Skip to main content

Carbon Nanostructures for Automotive and Aerospace Applications

  • Living reference work entry
  • First Online:
Handbook of Functionalized Carbon Nanostructures

Abstract

The carbon nanostructures, which exhibited great potential for various applications, have attracted tremendous attention from scientific and technological fields for more than two decades. It is anticipated that the potential applications of these advanced materials, thanks to the desired motivation received from innovation and sustainability, especially in automotive and aerospace applications, will have a major impact on future vehicles. Besides, functional carbon-based nanostructures have been widely exploited as filler materials over the past few years to enhance the efficiency of structural and nonstructural composites, which are utilized in the manufacture of automobiles and aircraft. In this chapter, exhaustive information about the recent applications of carbon nanostructures is presented under such titles covering the body, components, crucial systems, etc., in the automotive and aerospace industry by considering their potential future applications as well. Research trends and innovations in carbon-based nanomaterials utilized in the aforementioned fields with functionalities such as sensing, energy storage, protective coatings, and shielding are examined in terms of their present and future states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Pierson, H.O.: Handbook of Carbon, Graphite, Diamonds and Fullerenes. William Andrew Publishing (1993). https://doi.org/10.1016/B978-0-8155-1339-1.50008-6

    Book  Google Scholar 

  2. Mahmood, T., Ullah, A., Ali, R.: Improved Nanocomposite Materials and Their Applications, n.d.. www.intechopen.com

  3. Birkett, P.R., Avent, A.G., Darwish, A.D., Kroto, H.W., Taylor, R., Walton, D.R.M.: Formation and characterisation of C70Cl10. J. Chem. Soc. Chem. Commun., 683 (1995). https://doi.org/10.1039/c39950000683

  4. Testa, C., Zammataro, A., Pappalardo, A., Trusso Sfrazzetto, G.: Catalysis with carbon nanoparticles. RSC Adv. 9, 27659–27664 (2019). https://doi.org/10.1039/C9RA05689K

    Article  CAS  Google Scholar 

  5. Bhat, A.P., Dhoble, S.J., Rewatkar, K.G.: Medical Applications of Quantum Dots, Graphene Nanotubes and Quantum Dots-Based Nanotechnology: Fundamentals and Applications (2022) 803–836. https://doi.org/10.1016/B978-0-323-85457-3.00014-1

  6. Villarreal, C.C., Pham, T., Ramnani, P., Mulchandani, A.: Carbon allotropes as sensors for environmental monitoring. Curr. Opin. Electrochem. 3, 106–113 (2017). https://doi.org/10.1016/J.COELEC.2017.07.004

    Article  CAS  Google Scholar 

  7. Raza, M.A., Westwood, A., Brown, A., Hondow, N., Stirling, C.: Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications. Carbon N Y. 49, 4269–4279 (2011). https://doi.org/10.1016/J.CARBON.2011.06.002

    Article  CAS  Google Scholar 

  8. Youssry, M., Kamand, F.Z., Magzoub, M.I., Nasser, M.S.: Aqueous dispersions of carbon black and its hybrid with carbon nanofibers. RSC Adv. 8, 32119–32131 (2018). https://doi.org/10.1039/C8RA05446K

    Article  CAS  Google Scholar 

  9. Çeçen, F.: Activated Carbon, Kirk-Othmer Encyclopedia of Chemical Technology. (2014) 1–34. doi:https://doi.org/10.1002/0471238961.0103200902011105.A01.PUB3

  10. Slepičková Kasálková, N., Slepička, P., Švorčík, V.: Carbon nanostructures, nanolayers, and their composites. Nano. 11, 2368 (2021). https://doi.org/10.3390/nano11092368

    Article  CAS  Google Scholar 

  11. Virmani, K., Deepak, C., Sharma, S., Chadha, U., Selvaraj, S.K.: Nanomaterials for automotive outer panel components: a review. Eur. Phys. J. Plus. 136, 921 (2021). https://doi.org/10.1140/epjp/s13360-021-01931-w

    Article  Google Scholar 

  12. Mohite, D.D., Vidyapeeth, B., De, S., Jadhav, V.S., Chaturvedi, V., De, S.: Nanomaterials in automotive applications: a review and its technical aspects. Int. J. Contemp. Archit. 8, 1450–1460 (2021) https://www.researchgate.net/publication/355191341

