Skip to main content

Art Making in Schizophrenia: A Vision Science Perspective

  • Chapter
  • First Online:
Art and Neurological Disorders

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

How does schizophrenia affect art making processes and the artwork that results from these processes? Here we discuss research dealing with this question, focusing on pictorial art, and applying ideas and methods from vision science. We briefly review the study of art by people with schizophrenia, focusing on Hans Prinzhorn’s application of Art Historical analysis to images. However, we argue that more quantitative methods are needed, which can be drawn from modern vision science. This approach is potentiated by the fact that there is considerable and growing evidence for deep relationships between specific patterns of visual dysfunction and the neural substrates and patient experience of schizophrenia. At the same time, images produced by artists with schizophrenia provide a unique window on the disorder and its sensory-perceptual effects. The goal is to unite these spheres of inquiry. There is evidence of effects of vision abnormalities associated with schizophrenia in art produced by people with the disorder. We also briefly discuss art appreciation in schizophrenia in the context of visual deficits. We then provide a case study of an artist with schizophrenia, Henry Cockburn, in order to give first-hand experience of artistic expression in schizophrenia. Bearing in mind potential pitfalls, we conclude by encouraging researchers to pursue systematic studies of visual art production—as well as the proclivity to make art—in schizophrenia in order to illuminate both patients’ perceptual experience and the neural underpinnings of the disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In some respects, the fragmentation observed in face portrayals of people with schizophrenia resembles the fragmentation seen in prosopagnosia, a more severe condition characterized by an inability to integrate facial features into a coherent whole. While we could not identify scientific studies of this issue, reports and examples of art of people with prosopagnosia have appeared in the popular literature, e.g., https://www.bbc.com/news/stories-53192821

References

  1. McLean D, Thara R, John S, Barrett R, Loa P, McGrath J, Mowry B. DSM-IV “criterion A” schizophrenia symptoms across ethnically different populations: evidence for differing psychotic symptom content or structural organization? Cult Med Psychiatry. 2014;38(3):408–26. https://doi.org/10.1007/s11013-014-9385-8. PMID: 24981830; PMCID: PMC4140994.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bhugra D. The Global Prevalence of Schizophrenia. PLoS Med. 2005;2(5):e151. https://doi.org/10.1371/journal.pmed.0020151.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Roy B, Shah A, Bloomgren G, Wenten M, Li J, Lally C. Disease Prevalence, Comorbid Conditions, and Medication Utilization Among Patients with Schizophrenia in the United States. CNS Spectr. 2021;26(2):157. https://doi.org/10.1017/S1092852920002515. PMID: 34127114

    Article  Google Scholar 

  4. Saha S, Chant D, Welham J, McGrath J. A Systematic Review of the Prevalence of Schizophrenia. PLoS Med. 2005;2(5):e141. https://doi.org/10.1371/journal.pmed.0020141.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gejman PV, Sanders AR, Duan J. The role of genetics in the etiology of schizophrenia. Psychiatr Clin North Am. 2010;33(1):35–66. https://doi.org/10.1016/j.psc.2009.12.003.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Srivastava A, Dada O, Qian J, Al-Chalabi N, Fatemi AB, Gerretsen P, Graff A, De Luca V. Epigenetics of Schizophrenia. Psychiatry Res. 2021;305:114218. https://doi.org/10.1016/j.psychres.2021.114218. Epub ahead of print. PMID: 34638051

    Article  CAS  PubMed  Google Scholar 

  7. McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry. 2020;19(1):15–33. https://doi.org/10.1002/wps.20693. PMID: 31922684; PMCID: PMC6953551.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Slifstein M, van de Giessen E, Van Snellenberg J, Thompson JL, Narendran R, Gil R, Hackett E, Girgis R, Ojeil N, Moore H, D’Souza D, Malison RT, Huang Y, Lim K, Nabulsi N, Carson RE, Lieberman JA, Abi-Dargham A. Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiat. 2015;72(4):316–24. https://doi.org/10.1001/jamapsychiatry.2014.2414. PMID: 25651194; PMCID: PMC4768742.

  9. Schmidt MJ, Mirnics K. Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology. 2015;40(1):190–206. https://doi.org/10.1038/npp.2014.95. Epub 2014 Apr 24. PMID: 24759129; PMCID: PMC4262918.

    Article  PubMed  Google Scholar 

  10. Tani M, Akashi N, Hori K, Konishi K, Kitajima Y, Tomioka H, Inamoto A, Hirata A, Tomita A, Koganemaru T, Takahashi A, Hachisu M. Anticholinergic Activity and Schizophrenia. Neurodegener Dis. 2015;15(3):168–74. https://doi.org/10.1159/000381523. Epub 2015 Jun 30. PMID: 26138495.

