Skip to main content

Calorimetric Characterisation of the Binding Reaction Between Human Ferric Haemoglobins and Haptoglobin to Develop a Drug for Removal of Cell-Free Haemoglobin

  • Conference paper
  • First Online:
Oxygen Transport to Tissue XLIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1395))

Abstract

High levels of cell-free haemoglobin (Hb) may occur in plasma as a consequence of e.g., pathological haemolysis or blood transfusion. These Hb molecules can be removed from blood circulation by forming a complex with the acute-phase protein haptoglobin (Hp) and thereby can also the intrinsic toxicity of free Hb be limited. In this study it is shown that ferric HbA, HbF, HbE and HbS, respectively, all bind firmly to Hp at 25 °C. By using isothermal titration calorimetry (ITC), it is demonstrated that ferric HbF has higher affinity to Hp (Ka = 2.79 ± 0.29 ×109 M−1) compared with HbA and HbS (1.91 ± 0.24 ×109 M−1) and 1.41 ± 0.34 ×109 M−1 for HbA and HbS, respectively. In addition, the affinity constant for HbE is slightly lower than the other haemoglobins (0.47 ± 0.40 ×109 M−1). Since Hp shows a general and high affinity to all Hb variants tested, it can be concluded that Hp may be useful as a therapeutic agent for several different haemolytic conditions by intravenous injection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reeder BJ, Svistunenko DA, Cooper CE et al (2004) The radical and redox chemistry of myoglobin and hemoglobin: from in vitro studies to human pathology. Antioxid Redox Signal 6:954–966

    CAS  PubMed  Google Scholar 

  2. Olsson MG, Allhorn M, Bulow L et al (2012) Pathological conditions involving extracellular hemoglobin: molecular mechanisms, clinical significance, and novel therapeutic opportunities for α(1)-microglobulin. Antioxid Redox Signal 17:813–846

    Article  CAS  PubMed  Google Scholar 

  3. Kato GJ, Hebbel RP, Steinberg MH et al (2009) Vasculopathy in sickle cell disease: biology, pathophysiology, genetics, translational medicine, and new research directions. Am J Hematol 84:618–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rees DC, Williams TN, Gladwin MT (2010) Sickle-cell disease. Lancet 376:2018–2031

    Article  CAS  PubMed  Google Scholar 

  5. Kassim AA, DeBaun MR (2013) Sickle cell disease, vasculopathy, and therapeutics. Annu Rev Med 64:451–466

    Article  CAS  PubMed  Google Scholar 

  6. El-Husseini A, Sabry A (2010) Fatal hyperhemolytic delayed transfusion reaction in sickle cell disease: a case report and literature review. Am J Emerg Med 28:1062.e5–1062.e8

    Article  PubMed  Google Scholar 

  7. Akinsheye I, Alsultan A, Solovieff N et al (2011) Fetal hemoglobin in sickle cell anemia. Blood 118:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McGann PT, Nero AC, Ware RE (2013) Current management of sickle cell anemia. Cold Spring Harb Perspect Med 3:a011817

    Article  PubMed  PubMed Central  Google Scholar 

  9. Musallam KM, Taher AT, Cappellini MD et al (2013) Clinical experience with fetal hemoglobin induction therapy in patients with β-thalassemia. Blood 121:2199–2212

    Article  CAS  PubMed  Google Scholar 

  10. Kristiansen M, Graversen JH, Jacobsen C et al (2001) Identification of the haemoglobin scavenger receptor. Nature 409:198–201

    Article  CAS  PubMed  Google Scholar 

  11. Baek JH, D'Agnillo F, Vallelian F et al (2012) Hemoglobin-driven pathophysiology is an in vivo consequence of the red blood cell storage lesion that can be attenuated in Guinea pigs by haptoglobin therapy. J Clin Invest 122:1444–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cooper CE, Schaer DJ, Buehler PW et al (2012) Haptoglobin binding stabilizes hemoglobin Ferryl iron and the globin radical on tyrosine β145. Antioxid Redox Signal 18:2264–2273

    Article  PubMed  Google Scholar 

  13. Alayash AI, Andersen CBF, Moestrup SK et al (2013) Haptoglobin: the hemoglobin detoxifier in plasma. Trends Biotechnol 31:2–3

    Article  CAS  PubMed  Google Scholar 

  14. Ratanasopa K, Chakane S, Ilyas M et al (2013) Trapping of human hemoglobin by Haptoglobin: molecular mechanisms and clinical applications. Antioxid Redox Signal 18:2364–2374

    Article  CAS  PubMed  Google Scholar 

  15. Reeder BJ, Grey M, Silaghi-Dumitrescu RL et al (2008) Tyrosine residues as redox cofactors in human hemoglobin: Implications for engineering nontoxic blood substitutes. J Biol Chem 283:30780–30787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Swedish Research Foundation (VR) and the Swedish Foundation for Strategic Research (SSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Bulow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ratanasopa, K., Bulow, L. (2022). Calorimetric Characterisation of the Binding Reaction Between Human Ferric Haemoglobins and Haptoglobin to Develop a Drug for Removal of Cell-Free Haemoglobin. In: Scholkmann, F., LaManna, J., Wolf, U. (eds) Oxygen Transport to Tissue XLIII. Advances in Experimental Medicine and Biology, vol 1395. Springer, Cham. https://doi.org/10.1007/978-3-031-14190-4_55

Download citation

Publish with us

Policies and ethics