Skip to main content

Cardiovascular Physiopathology of Angiotensin II and Its Plasma and Nuclear Envelop Membranes’ Receptors

  • Chapter
  • First Online:
The Renin Angiotensin System in Cardiovascular Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 24))

  • 465 Accesses

Abstract

In 1934, the discovery of angiotensin II opened an Eldorado in the field of the cardiovascular system. Until today, this Eldorado is still evolving due to the implication of this octapeptide, not only in normal physiology but also in its effect on the remodeling of the cardiovascular system. The intense scientific research led to the discovery of components that regulates the conversion of Angiotensin I to angiotensin II including angiotensin II converting enzyme and chymase-dependent production of angiotensin II. One important advancement is discovering an inhibitor of the angiotensin II converting enzyme, which is the most clinically used antihypertensive drug. Identifying the receptors of angiotensin II, AT1, and AT2, also led to determining the signaling pathways of these two receptors and their contribution to the regulation of the cardiovascular system in health and disease. This made it possible to develop two specific AT1 and AT2 receptor antagonists. Its is not until recently that the AT1 receptor antagonist, losartan, is used as an antihypertensive drug. The role of the AT2 receptor in the angiotensin II effect is still a matter of debate. These two receptors were also found to be localized at the nuclear envelope membranes, and the normal crosstalk between the plasma and the nuclear envelope membranes angiotensin II receptors seems to be an important factor in the angiotensin II effect. Remodeling this crosstalk may contribute to the angiotensin II effect in cardiovascular diseases. (Dedicated to Prof. Domenico Regoli, a pioneer in the pharmacology of the renin angiotensin system).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fasciolo JC (1990) The experimental observation that led to discovery of angiotensin. Hypertension 16:194–198

    Article  CAS  Google Scholar 

  2. Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension: the production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 59:347

    Article  CAS  Google Scholar 

  3. Basso N, Schiffrin EL, Alberto C (1998) Taquini 1905–1998. Historical Hypertension 32:1–2

    Google Scholar 

  4. Houssay BA, Taquini AC (1938) Accion vasoconstrictora de la sangre venosa del rinon isquemiado. Rev Soc Argent Biol 14:5

    CAS  Google Scholar 

  5. Houssay BA, Fasciolo JC (1937) Secrecion hipertensora del rinon isquemiado. Rev Soc Argent Biol 13:284

    CAS  Google Scholar 

  6. Page IH, Helmer OM (1939) A crystalline pressor substance, angiotonin, resulting from the reaction between renin and renin activator. Proc Soc Clin Invest 12:17

    Google Scholar 

  7. Page IH, Helmer OM (1940) A crystalline pressor substance, angiotonin, resulting from the reaction between renin and renin activator. J Exp Med 71:29

    Article  CAS  Google Scholar 

  8. Braun-Menendez E, Fasciolo JC, Leloir LF, Munoz JM (1940) The substance causing renal hypertension. J Physiol 98:283

    Article  CAS  Google Scholar 

  9. Braun-Menendez E, Fasciolo JC, Leloir LF, Munoz JM (1939) La substancia hipertensora de la sangre del rinon isquemiado. Rev Soc Argent Biol 15:420

    Google Scholar 

  10. Braun-Menendez E, Page IH (1958) Suggested revision of nomenclature—Angiotensin. Science 127:242

    Article  CAS  Google Scholar 

  11. Stroth U, Unger T (1999) The renin-angiotensin system and its receptors. J Cardiovasc Pharmacol 33:S21–S28

    Article  CAS  Google Scholar 

  12. Nakajima M, Hutchinson HG, Fujinaga M et al (1995) The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc Natl Acad Sci USA 92:10663–10667

    Article  CAS  Google Scholar 

  13. Timmermans PB, Benfield P, Chiu AT et al (1992) Angiotensin II receptors and functional correlates. Am J Hypertension 5:S221-235

    Article  Google Scholar 

  14. Timmermans PB, Wong PC, Chiu AT et al (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205–251

    CAS  Google Scholar 

  15. Dzau VJ, Gibbons GH, Pratt RE (1991) Molecular mechanisms of vascular renin-angiotensin system in myointimal hyperplasia. Hypertension 18:II100–5

    Google Scholar 

  16. Daemen MJ, Lombardi DM, Bosman FT, Schwartz SM (1991) Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res 68:450–456

