Skip to main content

Optical Nanostructuring by Near-Field Laser Ablation

  • Chapter
  • First Online:
Ultrafast Laser Nanostructuring

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 239))

  • 1544 Accesses

Abstract

The interaction of short, intense laser pulses with nanoparticles on a surface leads to laterally tightly confined, strongly enhanced electromagnetic fields below and around the nano-objects, which can easily give rise to nanoablation. This effect can be exploited for structuring substrate surfaces on a length scale well below the diffraction limit, one to two orders smaller than the incident laser wavelength. We report on structure formation by laser ablation in the optical near field of both dielectric and metallic nano-objects, the latter allowing even stronger and more localized enhancement of the electromagnetic field due to the excitation of plasmon modes. In the course of time, various improvements have been added to this technique, so that also more complex and even arbitrary structures can be produced by means of nanoablation. The near-field patterns generated on the surface can be read out with high-resolution techniques like scanning electron microscopy and atomic force microscopy and provide thus a valuable tool – in conjunction with numerical calculations like finite-difference time-domain (FDTD) simulations – for a deeper understanding of the optical and plasmonic properties of nanostructures and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Synge, A suggested method for extending microscopic resolution into the ultra-microscopic region. Philos. Magazine Ser 7(6), 35, 356 (1928). https://doi.org/10.1080/14786440808564615

    Article  Google Scholar 

  2. D. Pohl, Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett. 44, 651 (1984). https://doi.org/10.1063/1.94865

    Article  ADS  Google Scholar 

  3. R. Hillenbrand, F. Keilmann, P. Hanarp, D.S. Sutherland, J. Aizpurua, Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe. Appl. Phys. Lett. 83, 368 (2003). https://doi.org/10.1063/1.1592629

    Article  ADS  Google Scholar 

  4. A.D. McFarland, M.A. Young, J.A. Dieringer, R.P. Van Duyne, Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 109, 11279 (2005). https://doi.org/10.1021/jp050508u

    Article  Google Scholar 

  5. S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102 (1997). https://doi.org/10.1126/science.275.5303.1102

    Article  Google Scholar 

  6. J.N. Farahani, D.W. Pohl, H.-J. Eisler, B. Hecht, Single quantum dot coupled to a scanning optical antenna: A tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005). https://doi.org/10.1103/PhysRevLett.95.017402

    Article  ADS  Google Scholar 

  7. T. Hanke, G. Krauss, D. Traeutlein, B. Wild, R. Bratschitsch, A. Leitenstorfer, Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys. Rev. Lett. 103, 257404 (2009). https://doi.org/10.1103/PhysRevLett.103.257404

    Article  ADS  Google Scholar 

  8. T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, R. Bratschitsch, Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Lett. 12, 992 (2012). https://doi.org/10.1021/nl2041047

    Article  ADS  Google Scholar 

  9. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193 (2010). https://doi.org/10.1038/nmat2630

    Article  ADS  Google Scholar 

  10. J. Jersch, K. Dickmann, Nanostructure fabrication using laser field enhancement in the near field of a scanning tunneling microscope tip. Appl. Phys. Lett. 68, 868 (1996). https://doi.org/10.1063/1.116527

    Article  ADS  Google Scholar 

  11. J. Boneberg, M. Tresp, M. Ochmann, H.-J. Münzer, P. Leiderer, Time resolved measurements of the response of a STM tip upon illumination with a nanosecond laser pulse. Appl. Phys. A Mater. Sci. Process. 66, 615–619 (1998a). https://doi.org/10.1007/s003390050722

    Article  ADS  Google Scholar 

  12. J. Boneberg, H.-J. Münzer, M. Tresp, M. Ochmann, P. Leiderer, The mechanism of nanostructuring upon nanosecond laser irradiation of a STM tip. Appl. Phys. A Mater. Sci. Process. 67, 381 (1998b). https://doi.org/10.1007/s003390050789