    Article  CAS  PubMed  Google Scholar 

  11. Hu W, Chen Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol Ther. 2017;175:116–32. https://doi.org/10.1016/j.pharmthera.2017.02.039. Epub 2017 Feb 20. PMID: 28223162

    Article  CAS  PubMed  Google Scholar 

  12. Hanson DR, Gottesman II. Theories of schizophrenia: a genetic-inflammatory-vascular synthesis. BMC Med Genet. 2005;11(6):7. https://doi.org/10.1186/1471-2350-6-7. PMID: 15707482; PMCID: PMC554096

    Article  CAS  Google Scholar 

  13. Moises HW, Wollschläger D, Binder H. Functional genomics indicate that schizophrenia may be an adult vascular-ischemic disorder. Transl Psychiatry. 2015;5(8):e616. https://doi.org/10.1038/tp.2015.103. PMID: 26261884; PMCID: PMC4564558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Little JD. Schizophrenia: a multi-system disorder? Aust N Z J Psychiatry. 2015;49(4):390. https://doi.org/10.1177/0004867415573058. Epub 2015 Feb 17. PMID: 25690748

    Article  PubMed  Google Scholar 

  15. Silverstein SM, Lai A, Green KM, Crosta C, Fradkin SI, Ramchandran RS. Retinal Microvasculature in Schizophrenia. Eye Brain. 2021a;24(13):205–17. https://doi.org/10.2147/EB.S317186. PMID: 34335068; PMCID: PMC8318708

    Article  Google Scholar 

  16. Correll CU, Robinson DG, Schooler NR, Brunette MF, Mueser KT, Rosenheck RA, Marcy P, Addington J, Estroff SE, Robinson J, Penn DL, Azrin S, Goldstein A, Severe J, Heinssen R, Kane JM. Cardiometabolic risk in patients with first-episode schizophrenia spectrum disorders: baseline results from the RAISE-ETP study. JAMA Psychiat. 2014;71(12):1350–63. https://doi.org/10.1001/jamapsychiatry.2014.1314. PMID: 25321337

    Article  Google Scholar 

  17. Kritharides L, Chow V, Lambert TJ. Cardiovascular disease in patients with schizophrenia. Med J Aust. 2017;206(2):91–5. https://doi.org/10.5694/mja16.00650. PMID: 28152356

    Article  PubMed  Google Scholar 

  18. Burns JK. An evolutionary theory of schizophrenia: cortical connectivity, metarepresentation, and the social brain. Behav Brain Sci. 2004;27(6):831–55. https://doi.org/10.1017/s0140525x04000196. discussion 855-85. PMID: 16035403

    Article  PubMed  Google Scholar 

  19. Giotakos O. Persistence of psychosis in the population: The cost and the price for humanity. Psychiatriki. 2018;29(4):316–26. https://doi.org/10.22365/jpsych.2018.294.316. PMID: 30814041

  20. MacCabe JH, Sariaslan A, Almqvist C, Lichtenstein P, Larsson H, Kyaga S. Artistic creativity and risk for schizophrenia, bipolar disorder and unipolar depression: a Swedish population-based case–control study and sib-pair analysis. Br J Psychiatry. 2018;212(6):370–6.

    Article  CAS  PubMed  Google Scholar 

  21. Acar S, Chen X, Cayirdag N. Schizophrenia and creativity: A meta-analytic review. Schizophr Res. 2018;195:23–31. https://doi.org/10.1016/j.schres.2017.08.036. Epub 2017 Sep 1. PMID: 28867517.

    Article  PubMed  Google Scholar 

  22. Rennert H. Die “vertikale Blickwinkelverschiebung” in der schizophrenen Bildnerei. Ein Beitrag zur Problematik der Raumabbildungsanomalien [“Vertical displacement of the visual angle” in schizophrenic creative art. Spatial conception anomalies]. Psychiatr Neurol Med Psychol (Leipz). 1969;21(9):325–9. PMID: 5363121

    CAS  PubMed  Google Scholar 

  23. Burch GSJ, Pavelis C, Hemsley DR, Corr PJ. Schizotypy and creativity in visual artists. Br J Psychol. 2006;97(2):177–90.

    Article  PubMed  Google Scholar 

  24. Degmečić D. Schizophrenia and creativity. Psychiatr Danub. 2018;30(Suppl 4):224–7. PMID: 29864764

    PubMed  Google Scholar 

  25. Bleuler E. Dementia praecox oder Gruppe der Schizophrenien, vol. 4. Deuticke; 1911.

    Google Scholar 

  26. Peiry L. L’Art Brut. Paris: Flammarion; 1997.

    Google Scholar 

  27. Morgenthaler W. Ein Geisteskranker als Künstler. E. Bircher; 1921.

    Google Scholar 

  28. Prinzhorn H. Artistry of the Mentally Ill. New York: Springer; 1922/1972.

    Google Scholar 

  29. Goldwater R. Primitivism in modern art. Harvard University Press; 1938/2013.

    Google Scholar 

  30. Skov M, Nadal M. A farewell to art: Aesthetics as a topic in psychology and neuroscience. Perspect Psychol Sci. 2020;15(3):630–42.