    Article  CAS  Google Scholar 

  17. Powell JS, Clozel JP, Muller RK et al (1989) Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science 245:186–188

    Article  CAS  Google Scholar 

  18. Farhy RD, Carretero OA, Ho KL, Scicli AG (1993) Role of kinins and nitric oxide in the effects of angiotensin converting enzyme inhibitors on neointima formation. Circ Res 72:1202–1210

    Article  CAS  Google Scholar 

  19. Levens NR, Peach MJ, Carey RM (1981) Role of the intrarenal renin-angiotensin system in the control of renal function. Circ Res 48:157–167

    Article  CAS  Google Scholar 

  20. Unger T, Chung O, Csikos T et al (1996) Angiotensin receptors. J. Hypertension 14:S95-103

    CAS  Google Scholar 

  21. Skeggs LT, Kahn JR, Shumay NP (1956) Preparation and function of the hypertensin-converting enzyme. J Exp Med 103:295–305

    Article  CAS  Google Scholar 

  22. de Resende MM, Mill JG (2002) Alternate Angiotensin II-forming pathways and their importance in –physiological or physiopathological conditions. Arq Bras Cardiol 78:432–438

    Article  Google Scholar 

  23. Imai Y, Kuba K, Penninger JM (2008) The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol 93:543–548

    Article  CAS  Google Scholar 

  24. Lumbers ER, Head R, Smith GR et al (2022) The interaction physiology of COVID-19 and the renin-angiotensin-aldosterone system: key agents for treatment. Pharmacol Res Perspect 10:e00917

    Article  CAS  Google Scholar 

  25. Kar M (2022) Vascular dysfunction and its cardiovascular consequences during and after COVID-19 infection: a narrative review. Vasc Health Risk Manag 5:105–112

    Article  Google Scholar 

  26. Bkaily G, El-Bizri N, Nader M et al (2005) Angiotensin II induced increase in frequency of cytosolic and nuclear calcium waves of heart cells via activation of AT1 and AT2 receptors. Peptides 26:1418–1426

    Article  CAS  Google Scholar 

  27. Bkaily G, Sculptoreanu A, Wang S et al (2005) Angiotensin II-induced increase of T-type Ca2+ current and decrease of L-type Ca2+ current in heart cells. Peptides 26:1410–1417

    Article  CAS  Google Scholar 

  28. Kamal M, Jacques D, Bkaily G (2017) Angiotensin II receptor’s modulation of calcium hemostasis in human vascular endothelial cells. Can J Physiol Pharmacol 95:1289–1297

    Article  CAS  Google Scholar 

  29. Atlas SA (1998) The renin-angiotensin system revisited: classical and nonclassical pathway of angiotensin formation. Mt Sinai J Med 65:87–96

    CAS  Google Scholar 

  30. Unger T (2002) The role of the renin-angiotensin system in the development of cardiovascular disease. Am J Cardiol 89:3A–9A; discussion 10A

    Google Scholar 

  31. Gomez RA, Chevalier RL, Carey RM, Peach MJ (1990) Molecular biology of the renal renin-angiotensin system. Kidney Int 30:S18-23

    CAS  Google Scholar 

  32. Urata H, Khosla MC, Bumpus FM, Husain A (1988) Evidence for extracellular, but not intracellular, generation of angiotensin II in the rat adrenal zona glomerulosa. Proc Natl Acad Sci USA 85:8251–8255

    Article  CAS  Google Scholar 

  33. Schechter NM, Choi JK, Slavin DA et al (1986) Identification of a chymotrypsin-like proteinase in human mast cells. J Immunol 137:962–970

    Article  CAS  Google Scholar 

  34. Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A (1990) Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 265:22348–22357

    Article  CAS  Google Scholar 

  35. Okunishi H, Miyazaki M, Toda N (1984) Evidence for a putatively new angiotensin II-generating enzyme in the vascular wall. J Hypertension 2:277–284

    Article  CAS  Google Scholar 

  36. Okunishi H, Miyazaki M, Okamura T, Toda N (1987) Different distribution of two types of angiotensin II-generating enzymes in the aortic wall. Biochem Biophys Res Commun 149:1186–1192