    Google Scholar 

  13. Natrayan, L., Merneedi, A., Bharathiraja, G., Kaliappan, S., Veeman, D., Murugan, P.: Processing and characterization of carbon nanofibre composites for automotive applications. J. Nanomater. 2021, 1–7 (2021). https://doi.org/10.1155/2021/7323885

    Article  CAS  Google Scholar 

  14. Marinov, S., Vachkov, V., Djermanova, N., Kiss’Ovski, Z.: Carbon nanostructures on capacitor electrodes. J. Phys. Conf. Ser., Institute of Physics Publishing, in (2020). https://doi.org/10.1088/1742-6596/1492/1/012033

    Book  Google Scholar 

  15. Selvaraj, S.K., Ramesh, R., Narendhra, T.M.V., Agarwal, I.N., Chadha, U., Paramasivam, V., Palanisamy, P.: New developments in carbon-based nanomaterials for automotive brake pad applications and future challenges. J. Nanomater. 2021 (2021). https://doi.org/10.1155/2021/6787435

  16. Lake, M.L., Ting, J.-M.: Vapor grown carbon fiber composites. In: Carbon Materials for Advanced Technologies, pp. 139–167. Elsevier (1999). https://doi.org/10.1016/B978-008042683-9/50007-8

    Chapter  Google Scholar 

  17. Gogoi, R., Maurya, A.K., Manik, G.: A review on recent development in carbon fiber reinforced polyolefin composites. Composites Part C: Open Access. 8, 100279 (2022). https://doi.org/10.1016/j.jcomc.2022.100279

    Article  CAS  Google Scholar 

  18. Kumar, A., Sharma, K., Dixit, A.R.: A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett. 31, 149–165 (2021). https://doi.org/10.1007/s42823-020-00161-x

    Article  Google Scholar 

  19. Kotia, A., Chowdary, K., Srivastava, I., Ghosh, S.K., Ali, M.K.A.: Carbon nanomaterials as friction modifiers in automotive engines: recent progress and perspectives. J. Mol. Liq. 310, 113200 (2020). https://doi.org/10.1016/j.molliq.2020.113200

    Article  CAS  Google Scholar 

  20. Ali, M.K.A., Hou, X., Abdelkareem, M.A.A.: Anti-wear properties evaluation of frictional sliding interfaces in automobile engines lubricated by copper/graphene nanolubricants. Friction. 8, 905–916 (2020). https://doi.org/10.1007/s40544-019-0308-0

    Article  CAS  Google Scholar 

  21. Singh, J.P., Singh, S., Nandi, T., Ghosh, S.K.: Development of graphitic lubricant nanoparticles based nanolubricant for automotive applications: thermophysical and tribological properties followed by IC engine performance. Powder Technol. 387, 31–47 (2021). https://doi.org/10.1016/j.powtec.2021.04.010

    Article  CAS  Google Scholar 

  22. Akash, A.R., Pattamatta, A., Das, S.K.: Experimental study of the thermohydraulic performance of water/ethylene glycol-based graphite nanocoolant in vehicle radiators. J. Enhanced Heat Transfer. 26, 345–363 (2019). https://doi.org/10.1615/JEnhHeatTransf.2019028304

    Article  Google Scholar 

  23. Johnson, P.J., Setsuda, D.J., Williams, R.S.: Activated carbon for automotive applications. In: Carbon materials for advanced technologies, pp. 235–268. Elsevier, in (1999). https://doi.org/10.1016/B978-008042683-9/50010-8

    Chapter  Google Scholar 

  24. Cha, S.C., Moon, K. Il, Yoon, H.W.: Current development of automotive powertrain components for low friction and wear reduction through coating and heat treatment technology, Advanced Rheology and Its Applications [Working Title] (2022). https://doi.org/10.5772/INTECHOPEN.106032

  25. Pirityi, D.Z., Bárány, T., Pölöskei, K.: Hybrid reinforcement of styrene-butadiene rubber nanocomposites with carbon black, silica, and graphene. J. Appl. Polym. Sci. 139 (2022). https://doi.org/10.1002/app.52766

  26. Zhang, W., Xu, J.: Advanced lightweight materials for automobiles: a review. Mater. Des. 221 (2022). https://doi.org/10.1016/j.matdes.2022.110994