    Article  PubMed  Google Scholar 

  31. Graham DJ, Field DJ. Global nonlinear compression of natural luminances in painted art. In Computer image analysis in the study of art, vol. 6810. International Society for Optics and Photonics; 2008a. p. 68100K.

    Book  Google Scholar 

  32. Graham DJ, Field DJ. Variations in intensity statistics for representational and abstract art, and for art from the eastern and western hemispheres. Perception. 2008b;37:1341–52.

    Article  PubMed  Google Scholar 

  33. Schweinhart AM, Essock EA. Structural content in paintings: artists overregularize oriented content of paintings relative to the typical natural scene bias. Perception. 2013;42(12):1311–32.

    Article  PubMed  Google Scholar 

  34. Graham DJ, Field DJ. Natural images: coding efficiency. In: Squire LR, editor. Encyclopedia of Neuroscience, vol. VI. Oxford: Academic; 2009. p. 19–27.

    Chapter  Google Scholar 

  35. Cho H, Gonzalez R, Lavaysse LM, Pence S, Fulford D, Gard DE. Do people with schizophrenia experience more negative emotion and less positive emotion in their daily lives? A meta-analysis of experience sampling studies. Schizophr Res. 2017;183:49–55. https://doi.org/10.1016/j.schres.2016.11.016. Epub 2016 Nov 21. PMID: 27881233.

    Article  PubMed  Google Scholar 

  36. Solovay MR, Shenton ME, Holzman PS. Comparative studies of thought disorders. I. Mania and schizophrenia. Arch Gen Psychiatry. 1987;44(1):13–20. https://doi.org/10.1001/archpsyc.1987.01800130015003. PMID: 3800579

    Article  CAS  PubMed  Google Scholar 

  37. Crider A. Perseveration in schizophrenia. Schizophr Bull. 1997;23(1):63–74. https://doi.org/10.1093/schbul/23.1.63. PMID: 9050113.

    Article  CAS  PubMed  Google Scholar 

  38. Sack AT, van de Ven VG, Etschenberg S, Schatz D, Linden DE. Enhanced vividness of mental imagery as a trait marker of schizophrenia? Schizophr Bull. 2005;31(1):97–104. https://doi.org/10.1093/schbul/sbi011. Epub 2005 Jan 31. PMID: 15888429.

    Article  PubMed  Google Scholar 

  39. Anticevic A, Gancsos M, Murray JD, Repovs G, Driesen NR, Ennis DJ, Niciu MJ, Morgan PT, Surti TS, Bloch MH, Ramani R, Smith MA, Wang XJ, Krystal JH, Corlett PR. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc Natl Acad Sci U S A. 2012;109(41):16720–5. https://doi.org/10.1073/pnas.1208494109. Epub 2012 Sep 25. PMID: 23012427; PMCID: PMC3478611.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Silverstein SM, Lai A. The Phenomenology and neurobiology of visual distortions and hallucinations in schizophrenia: an update. Front Psych. 2021;11(12):684720. https://doi.org/10.3389/fpsyt.2021.684720. PMID: 34177665; PMCID: PMC8226016.

    Article  Google Scholar 

  41. Sass LA. Self-disturbance and schizophrenia: structure, specificity, pathogenesis (Current issues, New directions). Schizophr Res. 2014;152(1):5–11. https://doi.org/10.1016/j.schres.2013.05.017. Epub 2013 Jun 14. PMID: 23773296.

    Article  PubMed  Google Scholar 

  42. Sass LA, Parnas J. Schizophrenia, consciousness, and the self. Schizophr Bull. 2003;29(3):427–44. https://doi.org/10.1093/oxfordjournals.schbul.a007017. PMID: 14609238.

    Article  PubMed  Google Scholar 

  43. Sheffield JM, Karcher NR, Barch DM. Cognitive Deficits in Psychotic Disorders: A Lifespan Perspective. Neuropsychol Rev. 2018;28(4):509–33. https://doi.org/10.1007/s11065-018-9388-2. Epub 2018 Oct 20. PMID: 30343458; PMCID: PMC6475621.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ford JM, Palzes VA, Roach BJ, Potkin SG, van Erp TG, Turner JA, Mueller BA, Calhoun VD, Voyvodic J, Belger A, Bustillo J, Vaidya JG, Preda A, Mc Ewen SC. Functional Imaging Biomedical Informatics Research Network, Mathalon DH. Visual hallucinations are associated with hyperconnectivity between the amygdala and visual cortex in people with a diagnosis of schizophrenia. Schizophr Bull. 2015;41(1):223–32. https://doi.org/10.1093/schbul/sbu031. Epub 2014 Mar 11. PMID: 24619536; PMCID: PMC4266287

    Article  PubMed  Google Scholar 

  45. Graham DJ, Field DJ. Statistical regularities of art images and natural scenes: Spectra, sparseness and nonlinearities. Spat Vis. 2007;21:149–64.