    Article  CAS  Google Scholar 

  37. Lin SY, Goodfriend TL (1970) Angiotensin receptors. Am J Physiol 218:1319–1328

    Article  CAS  Google Scholar 

  38. Catt K, Baukal A, Ketelslegers JM et al (1974) Angiotensin II receptors of the adrenal gland: location and modulation by cations and guanyl nucleotides. Acta Physiol Lat Am 24:515–519

    CAS  Google Scholar 

  39. Chiu AT, Herblin WF, McCall DE et al (1989) Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 165:196–203

    Article  CAS  Google Scholar 

  40. Wagenaar LJ, Voors AA, Buikema H, van Gilst WH (2002) Angiotensin receptors in the cardiovascular system. Can J Cardiol 18:1331–1339

    CAS  Google Scholar 

  41. Bkaily G, Sleiman S, Stephan J et al (2003) Angiotensin II AT1 receptor internalization, translocation and de novo synthesis modulate cytosolic and nuclear calcium in human vascular smooth muscle cells. Can J Physiol Pharmacol 81:274–287

    Article  CAS  Google Scholar 

  42. Grady EF, Sechi LA, Griffin CA et al (1991) Expression of AT2 receptors in the developing rat fetus. J Clin Invest 88:921–933

    Article  CAS  Google Scholar 

  43. Jacques D, Provost C, Normand A et al (2019) Angiotensin II induces apoptosis of human right and left ventricular endocardial endothelial cells by activating the AT2 receptor. Can J Physiol Pharmacol 97:581–588

    Article  CAS  Google Scholar 

  44. Louis S, Saward L, Zahradka P (2011) Both AT1 and AT2 receptors mediate proliferation and migration of porcine vascular smooth muscle cells. A J Physiol Heart Circ Physiol 301:H746–H756

    Article  CAS  Google Scholar 

  45. Zahradka P, Werner JP, Buhay S et al (2002) NF-κB activation is essential for Angiotensin II-depended proliferation and migration of vascular smooth muscle cells. J Mol Cell Cardiol 34:1609–1621

    Google Scholar 

  46. Yamada T, Horiuchi M, Dzau VJ (1996) Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93:156–160

    Article  CAS  Google Scholar 

  47. Abdel-Samad D, Perreault C, Ahmarani L et al (2012) Differences in neuropeptide Y-induced secretion of endothelin-1 in left and right human endocardial endothelial cells. Neuropeptides 46:373–382

    Article  CAS  Google Scholar 

  48. Bkaily G, Nader M, Avedanian L et al (2006) G-protein-coupled receptors, channels, and Na+-H+ exchanger in nuclear membranes of heart, hepatic, vascular endothelial and smooth muscle cells. Can J Physiol Pharmacol 84:431–441

    Article  CAS  Google Scholar 

  49. Bkaily G, Avedanian L, Jacques D (2009) Nuclear membrane receptors and channels as targets for drug development in cardiovascular diseases. Can J Physiol Pharmacol 87:108–119

    Article  CAS  Google Scholar 

  50. Gallinat S, Busche S, Raizada MK (2000) Sumners C The angiotensin II type 2 receptor: an enigma with multiple variations. Am J Physiol 278:E357–E374

    CAS  Google Scholar 

  51. Jacques D, Abdel-Karim Abdel-Malak N, Abou Abdallah N et al (2017) Difference in the response to angiotensin II between left and right ventricular endocardial endothelial cells. Can J Physiol Pharmacol 95:1271–1282

    Article  CAS  Google Scholar 

  52. Chaki S, Inagami T (1992) Identification and characterization of a new binding site for angiotensin II in mouse neuroblastoma neuro-2A cells. Biochem Biophys Res Commun 182:388–394

    Article  CAS  Google Scholar 

  53. Wright JW, Harding JW (1994) Brain angiotensin receptor subtypes in the control of physiological and behavioral responses. Neurosci Biobehav Rev 18:21–53

    Article  CAS  Google Scholar 

  54. Handa RK (2001) Characterization and signaling of the AT(4) receptor in human proximal tubule epithelial (HK-2) cells. J Soc Nephrol 12:440–449

    Article  CAS  Google Scholar 

  55. Hall KL, Venkateswaran S, Hanesworth JM et al (1995) Characterization of a functional angiotensin IV receptor on coronary microvascular endothelial cells. Regul Pept 58:107–115

    Article  CAS  Google Scholar 

  56. De Gasparo M (2002) Les récepteurs AT1 et AT2 de l’angiotensine II. L’essentiel. Drugs. 62:1–10

    Article  Google Scholar 

  57. Singh KD, Karnik SS (2016) Angiotensin receptors: structure, function, signaling and clinical applications. J Cell Signal 1:111

    Google Scholar 

  58. Singh KD, Karnik SS (2022) Structural perspective on the mechanism of signal activation, ligand selectivity and allosteric modulation in angiotensin receptors: IUPHAR review 34. Br J Pharmol 22: Online ahead of print

    Google Scholar 

  59. Alexander SP, Christopoulos A, Davenport AP et al (2021) THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors. Br J Pharmacol 178:S27–S156

    CAS  Google Scholar 

  60. Ruiz-Opazo N, Hirayama K, Akimoto K, Herrera VL (1998) Molecular characterization of a dual endothelin-1/Angiotensin II receptor. Mol Med 4:96–108

    Google Scholar 

  61. Wu H, Sun Q, Yuan S et al (2022) AT1 receptors: their actions from hypertension to cognitive impairment. Cardiovasc Toxicol 22:311–325

    Article  CAS  Google Scholar 

  62. Leite APdO, Li XC, Nwia SM et al (2022) Angiotensin II and AT1a receptors in the proximal tubules of the kidney: new roles in blood pressure control and hypertension. Int J Mol Sci 23:2402

    Google Scholar 

  63. Murphy TJ, Alexander RW, Griendling KK et al (1991) Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351:233–236

    Article  CAS  Google Scholar 

  64. Sparks MA, Parsons KK, Stegbauer J et al (2011) Angiotensin II type 1A receptors in vascular smooth muscle cells do not influence aortic remodeling in hypertension. Hypertension 57:577–585

    Article  CAS  Google Scholar 

  65. Bauer JH, Reams GP (1995) The angiotensin II type 1 receptor antagonists. A new class of antihypertensive drugs. Arch Int Med 155:1361–1368

    Google Scholar 

  66. Johnston CI (1995) Angiotensin receptor antagonists: focus on losartan. Lancet 346:1403–1407

    Google Scholar 

  67. Pitt B, Konstam MA (1998) Overview of angiotensin II-receptor antagonists. Am J Cardiol 82:S47-49

    Article  Google Scholar 

  68. Balakumar P, Handa S, Alqahtani T et al (2022) Unravelling the differentially articulated axes of the century-old renin-angiotensin-aldosterone system: potential therapeutic implications. Cardiovasc Toxicol 22:246–253

    Article  CAS  Google Scholar 

  69. Eckenstaler R, Sandori J, Gekle M, Benndorf RA (2021) Angiotensin II receptor type 1-an update on structure, expression and pathology. Biochem Pharmacol 192:114673

    Article  CAS  Google Scholar 

  70. Gupta T, Rezsan T, Krim SR (2019) Managing hypertension in patients with heart failure: an ongoing quandary. Curr Opin Cardiol 34:359–366

    Article  Google Scholar 

  71. Curnow KM, Pascoe L, White PC (1992) Genetic analysis of the human type-1 angiotensin II receptor. Mol Endocrinol 6:1113–1118

    CAS  Google Scholar 

  72. Bergsma DJ, Ellis C, Kumar C et al (1992) Cloning and characterization of a human angiotensin II type 1 receptor. Biochem Biophys Res Commun 183:989–995

    Article  CAS  Google Scholar 

  73. De Gasparo M, Husain A, Alexander W et al (1995) Proposed update of angiotensin receptor nomenclature. Hypertension 25:924–927

    Article  CAS  Google Scholar 

  74. Jacques D, Abdel Malak NA, Sader S, Perreault C (2003) Angiotensin II and its receptors in human endocardial endothelial cells: role in modulating intracellular calcium. Can J Physiol Pharmacol 81:259–266

    Article  CAS  Google Scholar 

  75. Pueyo ME, N’Diaye N, Michel JB (1996) Angiotensin II-elicited signal transduction via AT1 receptors in endothelial cells. Br J Pharmacol 118:79–84