  27. Qiu, B., Sun, T., Yuan, M., Zhang, H., Chen, Y., Zhou, S., Heng, Z., Liang, M., Zou, H.: Effect of different lateral dimension graphene oxide sheets on the interface of carbon fiber reinforced polymer composites. Compos. Sci. Technol. 213 (2021). https://doi.org/10.1016/j.compscitech.2021.108939

  28. Nurazzi, N.M., Asyraf, M.R.M., Khalina, A., Abdullah, N., Sabaruddin, F.A., Kamarudin, S.H., Ahmad, S., Mahat, A.M., Lee, C.L., Aisyah, H.A., Norrrahim, M.N.F., Ilyas, R.A., Harussani, M.M., Ishak, M.R., Sapuan, S.M.: Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: an overview. Polymers (Basel). 13 (2021). https://doi.org/10.3390/polym13071047

  29. Cheon, J., Kim, M.: Impact resistance and interlaminar shear strength enhancement of carbon fiber reinforced thermoplastic composites by introducing MWCNT-anchored carbon fiber. Compos. Part B Eng. 217 (2021). https://doi.org/10.1016/j.compositesb.2021.108872

  30. Akar, A.O., Yildiz, U.H., Tirkes, S., Tayfun, U., Hacivelioglu, F.: Influence of carbon nanotube inclusions to electrical, thermal, physical and mechanical behaviors of carbon-fiber-reinforced ABS composites. Carbon Lett. 32, 987–998 (2022). https://doi.org/10.1007/s42823-022-00332-y

    Article  Google Scholar 

  31. Valorosi, F., de Meo, E., Blanco-Varela, T., Martorana, B., Veca, A., Pugno, N., Kinloch, I.A., Anagnostopoulos, G., Galiotis, C., Bertocchi, F., Gomez, J., Treossi, E., Young, R.J., Palermo, V.: Graphene and related materials in hierarchical fiber composites: production techniques and key industrial benefits. Compos. Sci. Technol. 185 (2020). https://doi.org/10.1016/j.compscitech.2019.107848

  32. Mathew, J., Joy, J., George, S.C.: Potential applications of nanotechnology in transportation: a review. J. King Saud. Univ. Sci. 31, 586–594 (2019). https://doi.org/10.1016/j.jksus.2018.03.015

    Article  Google Scholar 

  33. Shah, V., Bhaliya, J., Patel, G.M., Deshmukh, K.: Advances in polymeric nanocomposites for automotive applications: a review. Polym. Adv. Technol. 33, 3023–3048 (2022). https://doi.org/10.1002/pat.5771

    Article  CAS  Google Scholar 

  34. Patel, J., Soni, A., Barai, D.P., Bhanvase, B.A.: A minireview on nanofluids for automotive applications: current status and future perspectives. Appl. Therm. Eng. 219 (2023). https://doi.org/10.1016/j.applthermaleng.2022.119428

  35. Oliveira, G.A., Cardenas Contreras, E.M., Bandarra Filho, E.P.: Experimental study of thermophysical properties of MWCNT and graphene coolant nanofluids for automotive application. J. Braz. Soc. Mech. Sci. Eng. 43 (2021). https://doi.org/10.1007/s40430-021-02870-4

  36. Akash, A.R., Pattamatta, A., Das, S.K.: Experimental Study of the Thermohydraulic Performance of Water/Ethylene Glycol-Based Graphite Nanocoolant in Vehicle Radiators, 2019. www.begellhouse.com

  37. Shafique, M., Luo, X.: Nanotechnology in transportation vehicles: an overview of its applications. Environ. Health Saf. Concerns, Mater. 12, 2493 (2019). https://doi.org/10.3390/ma12152493

    Article  CAS  Google Scholar 

  38. Febrian, R., Luh, N., Septiani, W., Iqbal, M., Yuliarto, B.: Review—recent advances of carbon-based nanocomposites as the anode materials for lithium-ion batteries: synthesis and performance. J. Electrochem. Soc. 168, 110520 (2021). https://doi.org/10.1149/1945-7111/AC3161

    Article  CAS  Google Scholar 

  39. Chen, T.W., Kalimuthu, P., Veerakumar, P., Lin, K.C., Chen, S.M., Ramachandran, R., Mariyappan, V., Chitra, S.: Recent developments in carbon-based nanocomposites for fuel cell applications: a review. Molecules. 27, 761 (2022). https://doi.org/10.3390/molecules27030761