    Article  PubMed  Google Scholar 

  46. Graham DJ, Redies C. Statistical regularities in art: Relations with visual coding and perception. Vis Res. 2010;50(16):1503–9.

    Article  PubMed  Google Scholar 

  47. Redies C, Amirshahi SA, Koch M, Denzler J. PHOG-derived aesthetic measures applied to color photographs of artworks, natural scenes and objects. In: European Conference on Computer Vision. Berlin; Heidelberg: Springer; 2012. p. 522–31

    Google Scholar 

  48. Essock EA, Schweinhart AM. Structural content in paintings ii: Artists commissioned to reproduce a specific image over-regularize orientation biases in their paintings. Perception. 2016;45(6):657–69.

    Article  PubMed  Google Scholar 

  49. Furmanski CS, Engel SA. An oblique effect in human primary visual cortex. Nat Neurosci. 2000;3(6):535–6.

    Article  CAS  PubMed  Google Scholar 

  50. Graham DJ. The use of visual statistical features in empirical aesthetics. In: Nadal M, Vartanian O, editors. Oxford Handbook of Empirical Aesthetics. Oxford: Oxford University Press; 2021. https://doi.org/10.1093/oxfordhb/9780198824350.013.19.

    Chapter  Google Scholar 

  51. Atick JJ, Redlich AN. What does the retina know about natural scenes? Neural Comput. 1992;4(2):196–210.

    Article  Google Scholar 

  52. Graham DJ, Chandler DM, Field DJ. Can the theory of “whitening” explain the center-surround properties of retinal ganglion cell receptive fields? Vis Res. 2006;46:2901–13.

    Article  PubMed  Google Scholar 

  53. Kraepelin E. Lehrbuch der Psychiatrie. 7th ed. Leipzig: Barth; 1903.

    Google Scholar 

  54. Silverstein SM. Visual perception disturbances in schizophrenia: a unified model. In: The neuropsychopathology of schizophrenia; 2016a. p. 77–132

    Google Scholar 

  55. Silverstein SM. Visual Perception Disturbances in Schizophrenia: A Unified Model. Neb Symp Motiv. 2016;63:77–132. https://doi.org/10.1007/978-3-319-30596-7_4. PMID: 27627825

    Article  Google Scholar 

  56. Silverstein SM, Wang Y, Keane BP. Cognitive and neuroplasticity mechanisms by which congenital or early blindness may confer a protective effect against schizophrenia. Front Psychol. 2012;3:624. https://doi.org/10.3389/fpsyg.2012.00624. PMID: 23349646; PMCID: PMC3552473.

    Article  PubMed  Google Scholar 

  57. Leivada E, Boeckx C. Schizophrenia and cortical blindness: protective effects and implications for language. Front Hum Neurosci. 2014;28(8):940. https://doi.org/10.3389/fnhum.2014.00940. PMID: 25506321; PMCID: PMC4246684

    Article  Google Scholar 

  58. Morgan VA, Clark M, Crewe J, Valuri G, Mackey DA, Badcock JC, Jablensky A. Congenital blindness is protective for schizophrenia and other psychotic illness. A whole-population study Schizophr Res. 2018;202:414–6. https://doi.org/10.1016/j.schres.2018.06.061. Epub 2018 Jul 7. PMID: 30539775

    Article  PubMed  Google Scholar 

  59. Landgraf S, Osterheider M. “To see or not to see: That is the question.” The “Protection-Against- Schizophrenia” (PaSZ) model: Evidence from congenital blindness and visuocognitive aberrations. Front Psychol. 2013;4:352. https://doi.org/10.3389/fpsyg.2013.00352.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Silverstein SM, Rosen R. Schizophrenia and the eye. Schizophrenia Research: Cognition. 2015;2(2):46–55.

    PubMed  Google Scholar 

  61. Merabet LB, Rizzo JF, Amedi A, Somers DC, Pascual-Leone A. What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses. Nat Rev Neurosci. 2005;6(1):71–7.

    Article  CAS  PubMed  Google Scholar 

  62. Chen WS, Bear MF. Activity-dependent regulation of NR2B translation contributes to metaplasticity in mouse visual cortex. Neuropharmacology. 2007;52:200–14.

    Article  CAS  PubMed  Google Scholar 

  63. Chen Q, He S, Hu XL, Yu J, Zhou Y, Zheng J, et al. Differential roles of NR2A-and NR2B-containing NMDA receptors in activity-dependent brain-derived neurotrophic factor gene regulation and limbic epileptogenesis. J Neurosci. 2007;27:542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sanders GS, Platek SM, Gallup GG. No blind schizophrenics: are NMDA-receptor dynamics involved? Behav Brain Sci. 2003;26:103.

    Article  Google Scholar 

  65. Balu DT. The NMDA Receptor and Schizophrenia: from pathophysiology to treatment. Adv Pharmacol. 2016;76:351–82. https://doi.org/10.1016/bs.apha.2016.01.006. Epub 2016 Mar 4. PMID: 27288082; PMCID: PMC5518924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry. 1995;52(12):998–1007. https://doi.org/10.1001/archpsyc.1995.03950240016004. PMID: 7492260

    Article  CAS  PubMed  Google Scholar 

  67. Phillips WA, Silverstein SM. Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci. 2003;26(1):65–82. https://doi.org/10.1017/s0140525x03000025. discussion 82-137, PMID: 14598440.

    Article  PubMed  Google Scholar 

  68. Butler PD, Zemon V, Schechter I, Saperstein AM, Hoptman MJ, Lim KO. Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry. 2005;62:495–504. https://doi.org/10.1001/archpsyc.62.5.495.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Keri S. The magnocellular pathway and schizophrenia. Vis Res. 2008;48:1181–2. https://doi.org/10.1016/j.visres.2007.11.021.

    Article  PubMed  Google Scholar 

  70. Qian N, Lipkin RM, Kaszowska A, Silipo G, Dias EC, Butler PD, Javitt DC. Computational modeling of excitatory/inhibitory balance impairments in schizophrenia. Schizophr Res. 2020; https://doi.org/10.1016/j.schres.2020.03.027.

  71. Slaghuis WL. Contrast sensitivity for stationary and drifting spatial frequency gratings in positive- and negative-symptom schizophrenia. J Abnormal Psychol. 1998;107:49–62.

    Article  CAS  Google Scholar 

  72. Butler PD, Javitt DC. Early-stage visual processing deficits in schizophrenia. Curr Op Psychiatry. 2005;18:151–7.

    Article  Google Scholar 

  73. O’Donnell BF, Potts GF, Nestor PG, Stylianopoulos KC, Shenton ME, McCarley RW. Spatial frequency discrimination in schizophrenia. J Abnorm Psychol. 2002;111(4):620.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Butler PD, Martinez A, Foxe JJ, Kim D, Zemon V, Silipo G, et al. Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain. 2007;130(2):417–30.

    Article  PubMed  Google Scholar 

  75. Dias EC, Butler PD, Hoptman MJ, Javitt DC. Early sensory contributions to contextual encoding deficits in schizophrenia. Arch Gen Psychiatry. 2011;68(7):654–64.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Schechter I, Butler PD, Zemon VM, Revheim N, Saperstein AM, Jalbrzikowski M, et al. Impairments in generation of early-stage transient visual evoked potentials to magno-and parvocellular-selective stimuli in schizophrenia. Clin Neurophysiol. 2005;116(9):2204–15.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Martínez A, Gaspar PA, Hillyard SA, Bickel S, Lakatos P, Dias EC, Javitt DC. Neural oscillatory deficits in schizophrenia predict behavioral and neurocognitive impairments. Front Hum Neurosci. 2015;9:371.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Martinez A, Hillyard SA, Dias EC, Hagler DJ Jr, Butler PD, Guilfoyle DN, Jalbrzikowski M, Silipo G, Javitt DC. Magnocellular pathway impairment in schizophrenia: evidence from functional magnetic resonance imaging. J Neurosci. 2008;28:7492–500. https://doi.org/10.1523/JNEUROSCI.1852-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Martínez A, Hillyard SA, Bickel S, Dias EC, Butler PD, Javitt DC. Consequences of magnocellular dysfunction on processing attended information in schizophrenia. Cereb Cortex. 2012;22(6):1282–93.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Martínez A, Revheim N, Butler PD, Guilfoyle DN, Dias EC, Javitt DC. Impaired magnocellular/dorsal stream activation predicts impaired reading ability in schizophrenia. NeuroImage: Clinical. 2013;2:8–16.

    Article  Google Scholar 

  81. Kiss I, Janka Z, Benedek G, Keri S. Spatial frequency processing in schizophrenia: Trait or state marker? J Abnorm Psychol (1965). 2006;115(3):636–8.

    Article  Google Scholar 

  82. Skottun BC, Skoyles JR. Minireview: Contrast sensitivity and magnocellular functioning in schizophrenia. Vis Res. 2007;47:2923–33. https://doi.org/10.1016/j.visres.2007.07.016.

    Article  PubMed  Google Scholar 

  83. Graham D, Meng M. Altered spatial frequency content in paintings by artists with schizophrenia. i-Perception. 2011;2(1):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sorenson K. Blog post of 10 March 2017. Ren Hang. http://karensearchformeaning.blogspot.com/. Retrieved 13 July 2021; 2017

  85. Henemann GM, Brachmann A, Redies C. Statistical image Properties in Works from the Prinzhorn collection of artists with schizophrenia. Front Psych. 2017;8:273.

    Article  Google Scholar 

  86. Ridley RM. The psychology of perserverative and stereotyped behaviour. Prog Neurobiol. 1994;44(2):221–31. https://doi.org/10.1016/0301-0082(94)90039-6. PMID: 7831478

    Article  CAS  PubMed  Google Scholar 

  87. Perez-Costas E, Melendez-Ferro M, Roberts RC. Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem. 2010;113(2):287–302. https://doi.org/10.1111/j.1471-4159.2010.06604.x. Epub 2010 Jan 20. PMID: 20089137; PMCID: PMC2929831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Weinstein JJ, Chohan MO, Slifstein M, Kegeles LS, Moore H, Abi-Dargham A. Pathway-specific dopamine abnormalities in Schizophrenia. Biol Psychiatry. 2017;81(1):31–42. https://doi.org/10.1016/j.biopsych.2016.03.2104. Epub 2016 Mar 31. PMID: 27206569; PMCID: PMC5177794

    Article  CAS  PubMed  Google Scholar 

  89. Silverstein SM, Kovacs I, Corry R, Valone C. Perceptual processing, the disorganization syndrome, and context processing in chronic schizophrenia. Schiz Res. 1999;43:11–20.

    Article  Google Scholar 

  90. Silverstein SM, Keane BP. Perceptual organization impairment in schizophrenia and associated brain mechanisms: review of research from 2005 to 2010. Schizophr Bull. 2011;37(4):690–9. https://doi.org/10.1093/schbul/sbr052. PMID: 21700589; PMCID: PMC3122298.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Uhlhaas PJ, Silverstein SM. Perceptual organization in schizophrenia spectrum disorders: empirical research and theoretical implications. Psychol Bull. 2005;131(4):618–32. https://doi.org/10.1037/0033-2909.131.4.618. PMID: 16060805

    Article  PubMed  Google Scholar 

  92. Silverstein SM, Berten S, Essex B, Kovács I, Susmaras T, Little DM. An fMRI examination of visual integration in schizophrenia. J Integr Neurosci. 2009;8(2):175–202. https://doi.org/10.1142/s0219635209002113. PMID: 19618486

    Article  PubMed  Google Scholar 

  93. Silverstein SM, Demmin DL, Bednar JA. Computational Modeling of Contrast Sensitivity and Orientation Tuning in First-Episode and Chronic Schizophrenia. Comput Psychiatr. 2017;1(1):102–31. https://doi.org/10.1162/CPSY_a_00005. PMID: 30090855; PMCID: PMC6067832.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Silverstein SM, Demmin D, Skodlar B. Space and Objects: On the Phenomenology and Cognitive Neuroscience of Anomalous Perception in Schizophrenia (Ancillary Article to EAWE Domain 1). Psychopathology. 2017;50(1):60–7. https://doi.org/10.1159/000452493. Epub 2017 Jan 11. PMID: 28073112.

    Article  PubMed  Google Scholar 

  95. Chapman J. The early symptoms of schizophrenia. Br J Psychiatry. 1966;112:225–51.

    Article  CAS  PubMed  Google Scholar 

  96. Sèchehaye M. Autobiography of a Schizophrenic Girl. New York: Signet Books; 1970.

    Google Scholar 

  97. Jung CG. Jung’s 1932 article on Picasso; 1932. Retrieved from http://web.org.uk/picasso/jung_article.html=

  98. Matussek P. Studies in delusional perception, transl, condensed. In: Cutting J, Shepherd M, editors. Clinical Roots of the Schizophrenia Concept Translations of Seminal European Contributions on Schizophrenia. Cambridge: Cambridge University Press; 1987.

    Google Scholar 

  99. Chen Y, Nakayama K, Levy D, Matthysse S, Holzman P. Processing of global, but not local motion detection is deficient in schizophrenia. Schiz. Res. 2003;61:215–27.

    Article  CAS  Google Scholar 

  100. Kandel ER. The disordered mind: What unusual brains tell us about ourselves. Hachette UK. 2018

    Google Scholar 

  101. Silverstein SM. Jung’s views on causes and treatments of schizophrenia in light of current trends in cognitive neuroscience and psychotherapy research I. Aetiology and phenomenology. J Anal Psychol. 2014;59(1):98–129.

    Article  PubMed  Google Scholar 

  102. Fitzgerald M. Louis Wain and Asperger’s Syndrome. Ir J Psychol Med. 2002;19(3):101.

    Article  PubMed  Google Scholar 

  103. McGennis A. Louis Wain: His life, his art and his mental illness. Ir J Psychol Med. 1999;16(1):27–8. https://doi.org/10.1017/S0790966700005000.

    Article  Google Scholar 

  104. Walker E, Kestler L, Bollini A, Hochman KM. Schizophrenia: etiology and course. Ann Rev Psychol. 2004;55:401–30.

    Article  Google Scholar 

  105. Chen Y, Norton D, McBain R. Can persons with schizophrenia appreciate visual art? Schizophr Res. 2008;105(1–3):245–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vessel EA, Maurer N, Denker AH, Starr GG. Stronger shared taste for natural aesthetic domains than for artifacts of human culture. Cognition. 2018;179:121–31.