    Article  ADS  Google Scholar 

  13. R. Huber, M. Koch, J. Feldmann, Laser-induced thermal expansion of a scanning tunneling microscope tip measured with an atomic force microscope cantilever. Appl. Phys. Lett. 73, 2521 (1998). https://doi.org/10.1063/1.122502

    Article  ADS  Google Scholar 

  14. A. Chimmalgi, T.Y. Choi, C.P. Grigoropoulos, K. Komvopoulos, Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy. Appl. Phys. Lett. 82, 1146 (2003). https://doi.org/10.1063/1.1555693

    Article  ADS  Google Scholar 

  15. A. Chimmalgi, C. Grigoropoulos, K. Komvopoulos, Surface nanostructuring by nano−/femtosecond laser-assisted scanning force microscopy. J. Appl. Phys. 97, 104319 (2005). https://doi.org/10.1063/1.1899245

    Article  ADS  Google Scholar 

  16. S.M. Huang, M.H. Hong, Y.F. Lu, B.S. Luk’yanchuk, W.D. Song, T.C. Chong, Pulsed-laser assisted nanopatterning of metallic layers combined with atomic force microscopy. J. Appl. Phys. 91, 3268 (2002b). https://doi.org/10.1063/1.1448882

    Article  ADS  Google Scholar 

  17. Y.F. Lu, Z.H. Mai, Y.W. Zheng, W.D. Song, W.K. Chim, Nanostructure fabrication using pulsed lasers in combination with a scanning tunneling microscope: Mechanism investigation. Appl. Phys. Lett. 76, 1200 (2000b). https://doi.org/10.1063/1.125982

    Article  ADS  Google Scholar 

  18. Z.H. Mai, Y.F. Lu, S.M. Huang, W.K. Chim, Mechanism of laser-induced nano modification on hydrogen-passivated Si(100) surfaces underneath the tip of an scanning tunneling microscope. J. Vac. Sci. Technol. B18, 1853 (2000). https://doi.org/10.1116/1.1303815

    Article  Google Scholar 

  19. K. Imen, S.J. Lee, S.D. Allen, Laser-assisted micron scale particle removal. Appl. Phys. Lett. 58, 203 (1991). https://doi.org/10.1063/1.104923

    Article  ADS  Google Scholar 

  20. A.C. Tam, W.P. Leung, W. Zapka, W. Ziemlich, Laser-cleaning techniques for removal of surface particulates. J. Appl. Phys. 71, 3515 (1992). https://doi.org/10.1063/1.350906

    Article  ADS  Google Scholar 

  21. P. Leiderer, J. Boneberg, V. Dobler, M. Mosbacher, H.-J. Münzer, N. Chaoui, J. Siegel, J. Solis, C.N. Afonso, T. Fourrier, G. Schrems, D. Bäuerle, Laser-induced particle removal from Silicon wafers, in High Power Laser Ablation III, April 24–28, 2000, C.R. Phipps ed., Proc. SPIE4065, 249, (2000). https://doi.org/10.1117/12.407353

    Chapter  Google Scholar 

  22. G. Mie, Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann. Phys. 25, 377 (1908). https://doi.org/10.1002/andp.19083300302

    Article  Google Scholar 

  23. P.W. Barber, S.C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990). https://doi.org/10.1142/0784

    Book  Google Scholar 

  24. H.M. Nussenzveig, W.J. Wiscombe, Efficiency factors in Mie scattering. Phys. Rev. Lett. 45, 1490 (1980). https://doi.org/10.1103/PhysRevLett.45.1490

    Article  ADS  Google Scholar 

  25. L. Bergmann and C. Schäfer, Lehrbuch der Experimentalphysik: Bd. III Optik (Walter de Gruyter, 1987)

    Google Scholar 

  26. B.S. Luk’yanchuk, M. Mosbacher, Y.W. Zheng, H.-J. Münzer, S.M. Huang, M. Bertsch, W.D. Song, Z.B. Wang, Y.F. Lu, O. Dubbers, J. Boneberg, P. Leiderer, M.H. Hong, T.C. Chong, Optical resonance and near-field effects in dry laser cleaning, in Laser Cleaning, ed. by B. Lukyanchuk, (World Scientific, 2002), p. 106

    Chapter  Google Scholar 

  27. Y.F. Lu, L. Zhang, W.D. Song, Y.W. Zheng, B.S. Luk’yanchuk, Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation. JETP Lett. 72, 457 (2000a). https://doi.org/10.1134/1.1339899

    Article  ADS  Google Scholar 

  28. Z. Chen, A. Taflove, V. Backman, Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique. Opt. Express 12, 1214 (2004). https://doi.org/10.1364/OPEX.12.001214

    Article  ADS  Google Scholar 

  29. B.S. Luk’yanchuk, R. Paniagua-Domínguez, I. Minin, O. Minin, Z. Wang, Refractive index less than two: Photonic nanojets yesterday, today and tomorrow. Opt. Mater. Express 7, 1820 (2017). https://doi.org/10.1364/OME.7.001820

    Article  ADS  Google Scholar 

  30. S. Surdo, M. Duocastella, A. Diaspro, Nanopatterning with photonic Nanojets: Review and perspectives in biomedical research. Micromachines 12, 256 (2021). https://doi.org/10.3390/mi12030256

    Article  Google Scholar 

  31. M. Terakawa, N.N. Nedyalkov, Near-field optics for nanoprocessing. Adv. Opt. Technol. 5, 17 (2016). https://doi.org/10.1515/aot-2015-0054

    Article  ADS  Google Scholar 

  32. H.-J. Münzer, Laserinduzierte Nanostrukturierung von Oberflächen, PhD dissertation, (Konstanz 2001)

    Google Scholar 

  33. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Inc., 1990)

    Google Scholar 

  34. H.-J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B. U. Runge, D. Bäuerle, J. Boneberg and P. Leiderer, Optical near-field effects in surface nanostructuring and laser cleaning , Proc. SPIE 4426, 180 (2002)

    Article  ADS  Google Scholar 

  35. M. Mosbacher, H.-J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, P. Leiderer, Optical field enhancement effects in laser-assisted particle removal. Appl. Phys. A Mater. Sci. Process. 72, 41 (2001). https://doi.org/10.1007/s003390000715

    Article  ADS  Google Scholar 

  36. A. Plech, P. Leiderer, J. Boneberg, Femtosecond laser near field ablation. Laser Photon. Rev. 3, 435–451 (2009). https://doi.org/10.1002/lpor.200810044

    Article  ADS  Google Scholar 

  37. R. Denk, K. Piglmayer, D. Bäuerle, Laser-induced nanopatterning of PET using a-SiO2 microspheres. Appl. Phys. A Mater. Sci. Process. 74, 825 (2002). https://doi.org/10.1007/s003390201295

    Article  ADS  Google Scholar 

  38. H.-J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, J. Boneberg, Local field enhancement effects for nanostructuring of surfaces. J. Microsc. 202, 129 (2001). https://doi.org/10.1046/j.1365-2818.2001.00876.x

    Article  MathSciNet  Google Scholar 

  39. Z.B. Wang, M.H. Hong, B.S. Luk'yanchuk, Y. Lin, Q.F. Wang, T.C. Chong, Angle effect in laser nanopatterning with particle-mask. J. Appl. Phys. 96, 6845 (2004). https://doi.org/10.1063/1.1786652

    Article  ADS  Google Scholar 

  40. P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F.J. Garcia de Abajo, J. Siegel, J. Solis, Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle. Beilstein J. Nanotechnol. 4, 501 (2013). https://doi.org/10.3762/bjnano.4.59

    Article  Google Scholar 

  41. S.M. Huang, Z. Sun, B.S. Luk’yanchuk, M.H. Hong, L.P. Shi, Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon. Appl. Phys. Lett. 86, 161911 (2005). https://doi.org/10.1063/1.1886896

    Article  ADS  Google Scholar 

  42. F. Lang, M. Mosbacher, P. Leiderer, Near field induced defects and influence of the liquid layer thickness in Steam Laser Cleaning of silicon wafers. Appl. Phys. A Mater. Sci. Process. 77, 177 (2003). https://doi.org/10.1007/s00339-003-2101-0

    Article  Google Scholar 

  43. M. Mosbacher, V. Dobler, M. Bertsch, H.-J. Münzer, J. Boneberg, P. Leiderer, Laser cleaning of silicon wafers: Prospects and problems, in Surface Contamination and Cleaning, ed. by K. L. Mittal, vol. 1, (2003), p. 311

    Google Scholar 

  44. X.C. Wang, H.Y. Zheng, C.W. Tan, F. Wang, H.Y. Yu, K.L. Pey, Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation. Appl. Phys. Lett. 96, 084101 (2010). https://doi.org/10.1063/1.3327513

    Article  ADS  Google Scholar 

  45. G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, D. Bäuerle, Single-step fabrication of silicon-cone arrays. Appl. Phys. Lett. 82, 692 (2003). https://doi.org/10.1063/1.1538347

    Article  ADS  Google Scholar 

  46. J. Bischof, D. Scherer, S. Herminghaus, P. Leiderer, Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting. Phys. Rev. Lett. 77, 1536 (1996). https://doi.org/10.1103/PhysRevLett.77.1536

    Article  ADS  Google Scholar 

  47. S.M. Huang, M.H. Hong, B.S. Luk’yanchuk, Y.W. Zheng, W.D. Song, Y.F. Lu, T.C. Chong, Pulsed laser-assisted surface structuring with optical near-field enhanced effects. J. Appl. Phys. 92, 2495 (2002a). https://doi.org/10.1063/1.1501768

    Article  ADS  Google Scholar 

  48. F. Burmeister, C. Schäfle, B. Keilhofer, C. Bechinger, J. Boneberg, P. Leiderer, From mesoscopic to nanoscopic surface structures: lithography with colloid monolayers. Adv. Mater. 10, 495 (1998). https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<495::AID-ADMA495>3.0.CO;2-A

    Article  Google Scholar 

  49. H.W. Deckman, J.H. Dunsmuir, Natural lithography. Appl. Phys. Lett. 41, 377 (1982). https://doi.org/10.1063/1.93501

    Article  ADS  Google Scholar 

  50. U.C. Fischer, H.P. Zingsheim, Submicroscopic pattern replication with visible light. J. Vac. Sci. Technol. 19, 881 (1981). https://doi.org/10.1116/1.571227

    Article  ADS  Google Scholar 

  51. A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, M. Giersig, Shadow nanosphere lithography: Simulation and experiment. Nano Lett. 4, 1359 (2004). https://doi.org/10.1021/nl049361t

    Article  ADS  Google Scholar 

  52. D. Brodoceanu, L. Landström, D. Bäuerle, Laser-induced nanopatterning of silicon with colloidal monolayers. Appl. Phys. A Mater. Sci. Process. 86, 313 (2007). https://doi.org/10.1007/s00339-006-3781-z

    Article  ADS  Google Scholar 

  53. K.L.N. Deepak, D. Grojo, L. Charmasson, P. Delaporte, O. Utéza, M. Dussauze, E. Fargin, Fabrication of microcraters on silicon substrate by UV nanosecond phononic nanojets from microspheres. UVX 2012, 02003 (2013). https://doi.org/10.1051/uvx/201302003

    Article  Google Scholar 

  54. S.M. Huang, Z. Sun, Y.F. Lu, Nanofabrication by laser irradiation of polystyrene particle layers on silicon. Nanotechnology 18, 025302 (2007). https://doi.org/10.1088/0957-4484/18/2/025302

    Article  ADS  Google Scholar 

  55. Y. Lu, S.C. Chen, Nanopatterning of a silicon surface by near-field enhanced laser irradiation. Nanotechnology 14, 505 (2003). https://doi.org/10.1088/0957-4484/14/5/305

    Article  ADS  Google Scholar 

  56. K. Piglmayer, R. Denk, D. Bäuerle, Laser-induced surface patterning by means of microspheres. Appl. Phys. Lett. 80, 4693 (2002). https://doi.org/10.1063/1.1489085

    Article  ADS  Google Scholar 

  57. H. Takada, M. Obara, Fabrication of hexagonally arrayed nanoholes using femtosecond laser pulse ablation with template of subwavelength polystyrene particle array. Jap. J. Appl. Phys. 44, 7993 (2005). https://doi.org/10.1063/1.350906

    Article  ADS  Google Scholar 

  58. M. Ulmeanu, M. Zamfirescu, L. Rusen, C. Luculescu, A. Moldovan, A. Stratan, R. Dabu, Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation. J. Appl. Phys. 106, 114908 (2009). https://doi.org/10.1063/1.3264833

    Article  ADS  Google Scholar 

  59. O. Watanabe, T. Ikawa, M. Hasegawa, M. Tsuchimori, Y. Kawata, Nanofabrication induced by near-field exposure from a nanosecond laser pulse. Appl. Phys. Lett. 79, 1366 (2001). https://doi.org/10.1063/1.1398326

    Article  ADS  Google Scholar 

  60. Y. Zhou, M.H. Hong, J.Y.H. Fuh, L. Lu, B.S. Luk’yanchuk, Z.B. Wang, L.P. Shi, T.C. Chong, Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement. Appl. Phys. Lett. 88, 023110 (2006). https://doi.org/10.1063/1.2163988

    Article  ADS  Google Scholar 

  61. S. Juodkazis, Y. Nishi, H. Misawa, V. Mizeikis, O. Schecker, R. Waitz, P. Leiderer, E. Scheer, Optical transmission and laser structuring of silicon membranes. Opt. Express 17, 15308 (2009). https://doi.org/10.1364/OE.17.015308

    Article  ADS  Google Scholar 

  62. M. Ulmeanu, P. Petkov, D. Ursescu, V.A. Maraloiu, F. Jipa, E. Brousseau, M.N.R. Ashfold, Pattern formation on silicon by laser-initiated liquid-assisted colloidal lithography. Nanotechnology 26, 455303 (2015). https://doi.org/10.1088/0957-4484/26/45/455303

    Article  ADS  Google Scholar 

  63. M. Ulmeanu, P. Petkov, D. Ursescu, F. Jipa, R. Harniman, E. Brousseau, M.N.R. Ashfold, Substrate surface patterning by optical near field modulation around colloidal particles immersed in a liquid. Opt. Express 24, 27340 (2016). https://doi.org/10.1364/OE.24.027340

    Article  ADS  Google Scholar 

  64. W. Guo, Z.B. Wang, L. Li, D.J. Whitehead, B.S. Luk’yanchuk, Z. Liu, Near-field laser parallel nanofabrication of arbitrary-shaped patterns. Appl. Phys. Lett. 90, 243101 (2007). https://doi.org/10.1063/1.2748035

    Article  ADS  Google Scholar 

  65. R. Fardel, E. McLeod, Y. Tsai, C.B. Arnold, Nanoscale ablation through optically trapped microspheres. Appl. Phys. A Mater. Sci. Process. 101, 41 (2010). https://doi.org/10.1007/s00339-010-5792-z

    Article  ADS  Google Scholar 

  66. E. McLeod, C.B. Arnold, Subwavelength direct-write nanopatterning using optically trapped microspheres. Nat. Nanotechnol. 3, 413 (2008). https://doi.org/10.1038/nnano.2008.150

    Article  Google Scholar 

  67. E. McLeod, C.B. Arnold, Array-based optical nanolithography using optically trapped microlenses. Opt. Express 17, 3640 (2009). https://doi.org/10.1364/OE.17.003640

    Article  ADS  Google Scholar 

  68. E.M. Perassi, J.C. Hernandez-Garrido, M.S. Moreno, E.R. Encina, E.A. Coronado, P.A. Midgley, Using highly accurate 3D nanometrology to model the optical properties of highly irregular nanoparticles: A powerful tool for rational design of plasmonic devices. Nano Lett. 10, 2097–2104 (2010). https://doi.org/10.1021/nl1005492

    Article  ADS  Google Scholar 

  69. K. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302 (1966). https://doi.org/10.1109/TAP.1966.1138693

    Article  ADS  MATH  Google Scholar 

  70. S. Dickreuter, J. Gleixner, A. Kolloch, J. Boneberg, E. Scheer, P. Leiderer, Mapping of plasmonic resonances in nanotriangles. Beilstein J. Nanotechnol. 4, 588 (2013). https://doi.org/10.3762/bjnano.4.66

    Article  Google Scholar 

  71. A. Merlen, F. Lagugne-Labarthet, Imaging the optical near field in Plasmonic nanostructures. Appl. Spectr. 68, 1307 (2014). https://doi.org/10.1366/14-07699

    Article  ADS  Google Scholar 

  72. P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, J. Boneberg, Imaging optical near-fields of nanostructures. Appl. Phys. Lett. 85, 5370 (2004). https://doi.org/10.1063/1.1819990

    Article  ADS  Google Scholar 

  73. W. Huang, W. Qian, M.A. El-Sayed, Gold nanoparticles propulsion from surface fueled by absorption of femtosecond laser pulse at their surface Plasmon resonance. J. Am. Chem. Soc. 128, 13330 (2006). https://doi.org/10.1021/ja064328p

    Article  Google Scholar 

  74. A.A. Jamali, B. Witzigmann, R. Morarescu, T. Baumert, F. Träger, F. Hubenthal, Local near field assisted ablation of fused silica: An experimental and theoretical study. Appl. Phys. A Mater. Sci. Process. 110, 743 (2013). https://doi.org/10.1007/s00339-012-7135-8

    Article  ADS  Google Scholar 

  75. T. Geldhauser, S. Ikegaya, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, H. Misawa, Visualization of near-field enhancements of gold triangles by nonlinear photopolymerization. Plasmonics 6, 207 (2011). https://doi.org/10.1007/s11468-010-9189-9

    Article  Google Scholar 

  76. N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, H. Misawa, Spatially selective nonlinear Photopolymerization induced by the near-field of surface Plasmons localized on rectangular gold Nanorods. J. Phys. Chem. C 113, 1147 (2009). https://doi.org/10.1021/jp809623y

    Article  Google Scholar 

  77. K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, H. Misawa, Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. J. Am. Chem. Soc. 130, 6928 (2008). https://doi.org/10.1021/ja801262r

    Article  Google Scholar 

  78. C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. Chang, S.K. Gray, G.P. Wiederrecht, G.C. Schatz, Near-field photochemical imaging of noble metal nanostructures. Nano Lett. 5, 615 (2005). https://doi.org/10.1021/nl047956i

    Article  ADS  Google Scholar 

  79. P. Kühler, F.J. Garcia de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. Afonso, J. Siegel, Imprinting the optical near field of microstructures with nanometer resolution. Small 5, 1825 (2009). https://doi.org/10.1002/smll.200900393

    Article  Google Scholar 

  80. P. Kühler, F.J. Garcia de Abajo, P. Leiprecht, A. Kolloch, J. Solis, P. Leiderer, J. Siegel, Quantitative imaging of optical near fields. Opt. Express 20, 22063 (2012). https://doi.org/10.1364/OE.20.022063

    Article  ADS  Google Scholar 

  81. L.E. Hennemann, A. Kolloch, A. Kern, J. Mihaljevic, J. Boneberg, P. Leiderer, A. Meixner, D. Zhang, Assessing the plasmonics of gold nano-triangles with higher order laser modes. Beilstein J. Nanotechnol. 3, 674 (2012). https://doi.org/10.3762/bjnano.3.77

    Article  Google Scholar 

  82. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F.J. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, Adaptive subwavelength control of nano-optical fields. Nature 446, 301 (2007). https://doi.org/10.1038/nature05595

    Article  ADS  Google Scholar 

  83. C.M. Scheffler, R.C. Word, R. Könenkamp, Controlling electric field and photoemission at the tips of triangular gold antennas. Plasmonics 16, 371 (2021). https://doi.org/10.1007/s11468-020-01292-7

    Article  Google Scholar 

  84. Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, H. Misawa, Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy. Light: Sci. Appl 2, e118 (2013). https://doi.org/10.1038/lsa.2013.74

    Article  ADS  Google Scholar 

  85. J. Fiutowski, C. Maibohm, J. Kjelstrup-Hansen, H.-G. Rubahn, Laser ablation of polymer coatings allows for electromagnetic field enhancement mapping around nanostructures. Appl. Phys. Lett. 98, 193117 (2011). https://doi.org/10.1063/1.3591972

    Article  ADS  Google Scholar 

  86. J. Boneberg, J. König-Birk, H.-J. Münzer, P. Leiderer, K. Shuford, G.C. Schatz, Optical near-fields of triangular nanostructures. Appl. Phys. A Mater. Sci. Process. 89, 299–303 (2007). https://doi.org/10.1007/s00339-007-4138-y

    Article  Google Scholar 

  87. A. Kolloch, T. Geldhauser, K. Ueno, H. Misawa, J. Boneberg, A. Plech, P. Leiderer, Femtosecond and picosecond near-field ablation of gold nanotriangles: Nanostructuring and nanomelting. Appl. Phys. A Mater. Sci. Process. 104, 793–799 (2011). https://doi.org/10.1007/s00339-011-6443-8

    Article  Google Scholar 

  88. D. Eversole, B. Luk’yanchuk, A. Ben-Yakar, Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres. Appl. Phys. A Mater. Sci. Process. 89, 283–291 (2007). https://doi.org/10.1007/s00339-007-4166-7

    Article  Google Scholar 

  89. N.N. Nedyalkov, H. Takada, M. Obara, Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles. Appl. Phys. A Mater. Sci. Process. 85, 163 (2006a). https://doi.org/10.1007/s00339-006-3679-9

    Article  ADS  Google Scholar 

  90. B.J. Nagy, Z. Pápa, L. Péter, C. Prietl, J.R. Krenn, P. Dombi, Near-field-induced femtosecond breakdown of Plasmonic nanoparticles. Plasmonics 15, 335 (2020). https://doi.org/10.1007/s11468-019-01043-3

    Article  Google Scholar 

  91. R. Morarescu, L. Englert, B. Kolaric, P. Damman, R.A.L. Vallée, T. Baumert, F. Hubenthal, F. Träger, Tuning nanopatterns on fused silica substrates: A theoretical and experimental approach. J. Mater. Chem. 21, 4076 (2011). https://doi.org/10.1039/c0jm03829f

    Article  Google Scholar 

  92. F. Hubenthal, R. Morarescu, L. Englert, L. Haag, T. Baumert, F. Träger, Parallel generation of nanochannels in fused silica with a single femtosecond laser pulse: Exploiting the optical near fields of triangular nanoparticles. Appl. Phys. Lett. 95, 063101 (2009). https://doi.org/10.1063/1.3186787

    Article  ADS  Google Scholar 

  93. E. Boulais, A. Robitaille, P. Desjeans-Gauthier, M. Meunier, Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate: Comment. Opt. Express 19, 6177–6178 (2011). https://doi.org/10.1364/OE.19.006177

    Article  ADS  Google Scholar 

  94. R.K. Harrison, A. Ben-Yakar, Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate. Opt. Express 18, 22556 (2010). https://doi.org/10.1364/OE.18.022556

    Article  ADS  Google Scholar 

  95. R.K. Harrison, A. Ben-Yakar, Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate: Reply. Opt. Express 19, 6179 (2011). https://doi.org/10.1364/OE.19.006179

    Article  ADS  Google Scholar 

  96. S. Hashimoto, T. Uwada, M. Hagiri, H. Takai, T. Ueki, Gold nanoparticle-assisted laser surface modification of borosilicate glass substrates. J. Phys. Chem. C 113, 20640 (2009). https://doi.org/10.1021/jp905291h

    Article  Google Scholar 

  97. S. Hashimoto, T. Uwada, M. Hagiri, R. Shiraishi, Mechanistic aspect of surface modification on glass substrates assisted by single shot pulsed laser-induced fragmentation of gold nanoparticles. J. Phys. Chem. C 115, 12, 4986 (2011). https://doi.org/10.1021/jp106830x

    Article  Google Scholar 

  98. S. Imamova, N. Nedyalkov, A. Dikovska, P. Atanasov, M. Sawczak, R. Jendrzejeski, G. Sliwinski, M. Obara, Near field properties of nanoparticle arrays fabricated by laser annealing of thin Au and Ag films. Appl. Surf. Sci. 257, 1075 (2010). https://doi.org/10.1016/j.apsusc.2010.08.016

    Article  ADS  Google Scholar 

  99. N. Nedyalkov, T. Sakai, T. Miyanishi, M. Obara, Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring. J. Phys. D. Appl. Phys. 39, 5037 (2006b). https://doi.org/10.1088/0022-3727/39/23/021

    Article  ADS  Google Scholar 

  100. N. Nedyalkov, T. Sakai, T. Miyanishi, M. Obara, Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate. Appl. Phys. Lett. 90, 123106 (2007). https://doi.org/10.1063/1.2715103

    Article  ADS  Google Scholar 

  101. A. Robitaille, É. Boulais, M. Meunier, Mechanisms of plasmon-enhanced femtosecond laser nanoablation of silicon. Opt. Express 21, 9703 (2013). https://doi.org/10.1364/OE.21.009703

    Article  ADS  Google Scholar 

  102. J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Femtosecond laser ablation of silicon—Modification thresholds and morphology. Appl. Phys. A Mater. Sci. Process. 74, 19–25 (2002). https://doi.org/10.1007/s003390100893

    Article  Google Scholar 

  103. D. von der Linde, K. Sokolowski-Tinten, J. Bialkowski, Laser-solid interaction in the femtosecond time regime. Appl. Surf. Sci. 109/110, 1 (1997). https://doi.org/10.1016/S0169-4332(96)00611-3

    Article  ADS  Google Scholar 

  104. A. Kolloch, Plasmon resonances for Sub-100 nm silicon ablation: Quantitative measurement and nanometer-scale ablation mechanism, PhD Dissertation (Konstanz 2012) http://nbn-resolving.de/urn:nbn:de:bsz:352-231938

Download references

Acknowledgments

We appreciate numerous discussions with the groups of Carmen Afonso, Jan Siegel and Javier Solis (Madrid), Dieter Bäuerle (Linz) and Roland Oltra (Dijon), and also with Andrew C. Tam (San Jose), Minghui Hong, and Boris Luk’yanchuk (Singapore), Anton Plech (Karlsruhe), Andreas Pack and Reinhold Wannemacher (Chemnitz), and Hiroaki Misawa, Kosei Ueno, and Saulius Juodkazis (Sapporo) and their teams. In our group in Konstanz, we are in particular indebted to our master and PhD students Christof Bartels, Micha Bertsch, Simon Dickreuter, Julia Gleixner, Johannes Graf, Juliane König-Birk, Andreas Kolloch, Paul Kühler, Mario Mosbacher, Hajo Münzer, and Michael Ochmann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Leiderer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boneberg, J., Scheer, E., Leiderer, P. (2023). Optical Nanostructuring by Near-Field Laser Ablation. In: Stoian, R., Bonse, J. (eds) Ultrafast Laser Nanostructuring. Springer Series in Optical Sciences, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-031-14752-4_11

Download citation

Publish with us

Policies and ethics