    Article  CAS  Google Scholar 

  40. Krüger, A.: Carbon Materials and Nanotechnology. Wiley-VCH (2010) https://www.wiley.com/en-us/Carbon+Materials+and+Nanotechnology-p-9783527629619 (accessed July 27, 2023)

    Book  Google Scholar 

  41. Tugrul Seyhan, A., Tanoglu, M., Schulte, K.: Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Eng. Fract. Mech. 75, 5151–5162 (2008). https://doi.org/10.1016/J.ENGFRACMECH.2008.08.003

    Article  Google Scholar 

  42. Zhu, L., Li, N., Childs, P.R.N.: Light-weighting in aerospace component and system design, propulsion and power. Research. 7, 103–119 (2018). https://doi.org/10.1016/j.jppr.2018.04.001

    Article  Google Scholar 

  43. Sharon, M., Rodriguez, A.S.L., Sharon, C., Gallardo, P.S. (eds.): Nanotechnology in the Defense Industry. Wiley (2019). https://doi.org/10.1002/9781119460503

    Book  Google Scholar 

  44. Suresh, S.S., George, K., Mohanty, S., Nayak, S.K.: Architect of polymer nanocomposites for aerospace applications. In: Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials, pp. 1319–1352. IGI Global (2021). https://doi.org/10.4018/978-1-7998-8591-7.ch055

    Chapter  Google Scholar 

  45. O’Donnell, S.E., Sprong, K.R., Haltli, B.M.: Potential impact of carbon nanotube reinforced polymer composite on commercial aircraft performance and economics, Collection of Technical Papers – AIAA 4th Aviation Technology, Integration, and Operations Forum, ATIO. 2 (2004) 693–702. https://doi.org/10.2514/6.2004-6402

  46. Kopsidas, S., Olowojoba, G.B., Stone, C., Clark, D., Haddad, A.M., Kinloch, A.J., Taylor, A.C.: Lightning strike damage resistance of carbon-fiber composites with nanocarbon-modified epoxy matrices. J. Appl. Polym. Sci. 139 (2022). https://doi.org/10.1002/app.53157

  47. Wang, B., Duan, Y., Xin, Z., Yao, X., Abliz, D., Ziegmann, G.: Fabrication of an enriched graphene surface protection of carbon fiber/epoxy composites for lightning strike via a percolating-assisted resin film infusion method. Compos. Sci. Technol. 158, 51–60 (2018). https://doi.org/10.1016/j.compscitech.2018.01.047

    Article  CAS  Google Scholar 

  48. Bhattacharya, S., Agarwal, A.K., Prakash, O., Singh, S.: Sensors for automotive and aerospace applications, springer Singapore. Dermatol. Sin. (2019). https://doi.org/10.1007/978-981-13-3290-6

  49. Arepalli, S., Moloney, P.: Engineered nanomaterials in aerospace. MRS Bull. 40, 804–811 (2015). https://doi.org/10.1557/mrs.2015.231

    Article  Google Scholar 

  50. Ismar, E., Sarac, A.S.: Carbon nanomaterials. In: Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials, pp. 784–809. IGI Global (2021). https://doi.org/10.4018/978-1-7998-8591-7.ch033

    Chapter  Google Scholar 

  51. Dhinakaran, V., Sai, M.S., Shree, M.V.: Some impact of nanomaterials in aerospace engineering. In: Nanomaterials and Nanocomposites, pp. 17–29. CRC Press (2021). https://doi.org/10.1201/9781003160946-3

    Chapter  Google Scholar 

  52. Bezzon, V.D.N., Montanheiro, T.L.A., de Menezes, B.R.C., Ribas, R.G., Righetti, V.A.N., Rodrigues, K.F., Thim, G.P.: Carbon nanostructure-based sensors: a brief review on recent advances. Adv. Mater. Sci. Eng. 2019 (2019). https://doi.org/10.1155/2019/4293073

  53. Young, S.-J., Chang, S.-J., Liu, Y.-H.: Advanced nanomaterials for applications in photonic and sensor devices. J. Nanomater. 2022, 1–2 (2022). https://doi.org/10.1155/2022/9895385

    Article  Google Scholar 

  54. Cabrera, C.R., Miranda, F.A.: Advanced Nanomaterials for Aerospace Applications. Pan Stanford Publishing (2015)

    Google Scholar 

  55. Varghese, S.S., Lonkar, S., Singh, K.K., Swaminathan, S., Abdala, A.: Recent advances in graphene based gas sensors. Sens. Actuators B Chem. 218, 160–183 (2015). https://doi.org/10.1016/j.snb.2015.04.062

    Article  CAS  Google Scholar 

  56. Zhang, X., Sun, J., Tang, K., Wang, H., Chen, T., Jiang, K., Zhou, T., Quan, H., Guo, R.: Ultralow detection limit and ultrafast response/recovery of the H2 gas sensor based on Pd-doped rGO/ZnO-SnO2 from hydrothermal synthesis. Microsyst. Nanoeng. 8 (2022). https://doi.org/10.1038/s41378-022-00398-8

  57. Wild, G., Pollock, L., Abdelwahab, A.K., Murray, J.: Need for aerospace structural health monitoring. Int. J. Prog. Health Manag. 12 (2021). https://doi.org/10.36001/ijphm.2021.v12i3.2368

  58. Song, P., Ma, Z., Ma, J., Yang, L., Wei, J., Zhao, Y., Zhang, M., Yang, F., Wang, X.: Recent progress of miniature MEMS pressure sensors. Micromachines (Basel). 11 (2020). https://doi.org/10.3390/mi11010056

  59. Yee, M.J., Mubarak, N.M., Abdullah, E.C., Khalid, M., Walvekar, R., Karri, R.R., Nizamuddin, S., Numan, A.: Carbon nanomaterials based films for strain sensing application—a review. Nano-Struct. Nano-Objects. 18 (2019). https://doi.org/10.1016/j.nanoso.2019.100312

  60. Gola, Y., Kim, D., Namilae, S.: Piezoresistive nanocomposites for sensing MMOD impact damage in inflatable space structures. Comp. Commun. 21 (2020). https://doi.org/10.1016/j.coco.2020.100375

  61. Yin, F., Ye, D., Zhu, C., Qiu, L., Huang, Y.A.: Stretchable, highly durable ternary nanocomposite strain sensor for structural health monitoring of flexible aircraft. Sensors (Switzerland). 17 (2017). https://doi.org/10.3390/s17112677

  62. Neella, N., Gaddam, V., Nayak, M.M., Dinesh, N.S., Rajanna, K.: Scalable fabrication of highly sensitive flexible temperature sensors based on silver nanoparticles coated reduced graphene oxide nanocomposite thin films. Sens. Actuators A Phys. 268, 173–182 (2017). https://doi.org/10.1016/j.sna.2017.11.011

    Article  CAS  Google Scholar 

  63. Wen, J., Yu, Y., Chen, C.: A review on lithium-ion batteries safety issues: existing problems and possible solutions. Mater. Express. 2, 197–212 (2012). https://doi.org/10.1166/mex.2012.1075

    Article  CAS  Google Scholar 

  64. Liu, X.M., Huang, Z.D., Oh, S.W., Zhang, B., Ma, P.C., Yuen, M.M.F., Kim, J.K.: Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review. Compos. Sci. Technol. 72, 121–144 (2012). https://doi.org/10.1016/j.compscitech.2011.11.019

    Article  CAS  Google Scholar 

  65. Li, X., Zhou, J., Zhang, J., Li, M., Bi, X., Liu, T., He, T., Cheng, J., Zhang, F., Li, Y., Mu, X., Lu, J., Wang, B.: Bamboo-like nitrogen-doped carbon nanotube forests as durable metal-free catalysts for self-powered flexible Li–CO2 batteries. Adv. Mater. 31 (2019). https://doi.org/10.1002/adma.201903852

  66. Shen, K., Mei, H., Li, B., Ding, J., Yang, S.: 3D printing sulfur copolymer-graphene architectures for Li-S batteries. Adv. Energy Mater. 8 (2018). https://doi.org/10.1002/aenm.201701527

  67. Chaudhary, R., Maji, S., Shrestha, R.G., Shrestha, R.L., Shrestha, T., Ariga, K., Shrestha, L.K.: Jackfruit seed-derived nanoporous carbons as the electrode material for supercapacitors. C (Basel). 6, 73 (2020). https://doi.org/10.3390/c6040073

    Article  CAS  Google Scholar 

  68. Mathur, R.B., Singh, B.P., Pande, S.: Carbon Nanomaterials: Synthesis, Structure, Properties and Applications. Taylor & Francis (2016)

    Book  Google Scholar 

  69. Kolahdouz, M., Xu, B., Nasiri, A.F., Fathollahzadeh, M., Manian, M., Aghababa, H., Wu, Y., Radamson, H.H.: Carbon-related materials: graphene and carbon nanotubes in semiconductor applications and design. Micromachines (Basel). 13 (2022). https://doi.org/10.3390/mi13081257

  70. Che, Y., Chen, H., Gui, H., Liu, J., Liu, B., Zhou, C.: Review of carbon nanotube nanoelectronics and macroelectronics. Semicond. Sci. Technol. 29 (2014). https://doi.org/10.1088/0268-1242/29/7/073001

  71. Chen, M.L., Sun, X., Liu, H., Wang, H., Zhu, Q., Wang, S., Du, H., Dong, B., Zhang, J., Sun, Y., Qiu, S., Alava, T., Liu, S., Sun, D.M., Han, Z.: A FinFET with one atomic layer channel. Nat. Commun. 11 (2020). https://doi.org/10.1038/s41467-020-15096-0

  72. Kumar, A., Janakirani, M., Anand, M., Sharma, S., Vivekanand, C.V., Chakravarti, A.: Comparative performance study of difference differential amplifier using 7 nm and 14 nm FinFET technologies and carbon nanotube FET. J. Nanomater. 2022 (2022). https://doi.org/10.1155/2022/8200856

  73. Russer, P., Fichtner, N., Lugli, P., Porod, W., Russer, J.A., Yordanov, H.: Nanoelectronics-based integrate antennas. IEEE Microw. Mag. 11, 58–71 (2010). https://doi.org/10.1109/MMM.2010.938570

    Article  Google Scholar 

  74. Yang, Y., Huang, R.: Probing memristive switching in nanoionic devices. Nat. Electron. 1, 274–287 (2018). https://doi.org/10.1038/s41928-018-0069-1

    Article  Google Scholar 

  75. Wang, Z., Wang, L., Nagai, M., Xie, L., Yi, M., Huang, W.: Nanoionics-enabled Memristive devices: strategies and materials for neuromorphic applications. Adv Electron Mater. 3 (2017). https://doi.org/10.1002/aelm.201600510

  76. Jaroszewski, M., Thomas, S., Rane, A.V.: Advanced Materials for EMI Shielding. John Wiley & Sons, Incorporated (2018)

    Google Scholar 

  77. Y. Duan, Microwave Absorbing Materials, n.d.

    Google Scholar 

  78. Kumar, R., Sahoo, S., Joanni, E., Singh, R.K., Tan, W.K., Moshkalev, S.A., Matsuda, A., Kar, K.K.: Heteroatom doping of 2D graphene materials for electromagnetic interference shielding: a review of recent progress. Crit. Rev. Solid State Mater. Sci. 47, 570–619 (2022). https://doi.org/10.1080/10408436.2021.1965954

    Article  CAS  Google Scholar 

  79. Mikinka, E., Siwak, M.: Recent advances in electromagnetic interference shielding properties of carbon-fibre-reinforced polymer composites—a topical review. J. Mater. Sci. Mater. Electron. 32, 24585–24643 (2021). https://doi.org/10.1007/s10854-021-06900-8

    Article  CAS  Google Scholar 

  80. Wu, N., Hu, Q., Wei, R., Mai, X., Naik, N., Pan, D., Guo, Z., Shi, Z.: Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: recent progress, challenges and prospects. Carbon N. Y. 176, 88–105 (2021). https://doi.org/10.1016/j.carbon.2021.01.124

    Article  CAS  Google Scholar 

  81. Thomassin, J.M., Jérôme, C., Pardoen, T., Bailly, C., Huynen, I., Detrembleur, C.: Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R: Rep. 74, 211–232 (2013). https://doi.org/10.1016/j.mser.2013.06.001

    Article  Google Scholar 

  82. Liu, H., Wu, S., You, C., Tian, N., Li, Y., Chopra, N.: Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding. Carbon N. Y. 172, 569–596 (2021). https://doi.org/10.1016/j.carbon.2020.10.067