    Article  PubMed  Google Scholar 

  107. Vessel EA, Rubin N. Beauty and the beholder: Highly individual taste for abstract, but not real-world images. J Vis. 2010;10(2):18.

    Article  Google Scholar 

  108. Pugach C, Leder H, Graham DJ. How stable are human aesthetic preferences across the lifespan? Front Hum Neurosci. 2017;11:289.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Chapman LJ, Chapman JP. The measurement of differential deficit. J Psychiatr Res. 1978;14(1–4):303–11.

    Article  CAS  PubMed  Google Scholar 

  110. Gershman SJ, Lai L. The reward-complexity trade-off in schizophrenia. bioRxiv. 2020.

    Google Scholar 

  111. Knight RA, Silverstein SM. A process-oriented approach for averting confounds resulting from general performance deficiencies in schizophrenia. J Abnorm Psychol. 2001;110(1):15.

    Article  CAS  PubMed  Google Scholar 

  112. Silverstein SM. Measuring specific, rather than generalized, cognitive deficits and maximizing between-group effect size in studies of cognition and cognitive change. Schizophr Bull. 2008;34(4):645–55.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gagné AM, Moreau I, St-Amour I, Marquet P, Maziade M. Retinal function anomalies in young offspring at genetic risk of schizophrenia and mood disorder: The meaning for the illness pathophysiology. Schizophr Res. 2020;219:19–24. https://doi.org/10.1016/j.schres.2019.06.021. Epub 2019 Jul 15. PMID: 31320175

    Article  PubMed  Google Scholar 

  114. Mittal VA, Gupta T, Keane BP, Silverstein SM. Visual context processing dysfunctions in youth at high risk for psychosis: Resistance to the Ebbinghaus illusion and its symptom and social and role functioning correlates. J Abnorm Psychol. 2015;124(4):953–60. https://doi.org/10.1037/abn0000082. Epub 2015 Aug 3. PMID: 26237183; PMCID: PMC4658222.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Silverstein SM, Thompson JL, Gold JM, Schiffman J, Waltz JA, Williams TF, Zinbarg RE, Mittal VA, Ellman LM, Strauss GP, Walker EF, Woods SW, Levin JA, Kafadar E, Kenney J, Smith D, Powers AR, Corlett PR. Increased face detection responses on the mooney faces test in people at clinical high risk for psychosis. NPJ Schizophr. 2021b;7(1):26. https://doi.org/10.1038/s41537-021-00156-1. PMID: 34001909; PMCID: PMC8129098.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Keane BP, Silverstein SM, Wang Y, Roché MW, Papathomas TV. Seeing more clearly through psychosis: depth inversion illusions are normal in bipolar disorder but reduced in schizophrenia. Schizophr Res. 2016;176(2–3):485–92.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Rolf R, Sokolov AN, Rattay TW, Fallgatter AJ, Pavlova MA. Face pareidolia in schizophrenia. Schizophr Res. 2020;218:138–45.

    Article  PubMed  Google Scholar 

  118. Perdreau F, Cavanagh P. Do artists see their retinas? Front Hum Neurosci. 2011;5:171.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Deneve S, Jardri R. Circular inference: mistaken belief, misplaced trust. Curr Opin Behav Sci. 2016;11:40–8.

    Article  Google Scholar 

  120. Gillam B. Occlusion issues in early Renaissance art. i-Perception. 2011;2(9):1076–97.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Zeki S. Art and the brain. J Conscious Stud. 1999;6(6–7):76–96.

    Google Scholar 

  122. Silverstein SM, Fradkin SI, Demmin DL. Schizophrenia and the retina: Towards a 2020 perspective. Schizophr Res. 2020;219:84–94. https://doi.org/10.1016/j.schres.2019.09.016. Epub 2019 Nov 7. PMID: 31708400; PMCID: PMC7202990.

    Article  PubMed  Google Scholar 

  123. Fancourt D, Finn S. What is the evidence on the role of the arts in improving health and well-being? A scoping review. Copenhagen: WHO Regional Office for Europe; (Health Evidence Network (HEN) synthesis report 67); 2019.

    Google Scholar 

  124. Cockburn PHC.. On Schizophrenia: Father and son discuss battling mental illness and the art it inspires; In the first of a three-part series, Patrick Cockburn and his son Henry, reflect on the trauma of schizophrenia Henry has experienced for the past 16 years - and how painting helped. Independent, The/The Independent on Sunday: Web Edition Articles (London, England); 2017.

    Google Scholar 

  125. Cockburn P, Cockburn H. Henry’s demons: Living with schizophrenia, a father and son’s story. Simon and Schuster; 2011.

    Google Scholar 

  126. MacGregor JM. The Discovery of the Art of the Insane. Princeton: Princeton University Press; 1992.

    Google Scholar 

  127. Tuffs A. Collection of artworks by psychiatric patients finds permanent home. BMJ. Br Med J. 2001;323(7315):712.

    Article  Google Scholar 

  128. Graham DJ, Friedenberg JD, Rockmore DN. Efficient visual system processing of spatial and luminance statistics in representational and non-representational art. In: Proc. SPIE: human vision and electronic imaging 7240:72401N; 2009.

    Google Scholar 

  129. Bubl E, Kern E, Ebert D, Bach M. Tebartz van Elst L. Seeing gray when feeling blue? Depression can be measured in the eye of the diseased. Biol Psychiatry. 2010;68(2):205–8. https://doi.org/10.1016/j.biopsych.2010.02.009. Epub 2010 Mar 31. PMID: 20359698.

    Article  PubMed  Google Scholar 

  130. Bubl E, Ebert D, Kern E, van Elst LT, Bach M. Effect of antidepressive therapy on retinal contrast processing in depressive disorder. Br J Psychiatry. 2012;201:151–8. https://doi.org/10.1192/bjp.bp.111.100560. Epub 2012 Jun 14. PMID: 22700080.

    Article  PubMed  Google Scholar 

  131. Masuda O, Nascimento SM. Lighting spectrum to maximize colorfulness. Opt Lett. 2012;37(3):407–9.

    Article  PubMed  Google Scholar 

  132. Montagner C, Linhares JM, Vilarigues M, Nascimento SM. Statistics of colors in paintings and natural scenes. JOSA A. 2016;33(3):A170–7.

    Article  PubMed  Google Scholar 

  133. Nascimento SM, Linhares JM, Montagner C, João CA, Amano K, Alfaro C, Bailão A. The colors of paintings and viewers’ preferences. Vis Res. 2017;130:76–84.

    Article  PubMed  Google Scholar 

  134. Nascimento SMC, Masuda O. Best lighting for visual appreciation of artistic paintings—experiments with real paintings and real illumination. JOSA A. 2014;31(4):A214–9.

    Article  PubMed  Google Scholar 

  135. Nascimento SM, Albers AM, Gegenfurtner KR. Naturalness and aesthetics of colors–Preference for color compositions perceived as natural. Vis Res. 2021;185:98–110.

    Article  PubMed  Google Scholar 

  136. Albers AM, Gegenfurtner KR, Nascimento SM. An independent contribution of colour to the aesthetic preference for paintings. Vis Res. 2020;177:109–17.

    Article  PubMed  Google Scholar 

  137. Hardy LH, Rand G, Rittler MC. Incidence of defective color vision among psychotic patients. Arch Ophthalmol. 1948;40(2):121–33.

    Article  CAS  Google Scholar 

  138. Silverstein SM, Thompson JL. A vision science perspective on schizophrenia. Schizophrenia Research: Cognition. 2015;2(2):39.

    PubMed  Google Scholar 

  139. Fernandes TMP, Silverstein SM, Butler PD, Kéri S, Santos LG, Nogueira RL, Santos NA. Color vision impairments in schizophrenia and the role of antipsychotic medication type. Schizophr Res. 2019;204:162–70.

    Article  PubMed  Google Scholar 

  140. Shuwairi SM, Cronin-Golomb A, McCarley RW, O’Donnell BF. Color discrimination in schizophrenia. Schizophr Res. 2002;55(1–2):197–204.

    Article  PubMed  Google Scholar 

  141. Hébert M, Gagné AM, Paradis ME, Jomphe V, Roy MA, Mérette C, Maziade M. Retinal response to light in young nonaffected offspring at high genetic risk of neuropsychiatric brain disorders. Biol Psychiatry. 2010;67(3):270–4. https://doi.org/10.1016/j.biopsych.2009.08.016. Epub 2009 Oct 14. PMID: 19833322

    Article  PubMed  Google Scholar 

  142. Hirjak D, Thomann PA, Kubera KM, Wolf ND, Sambataro F, Wolf RC. Motor dysfunction within the schizophrenia-spectrum: A dimensional step towards an underappreciated domain. Schizophr Res. 2015;169(1–3):217–33.

    Article  PubMed  Google Scholar 

  143. Kaufman SB, Paul ES. Creativity and schizophrenia spectrum disorders across the arts and sciences. Front Psychol. 2014;5:1145.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Miller GF, Tal IR. Schizotypy versus openness and intelligence as predictors of creativity. Schizophr Res. 2007;93(1–3):317–24.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Ed Vessel, David Field, and Anjan Chatterjee for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Graham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graham, D., Silverstein, S. (2023). Art Making in Schizophrenia: A Vision Science Perspective. In: Richard, A., Pelowski, M., Spee, B.T. (eds) Art and Neurological Disorders. Current Clinical Neurology. Humana, Cham. https://doi.org/10.1007/978-3-031-14724-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14724-1_5

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-14723-4

  • Online ISBN: 978-3-031-14724-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics