
trained on real-world samples reaches the best overall performance, with an
average loss of 5.5526 × 10−4. The results of our simulated datasets span from
7.6861 × 10−4 loss for the full canonical dataset, to 1.2258 × 10−3 for the
randomised-colour set. Our full canonical dataset, as well as its subset of 500 sam-
ples, both perform slightly better than their 1000-sample counterpart, although
still within each other’s standard deviations, with the full dataset achieving the
better score but also a higher standard deviation than the smaller subset. The
randomised datasets achieve the worst performances. However, as indicated by
the higher standard deviations, their best models are closer to the canonical
ones. This difference could be due to the higher difficulty of learning more ran-
domised data. Yet, during hyperparameter optimisation, the randomised-colour
data performed better than the other simulated datasets.

All models generate valid poses as defined in Sect. 4.1 for more than 90% of
their test cases. Most architectures achieve 100%, barring the ones trained on
1000 canonical samples and randomised camera angles (see Table 2).

By looking at the average distance between the target object and end-effector
position, as depicted in Fig. 6a, we can see that the loss does not fully represent
the ability to reach the target. As the reached position depends on the combina-
tion of all angles, the errors of different motors seem to be able to compensate
for each other. All models trained with canonical data reach the object at a
closer average distance than the real robot. The smallest subset reaches the tar-
get pose around 5 mm closer at 5.68 cm than the real data with 6.19 cm. An
increase of samples improves this to 5.59 cm for the 1000 sample subset and 5.21
cm for the full set, though they are also more inconsistent between the different
runs at 11.2 mm, 14.1 mm, and 12.3 mm standard deviation respectively. The
randomised sets perform about 1 cm worse than the real-world samples with an
average distance of 7.35 cm for randomised colours and 7.45 cm for angles, but
also have a higher standard deviation of 13.1 mm and 8.5 mm respectively.

Sim-to-Real Neural Learning for Humanoid Robot Grasping 351

The distance error is not evenly distributed across the samples. As seen
in Fig. 6b, all predictions gravitate towards the centre of the workspace. For
targets closer to the edge of the reachable space, the inaccuracy of the prediction
increases. One explanation for this could be that the edges of the reachable space
contain fewer samples than the centre. This would coincide with the findings by
Kerzel et al. [5] who showed that predictions on the fringes of a workspace
converge towards its centre unless the data is sampled from a larger area.

While neither of the models are accurate enough to reliably grasp the target
object throughout the entire workspace, we can see that our simulated data can
reach similar or better results than the real-world data.

4.4 Sim-to-Real Transfer

After confirming that our simulated datasets can produce models with com-
parable performance to the real-world data, we analyse how well their success
transfers into the real-world application. We train each optimised architecture
on the full 2000 samples of the respective simulated dataset for the optimised
number of epochs while using our 1073 real-world samples as test set. Each
model is evaluated five times to account for deviations between individual runs.
As in Sect. 4.3, we also examine reduced subsets at 500 and 1000 samples of our
datasets to analyse the influence of the amount of data on the result.

Table 3. Test loss and percentage of valid generated side grasping poses for each
examined dataset when tested on real-world data.

Dataset # Samples Loss (μ ± σ) Valid poses (μ ± σ)

Canonical 500 2.6830× 10−3 ± 2.7898× 10−4 91.50% ± 10.16

1000 3.6398 × 10−3 ± 1.1927 × 10−3 50.93% ± 32.72

2000 8.6718 × 10−3 ± 9.7359 × 10−3 59.81% ± 37.95

Colours 500 2.1284× 10−3 ± 2.3500× 10−4 100.00% ± 0.00

1000 2.6896 × 10−3 ± 2.9349 × 10−4 94.63% ± 10.74

2000 3.0234 × 10−3 ± 1.6071 × 10−3 87.42% ± 25.14

Angles 500 2.2035× 10−3 ± 2.1958× 10−4 100.00% ± 0.00

1000 2.6528 × 10−3 ± 1.8045 × 10−4 92.59% ± 10.89

2000 2.5690 × 10−3 ± 2.7915 × 10−4 100.00% ± 0.00

Real 1073 5.5526× 10−4 ± 4.3983× 10−5 100.00% ± 0.00

Table 3 shows that the test losses of our models increase by an order of
magnitude for most datasets when evaluated on real-world data. Our smallest
subset of canonical data reaches an average loss of 2.6830× 10−3. Increasing the
amount of data seems to negatively affect the transferability of the model, as
the average loss increases with larger datasets up to 8.6718 × 10−3 for the full
canonical set. The standard deviation also becomes incrementally worse. This

352 C. Gäde et al.

could be caused by the model overfitting on aspects specific to the simulation
which it does not discover when trained with fewer, less redundant samples.
Domain randomisation seems to mitigate this effect. Our randomised datasets
achieve similar or better results as the small canonical dataset between 2.1284×
10−3 and 2.6896×10−3, barring the full colour set, which performs slightly worse
due to an outlier, as indicated by the higher standard deviation.

The rate of valid generated poses seems to support our overfitting hypothesis.
While the smallest subset of 500 canonical samples reaches 91.50%, the bigger
datasets only generate an average of less than 60% valid grasp poses for the real-
world test samples. The full randomised-colour dataset performs slightly worse
than the smallest canonical subset with 87.42% valid poses, whereas the other
randomised sets outperform it, with the three best ones reaching 100%.

Fig. 7. Mean distance between the real-
world target and the predicted hand posi-
tion for each model. Each dataset was eval-
uated five times.

A similar pattern emerges in the
resulting distances between the end-
effector of generated poses and the
target position. Models trained on
the smallest subset of canonical data
reach a mean distance of 12.54 cm,
further than 6 cm away from the tar-
get than within its own domain or
the model trained on the real dataset
at 6.19 cm. The distance increases to
17.34 cm ± 4.96 cm with 1000 sam-
ples and 21.91 cm ± 13.24 cm for 2000
samples. Models trained on our full
randomised-colour dataset achieve a similar result to the small canonical subset,
approaching the target at an average 12.60 cm with a higher standard deviation
of 5.5 cm, whereas the other randomised sets reach better performances, coming
as close as 9.84 cm average distance for the smallest colour subset.

Overall, our randomised datasets show a higher transferability than the
canonical data. Larger amounts of canonical data result in lower performance
due to overfitting, whereas domain randomisation mitigates this effect.

5 Conclusion

We explored the effects of domain randomisation on the transferability of a
robotic reach-to-grasp task trained entirely in simulation without additional fine-
tuning. Our approach recreated a real-world experiment conducted by Kerzel and
Wermter [7] with the NICO robot in a simulated environment. We developed
a data collection method similar to the real-world approach, which utilised the
advantages of a simulation to create three datasets of 2000 samples each. A fourth
dataset of 1100 samples collected in the same way as the original experiment
served as a real-world comparison. Each sample consisted of an image of the
target object on the table from the robot’s perspective and the angles of the six
motors of the left arm required to reach it.

Sim-to-Real Neural Learning for Humanoid Robot Grasping 353

Our simulated data reached a similar or better performance within simula-
tion than the real-world dataset. However, when evaluating the models trained
on simulated data with real-world samples, the sim-to-real gap becomes apparent
through lower accuracy. Contrary to the general expectation, simply adding more
training data decreased the transferability of the resulting models. We demon-
strated, however, that randomising individual visual features of the simulation
mitigates this loss of transferable behaviour for larger amounts of simulated
training data and improves the real-world performance of a transferred model.

In future work, we could explore randomising multiple features at once and
improve the accuracy of the model to deploy it on a physical robot.

References

1. van Baar, J., Sullivan, A., Cordorel, R., Jha, D., Romeres, D., Nikovski, D.: Sim-
to-real transfer learning using robustified controllers in robotic tasks involving
complex dynamics. In: 2019 International Conference on Robotics and Automation
(ICRA), pp. 6001–6007. IEEE (2019)

2. Bergstra, J., Yamins, D., Cox, D.D., et al.: Hyperopt: a python library for opti-
mizing the hyperparameters of machine learning algorithms. In: Proceedings of the
12th Python in Science Conference, vol. 13, p. 20. Citeseer (2013)

3. James, S., Davison, A.J., Johns, E.: Transferring end-to-end visuomotor control
from simulation to real world for a multi-stage task. In: Conference on Robot
Learning, pp. 334–343. PMLR (2017)

4. James, S., Freese, M., Davison, A.J.: Pyrep: bringing v-rep to deep robot learning.
arXiv preprint arXiv:1906.11176 (2019)

5. Kerzel, M., Spisak, J., Strahl, E., Wermter, S.: Neuro-genetic visuomotor archi-
tecture for robotic grasping. In: Farkaš, I., Masulli, P., Wermter, S. (eds.) ICANN
2020. LNCS, vol. 12397, pp. 533–545. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61616-8 43

6. Kerzel, M., Strahl, E., Magg, S., Navarro-Guerrero, N., Heinrich, S., Wermter,
S.: Nico-neuro-inspired companion: A developmental humanoid robot platform for
multimodal interaction. In: 2017 26th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), pp. 113–120. IEEE (2017)

7. Kerzel, M., Wermter, S.: Neural end-to-end self-learning of visuomotor skills by
environment interaction. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa,
A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 27–34. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68600-4 4

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

9. Kleeberger, K., Bormann, R., Kraus, W., Huber, M.F.: A survey on learning-based
robotic grasping. Curr. Robot. Rep. 1(4), 239–249 (2020). https://doi.org/10.1007/
s43154-020-00021-6

10. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection.
Int. J. Robot. Res. 37(4–5), 421–436 (2018)

11. Matas, J., James, S., Davison, A.J.: Sim-to-real reinforcement learning for
deformable object manipulation. In: Conference on Robot Learning, pp. 734–743.
PMLR (2018)

http://arxiv.org/abs/1906.11176
https://doi.org/10.1007/978-3-030-61616-8_43
https://doi.org/10.1007/978-3-030-61616-8_43
https://doi.org/10.1007/978-3-319-68600-4_4
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s43154-020-00021-6
https://doi.org/10.1007/s43154-020-00021-6

354 C. Gäde et al.

12. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems 32 (2019)

13. Pinto, L., Gupta, A.: Supersizing self-supervision: learning to grasp from 50 k tries
and 700 robot hours. In: 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3406–3413. IEEE (2016)

14. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain
randomization for transferring deep neural networks from simulation to the real
world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 23–30 (2017). https://doi.org/10.1109/IROS.2017.8202133

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/IROS.2017.8202133
http://creativecommons.org/licenses/by/4.0/

	Sim-to-Real Neural Learning with Domain Randomisation for Humanoid Robot Grasping
	1 Introduction
	2 Related Work
	2.1 Robot Grasping
	2.2 Domain Randomisation for Physical Manipulation

	3 Approach
	3.1 Experimental Setup
	3.2 Dataset Recording
	3.3 Domain Randomisation
	3.4 Network Architecture

	4 Experiments and Results
	4.1 Metrics
	4.2 Hyperparameter Optimisation
	4.3 Dataset Performance
	4.4 Sim-to-Real Transfer

	5 Conclusion
	References