    Article  CAS  Google Scholar 

  83. Gupta, S., Tai, N.H.: Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon N. Y. 152, 159–187 (2019). https://doi.org/10.1016/j.carbon.2019.06.002

    Article  CAS  Google Scholar 

  84. Nguyen, V.T., Nguyen, Q.D., Min, B.K., Yi, Y., Choi, C.G.: Ti3C2Tx MXene/carbon nanotubes/waterborne polyurethane based composite ink for electromagnetic interference shielding and sheet heater applications. Chem. Eng. J. 430 (2022). https://doi.org/10.1016/j.cej.2021.133171

  85. Yan, D.X., Pang, H., Li, B., Vajtai, R., Xu, L., Ren, P.G., Wang, J.H., Li, Z.M.: Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25, 559–566 (2015). https://doi.org/10.1002/adfm.201403809

    Article  CAS  Google Scholar 

  86. Vargas-Bernal, R., Tecpoyotl-Torres, M.: Nanocomposites for space applications. In: Research anthology on synthesis, characterization, and applications of nanomaterials, pp. 1681–1705. IGI Global (2021). https://doi.org/10.4018/978-1-7998-8591-7.ch070

    Chapter  Google Scholar 

  87. Rathod, V.T., Kumar, J.S., Jain, A.: Polymer and ceramic nanocomposites for aerospace applications. Appl. Nanosci. (Switzerland). 7, 519–548 (2017). https://doi.org/10.1007/s13204-017-0592-9

    Article  CAS  Google Scholar 

  88. Govindaraj, B., Sarojadevi, M.: Microwave-assisted synthesis of nanocomposites from polyimides chemically cross-linked with functionalized carbon nanotubes for aerospace applications. Polym. Adv. Technol. 29, 1718–1726 (2018). https://doi.org/10.1002/PAT.4275

    Article  CAS  Google Scholar 

  89. Choudhary, S., Islam, A., Mukherjee, B., Richter, J., Arold, T., Niendorf, T., Kumar Keshri, A.: Plasma sprayed Lanthanum zirconate coating over additively manufactured carbon nanotube reinforced Ni-based composite: unique performance of thermal barrier coating system without bondcoat. Appl. Surf. Sci. 550, 149397 (2021). https://doi.org/10.1016/J.APSUSC.2021.149397

    Article  CAS  Google Scholar 

  90. Kausar, A.: Fullerene nanofiller reinforced epoxy nanocomposites—developments, progress and challenges. Mater. Res. Innov. 25, 175–185 (2021). https://doi.org/10.1080/14328917.2020.1748794

    Article  CAS  Google Scholar 

  91. Liu, D., Zhao, W., Liu, S., Cen, Q., Xue, Q.: Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene. Surf. Coat. Technol. 286, 354–364 (2016). https://doi.org/10.1016/J.SURFCOAT.2015.12.056

    Article  CAS  Google Scholar 

  92. Romero-Fierro, D., Bustamante-Torres, M., Bravo-Plascencia, F., Esquivel-Lozano, A., Ruiz, J.C., Bucio, E.: Recent trends in magnetic polymer nanocomposites for aerospace applications: a review. Polymers (Basel). 14 (2022). https://doi.org/10.3390/polym14194084

  93. Zhang, X., Chen, Y., Hu, J.: Recent advances in the development of aerospace materials. Prog. Aerosp. Sci. 97, 22–34 (2018). https://doi.org/10.1016/j.paerosci.2018.01.001

    Article  Google Scholar 

  94. Kumar, A., Sharma, K., Dixit, A.R.: Carbon nanotube- and graphene-reinforced multiphase polymeric composites: review on their properties and applications. J. Mater. Sci. 55, 2682–2724 (2020). https://doi.org/10.1007/s10853-019-04196-y

    Article  CAS  Google Scholar 

  95. Hu, J., Ji, Y., Shi, Y., Hui, F., Duan, H., Lanz, M.: Review on the use of graphene as a protective coating against corrosion. Ann. J. Mater. Sci. Eng. 1 (2014) www.austinpublishinggroup.com (accessed December 14, 2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Erol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Erol, M. et al. (2023). Carbon Nanostructures for Automotive and Aerospace Applications. In: Barhoum, A., Deshmukh, K. (eds) Handbook of Functionalized Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-14955-9_67-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14955-9_67-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14955-9

  • Online ISBN: 978-3-031-14955-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics