
Chapter 9
Local Search Learning

Local searches play an essential role in metaheuristics. Virtually, all efficient heuris-
tic methods incorporate a local search. Moreover, metaheuristics are sometimes
defined as a master process guiding a local search. In Chapter 5, we have already
seen some basic neighborhood adaptation techniques, in particular its limitation
by the list of candidate moves, granular search and its extension by filter-and-fan
search, and ejection chains.

Most randomized methods reviewed in Chapter 7 are dedicated to local search
extensions. They are not implementing a learning process. They only memorize the
best solution found so far or statistics for self-calibrating the parameters. This allows
taking the unit of measurement of the fitness function into account. The following
step in the sophistication of metaheuristics is to learn to locally modify solutions to
a problem. Among the popular techniques, taboo search (also written tabu search)
offers many strategies and various local search learning mechanisms. This chapter
reviews the basic mechanisms. Other strategies are proposed in the book of Glover
and Laguna [5] and take a more natural place in other chapters of the present book.

9.1 Taboo Search

Proposed by Fred Glover in 1986, the key idea of taboo search is to explore the
solution space with a local search beyond local optima [2–4]. This implies designing
a mechanism to prevent the cycling phenomenon, the fact of entering a cycle where
a limited subset of solutions is repeatedly visited. The simplest concept to imagine
is to memorize all the solutions which have been successively encountered during
a local search but preventing the latter from choosing a neighbor solution that has
already been visited. The visited solutions thus become taboo.

This concept is simple but cumbersome to implement: imagine that a local search
can require millions of iterations, which means memorizing the same number of

© The Author(s) 2023
É. D. Taillard, Design of Heuristic Algorithms for Hard Optimization, Graduate
Texts in Operations Research, https://doi.org/10.1007/978-3-031-13714-3_9

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13714-3_9&domain=pdf

 711 4612 a 711 4612 a

https://doi.org/10.1007/978-3-031-13714-3_9

186 9 Local Search Learning

solutions. Each neighbor solution must be checked to ensure that it has not already
been explored. Knowing that a neighborhood can contain thousands of solutions, we
quickly realize the hopelessness of this way of doing things, either because of the
memory space needed to store the visited solutions or because of the computational
effort to compare neighbor solutions.

9.1.1 Hash Table Memory

A simple technique to implement an approximation of this principle of prohibiting
previously visited solutions is to use a hash table. An integer value h(s) is associated
with each solution s of the problem. If we visit the solution si at iteration i of the
search, we store the value i in the entry h(si) mod m of an array T of m integers.
Thus, the value tk of the kth entry of the table T indicates at which iteration a
solution whose hash value k (modulo m) has been visited.

The h function is generally not bijective over the set of solutions to the problem,
so various solutions can have the same hash value. Indeed, the size m of the array
T must be limited due to the available memory. This technique is, therefore, an
approximation of the concept of prohibiting solutions already visited. Indeed, not
only the latter is prohibited but also all those that have the same hash value.
Moreover, since the value of m is limited, we cannot forever forbid returning to
a solution of a given hash value. After m iterations at the latest, all the solutions
would be prohibited.

It is therefore necessary to implement a key feature of the learning process:
oblivion. These considerations lead us to introduce the key parameter of a taboo
search: the taboo duration, sometimes referred to as the taboo list length.

9.1.1.1 Hash Functions

The choice of a hash function to implement a taboo search is not very difficult.
In some cases, the value of the fitness function is perfect, especially when the
neighborhood includes many moves at zero cost (plateaus). Indeed, taboo search
chooses the best move allowed at each iteration. Hence, neutral changes make
learning difficult. Being on a plateau, the choice of one or the other neighbor is
problematic and cycling can occur. In case the fitness function admits an extensive
range of values, prohibiting during a number of iterations to return to a given fitness
value allows, in many cases, to break the local optimum structure and discover
another one.

A general hash function is as follows. Let us use the notation introduced in
Chapter 4 devoted to constructive methods. A solution is composed of elements
e ∈ E. Each of them is associated with an integer value ze. These values are
randomly generated at the beginning of the algorithm. The hash value of a solution s

is provided by h(s) = ∑
e∈s ze. A more sophisticated hash technique using multiple

9.1 Taboo Search 187

tables is discussed in [6]. It makes it possible to obtain the equivalent of a very large
table, while limiting the memory space.

9.1.2 Taboo Moves

Prohibition based on a hash function is uncommon in taboo search implementations.
Frequently, one prohibits some moves or solutions with certain features. To be
concrete, consider the example of the symmetric TSP.

A 2-opt move can be characterized by the pair [i, j] which consists in replacing
the edges [i, si] and [j, sj] of the current solution s by the edges [i, j] and [si, sj].
One assumes here that the solution is provided by the “successor” of each city and
that the city j comes “after” the city i when traveling in the order given by s. If the
move [i, j] is carried out at an iteration, one can prohibit the reverse move [i, si]
during the following iterations. This is a direct prohibition based on the opposite of
a move.

After performing the move [i, j], another possibility is to indirectly prohibit the
moves leading to a solution containing both edges [i, si] and [j, sj].

By abuse of language, let m−1 denote the inverse of a move, or a feature
of a solution that is forbidden after performing the move m of a neighborhood
characterized by a set M of moves. Although (s ⊕ m) ⊕ m−1 = s, there may
be various ways to define m−1. Since the size of the neighborhood is limited,
it is necessary to relax the taboo status of a move after relatively few iterations.
Therefore, the taboo list is frequently presented as a short-term memory. The most
basic taboo search framework is given by Algorithm 9.1.

9.1.2.1 Implementation of Taboo Status

If the neighborhood size is not too large, it can be stored, for each move, the
iteration from which it can be used again. Let us immediately illustrate such an
implementation for the following knapsack instance with nine variables.

max r = 12s1 + 10s2 + 9s3 + 7s4 + 4s5 + 8s6 + 11s7 + 6s8 + 13s9
Subject 10s1 + 12s2 + 8s3 + 7s4 + 5s5 + 13s6 + 9s7 + 6s8 + 14s9 � 45

to: si ∈ {0, 1} (i = 1, . . . , 9)
(9.1)

A solution s of this problem is a 0—1 vector, with si = 1 if the object i is chosen
and si = 0 otherwise. Each object occupies a certain volume in the knapsack and
the latter possesses a global volume of 45. An elementary neighborhood for this
problem is to alter the value of a unique variable of s.

The taboo conditions can be stored as a vector t of integers with ti giving the
iteration number at which the variable si can revert to a previous value. Initially,

188 9 Local Search Learning

Algorithm 9.1: Elementary taboo search framework

Input: Solution s, set M of moves, fitness function f (·) to minimize, parameters Imax,d.
Result: Improved solution s∗

1 s∗ ← s
2 for Imax iterations do
3 best neighbor value ←
4 forall m ∈ M (such that m (or s⊕m) is not marked as taboo) do
5 if f (s⊕m)< best neighbor value then
6 best neighbor value ← f (s⊕m)
7 m∗ ← m

8 if best neighbor value < then
9 Mark (m∗)−1 (or s) as taboo for the next d iterations

10 s ← s⊕m∗
11 if f (s)< f (s∗) then
12 s∗ ← s

13 else
14 Error message: d too large: no move allowed!

t = 0: at the first iteration, all variables can be modified. For this small instance, let
us assume a taboo duration of d = 3. The initial solution can be set to s = 0, which
represents the worst feasible solution to the problem. Table 9.1 gives the evolution
of a taboo search for this small instance.

Unsurprisingly, object 9 is put in the knapsack at the first iteration. Indeed, this
object has the largest value. At the end of iteration 1, it is forbidden to set s9 = 0
again up to the iteration t9 = 4 = 1 + 3. As long as there is room in the knapsack,
taboo search behaves like a greedy constructive algorithm. At iteration 4, it reaches
the first local optimum s = (1, 1, 0, 0, 0, 0, 1, 0, 1) of value r = 46.

Table 9.1 Evolution of an elementary taboo search for ten iterations for the knapsack instance 9.1.
This search forbids changing again a given variable for d = 3 iterations

Iteration Variable Modified Fitness Volume Taboo status

number modified solution value used

1 s9 (0, 0, 0, 0, 0, 0, 0, 0, 1) 13 14 (0, 0, 0, 0, 0, 0, 0, 0, 4)

2 s7 (1, 0, 0, 0, 0, 0, 0, 0, 1) 25 24 (5, 0, 0, 0, 0, 0, 0, 0, 4)

3 s7 (1, 0, 0, 0, 0, 0, 1, 0, 1) 36 33 (5, 0, 0, 0, 0, 0, 6, 0, 4)

4 s2 (1, 1, 0, 0, 0, 0, 1, 0, 1) 46 45 (5, 7, 0, 0, 0, 0, 6, 0, 4)

5 s9 (1, 1, 0, 0, 0, 0, 1, 0, 0) 33 31 (5, 7, 0, 0, 0, 0, 6, 0, 8)

6 s3 (1, 1, 1, 0, 0, 0, 1, 0, 0) 42 39 (5, 7, 9, 0, 0, 0, 6, 0, 8)

7 s8 (1, 1, 1, 0, 0, 0, 1, 1, 0) 48 45 (5, 7, 9, 0, 0, 0, 6, 10, 8)

8 s2 (1, 0, 1, 0, 0, 0, 1, 1, 0) 38 33 (5, 11, 9, 0, 0, 0, 6, 10, 8)

9 s4 (1, 0, 1, 1, 0, 0, 1, 1, 0) 45 40 (5, 11, 9, 12, 0, 0, 6, 10, 8)

10 s5 (1, 0, 1, 1, 1, 0, 1, 1, 0) 49 45 (5, 11, 9, 12, 13, 0, 6, 10, 8)

9.1 Taboo Search 189

At iteration 5, an object is removed, because the knapsack is dead full. Only
object 9 can be removed due to taboo conditions. As a result, the fitness function
decreases from r = 46 to r = 33, but space is freed up in the knapsack. At
iteration 6, the best move would be to add object 9, but this move is taboo. It would
correspond to return to the solution visited at iteration 4.

The best authorized move is therefore to add object 3. Then, at the subse-
quent iteration the object 8 is added, leading to a new local optimum s =
(1, 1, 1, 0, 0, 0, 1, 1, 0) of value r = 48. The knapsack is again completely full.
At iteration 8, it is necessary to remove an object, setting s2 = 0. The place
thus released makes it possible to add the objects 4 and 5, discovering a solution
s = (1, 0, 1, 1, 1, 0, 1, 1, 0) even better than both local optima previously found.

For the TSP, the type of restrictions described above may be implemented using
a matrix T whose entry tij provides the iteration from which we can again perform
a move where the edge [i, j] belongs to the tour. This principle extends to any
combinatorial problem for which we search for an optimal permutation.

9.1.2.2 Taboo Duration

In the previous example, the taboo duration was set to three iterations. This value
may seem arbitrary. If the taboo conditions are removed (duration set to zero),
the search enters a cycle. Once a local optimum is reached, an object is removed
and added again in the next iteration. The maximum taboo duration is clearly
limited by the neighborhood size: indeed, the search performs all the moves of the
neighborhood and then remains blocked. At that time, they are all prohibited.

These two extreme cases lead to inefficient searches—a zero taboo duration
is equivalent to learning nothing; a very high duration implies poor learning.
Consequently, we have to achieve a sensible compromise for the taboo duration.
Therefore, this duration must be learned for the problem instance treated. Figure 9.1
illustrates this phenomenon for Euclidean TSP instances of size n = 100 randomly,
uniformly distributed in a square. The taboo search performs Imax = 1000
iterations.

Battiti and Tecchiolli [1] proposed a learning mechanism called reactive taboo
search. All the solutions visited by the search are memorized. They can be stored
in an approximate way, employing the hash technique presented in Section 9.1.1.1.
The search starts with a restricted taboo duration. If the search visits a solution
again, then the duration is increased. If the search does not revisit any of the
solutions during a relatively significant number of iterations, then the taboo duration
is diminished.

This last condition seems strange. Why should we force the search to return to
previously explored solutions? The explanation is as follows: if the taboo duration is
sufficient to avoid the cycling phenomenon, it also means we are forbidden to visit
some good solutions because of the taboo status. We are therefore likely to ignore
high-quality solutions.

190 9 Local Search Learning

Average fitness of best solutions discovered

Average fitness of all solutions visited

Taboo duration

Fi
tn

es
s

(p
er

ce
nt

ab
ov

e
op

tim
um

)
0.3

0.25

0.2

0.15

0.1

0.05

0
0 20 40 60 80 100 120 140 160 180 200

Fig. 9.1 Influence of the taboo duration for Euclidean TSP with 100 cities. A short duration allows
visiting better quality solutions, on average. But the search cannot escape from local optima.
Hence, the quality of the best solutions found is not excellent. Conversely, if the taboo duration
is too high, the average solution quality decreases, as well as that of the best solutions discovered.
In this case, a reasonable compromise seems to be a taboo duration around the instance size. More
generally, the square root of the neighborhood size seems appropriate

It is therefore necessary to find a taboo duration long enough to avoid cycling but
as short as possible so as not to prohibit good moves. This is precisely the purpose
of reactive taboo search.

However, this learning technique only repels the problem. Indeed, the user must
determine another parameter which is the number of iterations without revisiting
a solution, triggering the taboo duration decrease. In addition, it requires the
implementation of a storage mechanism for all visited solutions, which can be
cumbersome to implement.

Another technique for choosing low taboo durations while strongly preventing
the cycling phenomenon is to randomly set it at each iteration. A classic method
is to select the taboo duration at random between a minimum duration dmin and a
maximum value dmax = dmin + Δ.

To create Fig. 9.2, 500 QAP instances of size n = 12 with known optimal
solution have been generated. For each instance, we have performed a taboo search
with a considerable number of iterations (for instances that small) with all possible
parameters (dmin,Δ). The number of optimal solutions found for each couple was
then counted. If the search succeeds in finding all the 500 optimal solutions, the
average number of iterations needed to reach the optimum is recorded.

With a deterministic taboo duration (Δ = 0), it was never possible to achieve
all the optimal solutions, even with a relatively large duration. Conversely, with

9.1 Taboo Search 191

dmin

Δ

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

Fig. 9.2 Taboo duration randomly generated between dmin and dmin + Δ. An empty circle
indicates that taboo search has been unable to systematically find the optimum of 500 QAP
instances. The circle size is proportional to the number of optimum found (the larger, the better). A
filled disc indicates that the optimum has been systematically found. The disk size is proportional
to the average number of iterations required for obtaining the optimum (the smaller, the better)

low minimum durations and a random variation equals to the size of the problem,
the optimum is systematically obtained. Moreover, the optimum is reached with
relatively few iterations.

Figure 9.3 reproduces a similar experiment for the TSP. It provides the solution
quality obtained for a small instance for any couple (dmin,Δ). We observe similari-
ties with Fig. 9.2. A random taboo duration proportional to half the instance size is
a reasonable compromise.

9.1.2.3 Aspiration Criterion

The unconditional prohibition of a move can cause unwanted situations. For
instance, one can skip an improvement of the best solution found. Thus, Line 4
of Algorithm 9.1 is modified, and if the move m allows achieving a solution better
than s∗, it is retained. In the literature, this is referred to as an aspiration criterion.
Other less trivial aspiration criteria can be imagined, in particular to implement a
long-term memory.

192 9 Local Search Learning

Fig. 9.3 Quality of the
solutions obtained with a
taboo search where the taboo
duration is randomly chosen
between dmin and dmin + Δ

for a classical instance with
n = 127 cities. The method
performs 10n iterations
starting from a deterministic
greedy nearest neighbor tour.
For all values of dmin

between 0 and 1.5n and Δ

between 0 and 2n, we
launched a search and
represented the solution
quality by a color (% above
optimum)

dmin

Δ

0 n
2 n 3n

2

0

n
2

n

3n
2

2n

Quality

Optimum

+0.6%

+1.2%

+1.8%

9.2 Strategic Oscillations

Forbidding the inverse of moves recently performed implements a short-term
memory. This mechanism can be very efficient for instances of moderate size. By
cons, if we address more complex problems, this sole mechanism is not sufficient. A
search strategy that has been proposed in the context of taboo search is to alternate
intensification and diversification phases.

The goal of intensification is to thoroughly examine a limited portion of the
search space, maintaining solutions that possess a globally similar structure. Once
all the attractive solutions of this portion are supposedly discovered, the search has
to go elsewhere. Put differently, the search is diversified by altering the structure of
the solution. The search intensification can be implemented with a short duration
taboo list.

9.2.1 Long-Term Memory

Implementing a diversificationmechanism supposes to include a long-termmemory.
Several techniques have been proposed to achieve that.

9.2 Strategic Oscillations 193

9.2.1.1 Forced Moves

The most certain and convenient way to break the structure of a solution is to
perform moves that have never been selected during many iterations. With a
basic taboo search memorizing the iteration from which each move can again be
performed, the implementation of this form of long-term memory is virtually free.
Indeed, if the iteration number stored for a move is considerably smaller than the
current iteration, then this move has not been selected for a long time.

It is thus possible to force the use of this modification, regardless of the quality
of the solution to which it leads. This mechanism requires a new parameter, K ,
representing the number of iterations from which a never chosen move is forced.
Naturally, this parameter must be larger than the size of the neighborhood; otherwise
the search degenerates, performing only forced moves. If several moves are to be
forced at a given iteration, one is chosen arbitrarily. The others will be forced in
subsequent iterations. This type of long-termmemory represents a kind of aspiration
criterion, introduced in the previous section.

9.2.1.2 Penalized Moves

Aweakness of taboo search with very short-termmemory is that it only makes small
changes. To illustrate this on the TSP, such a search will “knit” a small knot on a tour
that was locally optimal, then another elsewhere and so on until the taboo condition
drops. At that point, the search unknits the first knot. This situation is illustrated in
Fig. 9.4.

Fig. 9.4 A basic taboo
search with a short-term
memory can enter cycling
with this 2-optimal tour.
Indeed, this solution belongs
to a plateau. There are eight
moves not changing the tour
length (dotted lines). With a
taboo duration shorter than
eight, the search repeatedly
chooses one of these moves

194 9 Local Search Learning

To avoid this behavior, an idea is to store the number of times fm a move m was
chosen and limit its use. During the move evaluation, a penalty F · fm is added.
The proportionality factor F is a new parameter of the technique that must be tuned.
Naturally, an aspiration criterion must be used in conjunction with this mechanism.
Indeed, the search should nevertheless be allowed choosing a heavily penalized
move leading to an improvement of the best solution known.

Code 9.1 provides a taboo search implementation for the TSP, based on the 2-
opt neighborhood. Two types of memories are employed: a short-term conventional
memory that prevents moves from reintroducing both edges that have been recently
removed and a long-term memory that counts the number of times each edge has
been inserted in the solution.

A move is penalized proportionally to the number of times the concerned
edges have been introduced in the solution. A move is forbidden if both edges
have recently been removed from the solution (eventually at different iterations).
Ultimately, a move is aspired if it improves on the best solution achieved so far.

9.2 Strategic Oscillations 195

Code 9.1 tsp_TS.py Taboo search implementation for the TSP

1 from random_generators import * # Listing 12.1
2

3 ######### Taboo Search for the TSP, based on 2-opt moves
4 def tsp_TS(d, # Distance matrix
5 tour, # Intital tour provided
6 length, # Length of initial tour
7 iterations, # Number of tabu search iterations
8 min_tabu_duration, # Minimal tabu duration
9 max_tabu_duration,

10 F): # Factor for penalizing moves repeatedly performed
11

12 n = len(tour)
13 tabu = [[0] * n for _ in range(n)] # Tabu list
14 count = [[0] * n for _ in range(n)] # Move count
15 best_tour = tour[:]
16 best_length = length
17 for iteration in range(0, iterations):
18 delta_penalty = float(’inf’)
19 ir = jr = -1 # Cities retained for performing a move
20

21 # Find best move allowed or aspired
22 for i in range(n - 2):
23 j = i + 2
24 while j < n and (i > 0 or j < n - 1):
25 delta = d[tour[i]][tour[j]] + d[tour[i+1]][tour[(j+1) % n]]\
26 -d[tour[i]][tour[i + 1]] - d[tour[j]][tour[(j + 1) % n]]
27 penality = F * (count[tour[i]][tour[j]]
28 + count[tour[i + 1]][tour[(j + 1) % n]])
29 # Conditions for accepting a candidate move
30 better = delta + penality < delta_penalty
31 allowed = tabu[tour[i]][tour[j]] <= iteration \
32 or tabu[tour[i + 1]][tour[(j + 1) % n]] <= iteration
33 aspirated = length + delta < best_length
34

35 if better and (allowed or aspirated):
36 delta_penalty = delta + penality
37 ir, jr = i, j
38 j += 1 # Next neighbor
39

40 # Perform retained move
41 if delta_penalty < float(’inf’):
42 tabu[tour[ir]][tour[ir + 1]] = tabu[tour[jr]][tour[(jr + 1) % n]] \
43 = tabu[tour[ir + 1]][tour[ir]] = tabu[tour[(jr+1) % n]][tour[jr]] \
44 = unif(min_tabu_duration, max_tabu_duration) + iteration
45

46 count[tour[ir]][tour[ir + 1]] += 1
47 count[tour[jr]][tour[(jr + 1) % n]] += 1
48 count[tour[ir + 1]][tour[ir]] += 1
49 count[tour[(jr + 1) % n]][tour[jr]] += 1
50

51 length += d[tour[ir]][tour[jr]] + d[tour[ir+1]][tour[(jr+1) % n]]\
52 -d[tour[ir]][tour[ir+1]] - d[tour[jr]][tour[(jr+1) % n]]
53

54 for k in range((jr - ir) // 2):
55 tour[k + ir + 1], tour[jr - k] = tour[jr - k], tour[k + ir + 1]
56 else:
57 print(’All moves are forbidden tabu list too long’)
58 if best_length > length: # is there an improvement?
59 best_length = length
60 best_tour = tour[:]
61 print(’TS {:d} {:d}’.format(iteration+1, best_length))
62 return best_tour, best_length

196 9 Local Search Learning

Fig. 9.5 Same diagram as
Fig. 9.3 but with a taboo
search managing a long-term
memory. Frequently
performed moves are
penalized. The value of the
penalty is F · ne , where ne is
the number of times the edge
e has been included in or
removed from the tour and
the value of F is the average
length of an edge divided by
the instance size

dmin

Δ

0 n
2 n 3n

2

0

n
2

n

3n
2

2n

Quality

Optimum

+0.6%

+1.2%

+1.8%

Figure 9.5 illustrates the quality of this taboo search performing 10n iterations on
a TSP instance with n = 127 cities. The search implements the penalty mechanism
based on the frequency of moves. Compared to a taboo search not employing this
mechanism (Fig. 9.3), the taboo duration can be reduced and the search achieves
good solutions more frequently. This mechanism could even be operated alone,
without a taboo list. Indeed, an excellent solution is obtained with a minimum and
maximum taboo duration of 0. A taboo list can be implemented bymeans of a matrix
whose entry (i, j) gives the iteration number from which one can again use the edge
[i, j] in a move. Counting the frequency of moves is implemented in a similar way.

9.2.1.3 Restarts

A frequently used technique to intensify a taboo search is to restart with the best
solution achieved so far. This is done if the search seems to stagnate, for instance,
if there has been no improvement in the best solution during a relatively significant
number of iterations. When restarting, the information collected during the previous
iterations by the taboo list is kept, as well as other statistics, if any. Hence, the work
achieved during these iterations is exploited.

Thus, the data structures guiding the search being in an altered state after
restarting, the trajectory followed by the search, will also be. This mechanism
can be identified as the opposite of the one presented above where we force the
use of neglected attributes for many iterations. Its purpose is to achieve search
intensification, not diversification. Naturally, the implementation of this mechanism
implies the introduction of new parameters that must be adjusted, like the number
of iterations to be carried out before a restart and a possible adaptation of the value

References 197

of other parameters (taboo duration, frequency penalty) to guide the search toward
diversified trajectories.

Problems

9.1 Taboo Search for an Explicit Function
An integer function of integer variables f (x, y) is explicitly given in Table 5.1. We
seek the minimum of this function by applying a taboo search. The neighborhood
consists in modifying by a unit the value of one variable. The taboo conditions
consist in forbidding to increment (respectively: to decrement) a variable that has
been decremented (respectively: incremented). First, consider a taboo duration of
d = 3 and (−7,−6) as the starting solution. Next, start from (−7, 7) and use d = 1.
The search stops if there is no more move allowed or if 25 iterations have been
performed.

9.2 Taboo Search for the VRP
For the VRP, the neighborhood consists in either moving a customer from one route
to another, or swapping two customers from different routes. Suggest taboo criteria
for this neighborhood.

9.3 Taboo Search for the QAP
Consider the QAP instance given by the flow F and distance D matrices:

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 5 2 4 1
5 0 3 0 2
2 3 0 0 0
4 0 0 0 5
1 2 0 5 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 2 3
1 0 2 1 2
1 2 0 1 2
2 1 1 0 1
3 2 2 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Starting with the solution p = (1, 2, 3, 4, 5), perform six iterations of a taboo
search. The moves are defined by pairs (i, j) that swap the elements pi and pj .
If the move (i, j) is performed, then, it is forbidden for d = 5 iterations to place the
element pi in position i and, simultaneously, the element pj in position j . For each
iteration, provide the solution, its value, that of all the moves and their taboo status.

References

1. Battiti, R., Tecchiolli, G.: The reactive tabu search. ORSA J. Comput. 6, 126–140 (1994). https://
doi.org/10.1287/ijoc.6.2.126

2. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput.
Oper. Res. 13(5), 533–549 (1986). https://doi.org/10.1016/0305-0548(86)90048-1

 2416 4145 a 2416 4145 a

https://doi.org/10.1287/ijoc.6.2.126
https://doi.org/10.1287/ijoc.6.2.126

 912 4394 a 912 4394 a

https://doi.org/10.1016/0305-0548(86)90048-1

198 9 Local Search Learning

3. Glover, F.: Tabu search—part I. ORSA J. Comput. 1(3), 190–206 (1989). https://doi.org/10.
1287/ijoc.1.3.190

4. Glover, F.: Tabu search—part II. ORSA J. Comput. 2(1), 4–32 (1990). https://doi.org/10.1287/
ijoc.2.1.4

5. Glover, F., Laguna, M.: Tabu Search. Kluwer, Dordrecht (1997)
6. Taillard, É.D.: Comparison of iterative searches for the quadratic assignment problem. Location

Science 3(2), 87–105 (1995). https://doi.org/10.1016/0966-8349(95)00008-6

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

 2108 -23 a 2108 -23 a

https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/ijoc.1.3.190

 1947 143 a 1947 143 a

https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1287/ijoc.2.1.4

 765 475 a 765
475 a

https://doi.org/10.1016/0966-8349(95)00008-6

 506 3432
a 506 3432 a

http://creativecommons.org/licenses/by/4.0/

	9 Local Search Learning
	9.1 Taboo Search
	9.1.1 Hash Table Memory
	9.1.1.1 Hash Functions

	9.1.2 Taboo Moves
	9.1.2.1 Implementation of Taboo Status
	9.1.2.2 Taboo Duration
	9.1.2.3 Aspiration Criterion

	9.2 Strategic Oscillations
	9.2.1 Long-Term Memory
	9.2.1.1 Forced Moves
	9.2.1.2 Penalized Moves
	9.2.1.3 Restarts

	Problems
	References