    Article  CAS  Google Scholar 

  76. Stoll M, Steckelings UM, Paul M et al (1995) The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 95:651–657

    Article  CAS  Google Scholar 

  77. Monton M, Castilla MA, Alvarez Arroyo MV et al (1998) Effects of angiotensin II on endothelial cell growth: role of AT-1 and AT-2 receptors. J Am Soc Nephrol 9:969–974

    Article  CAS  Google Scholar 

  78. Dimmeler S, Rippmann V, Weiland U et al (1997) Angiotensin II induces apoptosis of human endothelial cells. Protective effect of nitric oxide. Circ Res 81:970–976

    Google Scholar 

  79. Ko Y, Glodny B, Stier S et al (1997) Angiotensin type-1 (AT1) receptor gene expression in primarily cultured human arterial umbilical endothelial cells. Biochem Pharmacol 53:417–421

    Article  CAS  Google Scholar 

  80. Robertson MJ, Dougall IG, Harper D et al (1994) Agonist-antagonist interactions at angiotensin receptors: application of a two-state receptor model. Trends Pharmacol Sci 15:364–369

    Article  CAS  Google Scholar 

  81. Thomas WG (1999) Regulation of angiotensin II type 1 (AT1) receptor function. Regul Pept 79:9–23

    Article  CAS  Google Scholar 

  82. Kawai T, Forrester SJ, O’Brien S et al (2017) AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res 125:4–13

    Article  CAS  Google Scholar 

  83. Lymperopoulos A, Borges JI, Carbone AM et al (2021) Cardiovascular angiotensin II type 1 receptors biased signaling: focus on non-Gq-, non-βarrestin-dependent signaling. Pharmacol Res 174:105943

    Article  CAS  Google Scholar 

  84. Rasmussen H, Barret PQ (1984) Calcium messenger system: an integrated view. Physiol Rev 64:938–984

    Article  CAS  Google Scholar 

  85. Inagami T, Naruse M, Hoover R (1995) Endothelium as an endocrine organ. Ann Rev Physiol 57:171–189

    Article  CAS  Google Scholar 

  86. Nilius B, Viana F, Droogmans G (1997) Ion channels in vascular endothelium. Ann Rev Physiol 59:145–170

    Article  CAS  Google Scholar 

  87. Mezzano SA, Ruiz-Ortega M, Egido J (2001) Angiotensin II and renal fibrosis. Hypertension 38:635–638

    Article  CAS  Google Scholar 

  88. Berk BC, Corson MA (1997) Angiotensin II signal transduction in vascular smooth muscle: role of tyrosine kinases. Circ Res 80:607–616

    Google Scholar 

  89. De Gasparo M, Catt KJ, Inagami T et al (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–72

    Google Scholar 

  90. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M (2000) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20:2175–2183

    Article  CAS  Google Scholar 

  91. Takahashi E, Abe J, Berk BC (1997) Angiotensin II stimulates p90rsk in vascular smooth muscle cells. A potential Na(+)-H+exchanger kinase. Circ Res 81:268–273

    Google Scholar 

  92. Abdalla S, Lother H, Quitterer U (2000) AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407:94–98

    Article  CAS  Google Scholar 

  93. Crozat A, Penhoat A, Saez JM (1986) Processing of angiotensin II (A-II) and [Sar1, Ala8]A-II by cultured bovine adrenocortical cells. Endocrinology 118:2312–2318

    Article  CAS  Google Scholar 

  94. Griendling KK, Delafontaine P, Rittenhouse SE et al (1987) Correlation of receptor sequestration with sustained diacylglycerol accumulation in angiotensin II-stimulated cultured vascular smooth muscle cells. J Biol Chem 262:14555–14562

    Article  CAS  Google Scholar 

  95. Ullian ME, Limas SL (1989) Role of receptor cycling in the regulation of angiotensin II surface receptor number and angiotensin II uptake in rat vascular smooth muscle cells. J Clin Invest 84:840–846

    Article  CAS  Google Scholar 

  96. Penhoat A, Jaillard C, Crozat A, Saez JM (1988) Regulation of angiotensin-II receptors and steroidogenic responsiveness in cultured bovine fasciculata and glomerulosa adrenal cells. Eur J Biochem 172:247–254

    Article  CAS  Google Scholar 

  97. Thomas WG, Thekkumkara TJ, Motel TJ, Baker KM (1995) Stable expression of a truncated AT1A receptor in CHO-K1 cells. The carboxyl-terminal region directs agonist-induced internalization but not receptor signaling or desensitization. J Biol Chem 270:207–213

    Google Scholar 

  98. Thomas WG, Baker KM, Motel TJ, Thekkumkara TJ (1995a) Angiotensin II receptor endocytosis involves two distinct regions of the cytoplasmic tail. A role for residues on the hydrophobic face of a putative amphipathic helix. J Biol Chem 270: 22153–22159

    Google Scholar 

  99. Hunyady L, Bor M, Balla T, Catt KJ (1994) Identification of a cytoplasmic Ser-Thr-Leu motif that determines agonist-induced internalization of the AT1 angiotensin receptor. J Biol Chem 269:31378–31382

    Article  CAS  Google Scholar 

  100. McPherson PS, Kay BK, Hussain NK (2001) Signaling on the endocytic pathway. Traffic 2:375–384

    Article  CAS  Google Scholar 

  101. Ishizaka N, Griendling KK, Lassegue B, Alexander RW (1998) Angiotensin II type 1 receptor: relationship with caveolae and caveolin after initial agonist stimulation. Hypertension 32:459–466

    Article  CAS  Google Scholar 

  102. Zhang J, Ferguson SSG, Barak LS et al (1996) Dynamin and beta-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization. J Biol Chem 271:18302–18305

    Article  CAS  Google Scholar 

  103. Schelling JR, Linas SL (1994) Angiotensin II-dependent proximal tubule sodium transport requires receptor-mediated endocytosis. Am J Physiol 266:C669–C675

    Article  CAS  Google Scholar 

  104. Hein L, Meine L, Pratt RE et al (1997) Intracellular trafficking of angiotensin II and its AT1 and AT2 receptors: evidence for selective sorting of receptor and ligand. Mol Endocrinol 11:1266–1277

    Article  CAS  Google Scholar 

  105. Booz GW, Conrad KM, Hess AL et al (1992) Angiotensin-II-binding sites on hepatocyte nuclei. Endocrinology 130:3641–3649

    Article  CAS  Google Scholar 

  106. Jones ES, Vinh A, McCarthy CA et al (2008) AT2 receptors: functional relevance in cardiovascular disease. Pharmacol Therap 120:292–316

    Article  CAS  Google Scholar 

  107. Tsuzuki S, Ichiki T, Nakahubo H et al (1994) Molecular cloning and expression of the gene encoding human angiotensin II type 2 receptor. Biochem Biophys ResCommun 200:1449–1454

    Article  CAS  Google Scholar 

  108. Martin MM, Su B, Elton TS (1994) Molecular cloning of the human angiotensin II type 2 receptor cDNA. Biochem Biophys Res Commun 205:645–651

    Article  CAS  Google Scholar 

  109. Millan MA, Jacobowitz DM, Aguilera G, Catt KJ (1991) Differential distribution of AT1 and AT2 angiotensin II receptor subtypes in the rat brain during development. Proc Natl Acad Sci USA 88:11440–11444

    Article  CAS  Google Scholar 

  110. Akishita M, Ito MI, Jukka YA et al (1999) Expression of the ATG2 receptor developmentally programs extracellular signal-regulated kinase activity. J Clin Invest 103:63–71

    Article  CAS  Google Scholar 

  111. Matsumoto T, Sagawa N, Mukoyama M et al (1996) Type 2 angiotensin II receptor is expressed in human myometrium and uterine leiomyoma and is down-regulated during pregnancy. J Clin Endocrinol Metab 81:4366–4372

    Google Scholar 

  112. Johren O, Inagami T, Saavedra JM (1996) Localization of AT2 angiotensin II receptor gene expression in rat brain by in situ hybridization histochemistry. Brain Res Mol Brain Res 37:192–200

    Article  CAS  Google Scholar 

  113. Samyn ME, Petershack JA, Bedell KA et al (1998) Ontogeny and regulation of cardiac angiotensin types 1 and 2 receptors during fetal life in sheep. Pediatr Res 44:323–329

    Article  CAS  Google Scholar 

  114. Wang ZQ, Moore AF, Ozono R et al (1998) Immunolocalization of subtype 2 angiotensin II (AT2) receptor protein in rat heart. Hypertension 32:78–83

    Article  CAS  Google Scholar 

  115. Breault L, Lehoux JG, Gallo-Payet N (1996) The angiotensin AT2 receptor is present in the human fetal adrenal gland throughout the second trimester of gestation. J Clin Endocrinol Metab 81:3914–3922

    CAS  Google Scholar 

  116. Roulston CL, Lawrence AJ, Jarrott B, Widdop RE (2003) Localization of AT(2) receptors in the nucleus of the solitary tract of spontaneously hypertensive and Wistar Kyoto rats using [125I] CGP42112: upregulation of a non-angiotensin II binding site following unilateral nodose ganglionectomy. Brain Res 968:139–155

    Article  CAS  Google Scholar 

  117. Lazard D, Briend-Sutren MM, Villageois P et al (1994) Molecular characterization and chromosome localization of a human angiotensin II AT2 receptor gene highly expressed in fetal tissues. Receptors Channels 2:271–280

    CAS  Google Scholar 

  118. Brechler V, Jones PW, Levens NR et al (1993) Agonistic and antagonistic properties of angiotensin analogs at the AT2 receptor in PC12W cells. Regul Pept 44:207–213

    Article  CAS  Google Scholar 

  119. Nahmias C, Strosberg AD (1995) The angiotensin AT2 receptor: searching for signal-transduction pathways and physiological function. Trends Pharmacol Sci 16:223–229

    Article  CAS  Google Scholar 

  120. Re RN, MacPhee AA, Fallon JT (1981) Specific nuclear binding of angiotensin II by rat liver and spleen nuclei. Clin Sci 61:s245–s247

    Article  Google Scholar 

  121. Saye J, Binder SB, Trachte GJ, Peach MJ (1986) Angiotensin peptides and prostaglandin E2 synthesis: modulation of neurogenic responses in the rabbit vas deferens. Endocrinology 119:1895–1903

    Article  CAS  Google Scholar 

  122. Re RN, Vizard DL, Brown J et al (1982) Angiotensin II receptors in chromatin. J Hypertension Suppl 2:S271–S273

    Google Scholar 

  123. Re RN, LaBiche RA, Bryan SE (1983) Nuclear-hormone mediated changes in chromatin solubility. Biochem Biophys Res Commun 110:61–68

    Article  CAS  Google Scholar 

  124. Tang SS, Rogg H, Schumacher R, Dzau VJ (1992) Characterization of nuclear angiotensin-II-binding sites in rat liver and comparison with plasma membrane receptors. Endocrinology 131:374–380

    Article  CAS  Google Scholar 

  125. Eggena P, Zhu JH, Clegg K, Barrett JD (1993) Nuclear angiotensin receptors induce transcription of renin and angiotensinogen mRNA. Hypertension 22:496–501

    Article  CAS  Google Scholar 

  126. Haller H, Lindschau C, Erdmann B et al (1996) Effects of intracellular angiotensin II in vascular smooth muscle cells. Circ Res 79:765–772

    Article  CAS  Google Scholar 

  127. Lu D, Yang H, Shaw G, Raizada MK (1998) Angiotensin II-induced nuclear targeting of the angiotensin type 1 (AT1) receptor in brain neurons. Endocrinology 139:365–375

    Article  CAS  Google Scholar 

  128. Nakajima M, Mukoyama M, Pratt RE et al (1993) Cloning of cDNA and analysis of the gene for mouse angiotensin II type 2 receptor. Biochem Biophys Res Commun 197:393–399

    Article  CAS  Google Scholar 

  129. Kambayashi Y, Bardhan S, Takahashi K et al (1993) Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268:24543–24546

    Article  CAS  Google Scholar 

  130. Chen R, Mukhin YV, Garnovskaya MN et al (2000) A functional angiotensin II receptor-GFP fusion protein: evidence for agonist-dependent nuclear translocation. Am J Physiol 279:F440–F448

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danielle Jacques or Ghassan Bkaily .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jacques, D., Bkaily, G. (2023). Cardiovascular Physiopathology of Angiotensin II and Its Plasma and Nuclear Envelop Membranes’ Receptors. In: Dhalla, N.S., Bhullar, S.K., Shah, A.K. (eds) The Renin Angiotensin System in Cardiovascular Disease. Advances in Biochemistry in Health and Disease, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-14952-8_4

Download citation

Publish with us

Policies and ethics