
Chapter 8
Construction Learning

After having studied the four basic principles—modeling, decomposition, construc-
tion, and improvement—this chapter introduces the fifth principle of metaheuristics:
learning mechanisms. The algorithms seen in the previous chapter rely solely
on chance to try to obtain better solutions than would be provided by greedy
constructive methods or local searches. This is probably not very satisfactory from
the intellectual point of view. Without solely relying upon chance, this chapter
studies how to implement learning techniques to build new solutions. Learning
processes require three ingredients:

• Repeating experiences and analysing successes and failures: we only learn by
making mistakes!

• Memorizing what has been made.
• Forgetting the details. This gives the ability to generalize when in a similar but

different situation.

8.1 Artificial Ants

The artificial ant technique provides simple mechanisms to implement these
learning ingredients in the context of constructing new solutions.

The social behavior of some animals has always fascinated, especially when a
population comes to realizations completely out of reach of an isolated individual.
This is the case with bees, termites, or ants: although each individual follows an
extremely simple behavior, a colony is able to build complex nests or efficiently
supply its population with food.
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8.1.1 Real Ant Behavior

Following the work of Deneubourg et al. [2] who described the almost algorithmic
behavior of ants, researchers had the idea of simulating this behavior to solve
difficult problems.

The typical behavior of an ant is illustrated in Fig. 8.1 with an experience made
with a real colony that has been isolated. The latter can only look for food by
going out from a single orifice. The last is connected to a tube separated into two
branches joining further. The left branch is shorter than the one on the right. As ants
initially have no information on this fact, the ants equally distribute in both branches
(Fig. 8.1a).

While exploring, each ant drops a chemical substance that it is apt to detect with
its antennas, which will assist it when returning to the anthill. Such a chemical
substance carrying information is called pheromones. On the way back, an ant
deposits a quantity of pheromones depending on the quality of the food source.
Naturally, an ant that has discovered a short path is able to return earlier than that
which used the bad branch.

Nest

Source of food

(a) Initial situation (b) Final situation

Fig. 8.1 Behavior of an ant colony separated from a food source by a path that is divided. Initially,
ants are evenly distributed in both branches (a). The ants having selected the shortest path arrive
earlier at the food source. Therefore, they faster lay additional pheromones on the way back. The
quantity of pheromones deposited on the shortest path grows faster. After a while, virtually all ants
will use the shortest branch (b)
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Therefore, the quantity of pheromones deposited on the shortest path grows
faster. Consequently, a new arriving ant has information on the way to take and
bias its choice in favour of the shortest branch. After a while, it is observed that
virtually all ants use the shortest branch (Fig. 8.1b). Thus, the colony collectively
determines an optimal path, while each individual sees no further than the tip of its
antennas.

8.1.2 Transcription of Ant Behavior to Optimization

If an ant colony manages to optimize the length of a path, even in a dynamic context,
we should be able to transcribe the behavior of each individual in a simple process
for optimizing intractable problems. This transcript may be obtained as follows:

• An ant represents a process performing a procedure that constructs a solution
with a random component. Many of these processes may run in parallel.

• Pheromone trails are τe values associated with each element e constituting a
solution.

• Traces play the role of a collective memory. After constructing a solution, the
values of the elements constituting the latter will be increased by a quantity
depending on the solution quality.

• The oblivion phenomenon is simulated by the evaporation of pheromone trails
over time.

Next is to clarify how these components can be put in place. The construction
process can use a randomized construction technique, almost similar to the GRASP
method. However, the random component must be biased not only by the incremen-
tal cost function c(s, e), which represents the a priori interest of including element
e in the partial solution, but also by the value τe which is the a posteriori interest
of this element. The last is solely known after having constructed a multitude of
solutions.

The marriage of these two forms of interest is achieved by selecting the next item
e to include in the partial solution s with a probability proportional to τα

e · c(s, e)β ,
where α > 0 and β < 0 are two parameters balancing the respective importance
accorded to memory and incremental cost. The update of artificial pheromones
is performed in two steps, each requiring a parameter. First, the evaporation of
pheromones is simulated by multiplying all the values by 1 − ρ, where 0 �
ρ � 1 represents the evaporation rate. Then, each element e constituting a newly
constructed solution has its τe value increased by a quantity 1/f (s), where f (s) is
the solution cost, which is assumed to be minimized and greater than zero.
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8.1.3 MAX-MIN Ant System

The first artificial ant colony applications contained only the components described
above. The trail update is a positive feedback process. There is a bifurcation point
between a completely random process (learning-free) and an almost deterministic
one, repeatedly constructing the same solution (too fast learning). Therefore, it is
difficult to tune a progressive learning process with the three parameters α, β and ρ.

To remedy this, Stützle and Hoos [5] suggested limiting the trails between two
values τmin and τmax . Hence, selecting an element is bounded between a minimum
and a maximum probability. This avoids elements possessing an extremely high
trail value, implying that all solutions would contain these elements. This leads to
the MAX-MIN ant system, which proved much more effective than many other
previously proposed frameworks. It is given in Algorithm 8.1.

Algorithm 8.1: MAX-MIN ant system framework

Input: Set E of elements constituting a solution; incremental cost function c(s,e)> 0;
fitness function f to minimize, parameters Imax,m, , , min, max, and
improvement method a(·)

Result: Solution s∗
1 f ∗ ←
2 for ∀e ∈ E do
3 e ← max

4 for Imax iterations do
5 for k = 1 . . .m do
6 Initialize s as a trivial, partial solution
7 R ← E // Elements that can be added to s
8 while R �= do Build a new solution
9 Randomly choose e ∈ R with a probability proportional to e · c(s,e) // Ant

colony formula
10 s ← s∪ e
11 From R, remove the elements that cannot be added any more to s

12 sk ← a(s) // Find the local optimum sk associated with s
13 if f ∗ > f (sk) then Update the best solution found
14 f ∗ ← f (sk)
15 s∗ ← sk

16 for ∀e ∈ E do Pheromone trail evaporation
17 e ← (1− ) · e

18 sb ← best solution from {s1, . . . ,sm}
19 for ∀e ∈ sb do Update trail, maintaining it between the bounds
20 e ← max( min,min( max, e+1/ f (sb)))

This framework comprises an improvement method. Indeed, implementations
of “pure” artificial ants colonies, based solely on building solutions, have proven
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inefficient and difficult to tune. There may be exceptions, especially for the
treatment of highly dynamic problems where an optimal situation at a given time
is no longer optimum at another one.

Algorithm 8.1 has a theoretical advantage: it can be proved that if the number of
iterations Imax → ∞ and if τmin > 0, then it finds a globally optimal solution with
probability tending to one. The demonstration is based on the fact that τmin > 0
implies that the probability of building a globally optimal solution is not zero. In
practice, however, this theoretical result is not tremendously useful.

8.1.4 Fast Ant System

One of the disadvantages of numerous frameworks based on artificial ants is their
large number of parameters and the difficulty of tuning them. This is the reason
why we have not presented Ant systems (AS [1]) or Ant Colony System (ACO [3])
in detail. In addition, it can be challenging to design an incremental cost function
providing pertinent results. An example is the quadratic assignment problem. Since
any pair of elements contributes to the fitness function, the ultimate element to
include can contribute significantly to the quality of the solution. Conversely, the
first item placed does not incur any cost. This is why a simplified framework called
FANT (for Fast Ant System) has been proposed.

In addition to the number of iterations, Imax , the user of this framework must only
specify another parameter, τb. It corresponds to the reinforcement of the artificial
pheromone trails. This reinforcement is systematically applied to the elements of
the best solution found so far at each iteration. The reinforcement of the traces
associated with the elements of the solution constructed at the current iteration, τc,
is a self-adaptive parameter. Initially, this parameter is set to 1. When over-learning
is detected (the best solution is again generated), τc is incremented, and all trails are
reset to τc. This implements the oblivion process and increases the diversity of the
solutions generated.

If the best solution has been improved, then τc is reset to 1 to give more weight
to the elements constituting this improved solution. Ultimately, FANT incorporates
a local search method. As mentioned above, it has indeed been noticed that the
sole construction mechanism often produces bad quality solutions. Algorithm 8.2
provides the FANT framework.

Figure 8.2 illustrates the FANT behavior on a TSP instance with 225 cities. In
this experiment, the value of τb was fixed to 50. This figure provides the number
of edges different from the best solution found so far, before and after calling the
improvement procedure.

A natural implementation of the trails for the TSP is to use a matrix τ rather
than a vector. Indeed, an element e of a solution is an edge [i, j ], defined by its two
incidents vertices. Therefore the value τij is the a posteriori interest to have the edge
[i, j ] in a solution. The initialization of this trail matrix and its update may therefore
be implemented with the procedures described by Code 8.2.
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Algorithm 8.2: FANT framework. Most of the lines of code are about
automatically adjusting the weight τc assigned to the newly built solution
against the τb weight of the best solution achieved so far. If the latter is
improved or if over-learning is detected, the trails are reset

Input: Set E of elements constituting a solution; fitness function f to minimize,
parameters Imax, b and improvement method a(·)

Result: Solution s∗
1 f ∗ ←
2 c ← 1
3 for ∀e ∈ E do
4 e ← c

5 for Imax iterations do
6 Initialize s to a partial, trivial solution
7 R ← E // Elements that can be added to s
8 while R �= do
9 Randomly choose e ∈ R with a probability proportionnal to e

10 s ← s∪ e
11 From R, remove the elements that cannot be added any more to s

12 s′ ← a(s) // Find the local optimum s′ associated with s
13 if s′ = s∗ then manage over-learning
14 c ← c+1 // More weight to the newly constructed solutions
15 for ∀e ∈ E do Erase all trails
16 e ← c

17 if f ∗ > f (sk) then manage best solution improvement
18 f ∗ ← f (sk)
19 s∗ ← sk // Update best solution
20 c ← 1 // Give minimum weight to the newly constructed solutions
21 for ∀e ∈ E do Erase all trails
22 e ← c

23 for ∀e ∈ s′ do reinforce the trails associated with the current solution
24 e ← e+ c

25 for ∀e ∈ s∗ do reinforce the trails associated with the best solution
26 e ← e+ b

The core of an ant heuristic is the construction of a new solution exploiting
artificial pheromones. Code 8.1 provides a procedure not exploiting the a priori
interest (an incremental cost function) of the elements constituting a solution. In
this implementation, the departure city is the first of a random permutation p. At
iteration i, the i first cities are definitively chosen. At that time, the next city is
selected with a probability proportional to the trail values of the remaining elements.



8.1 Artificial Ants 177

Iterations

8007006005004003002001000
0

25

50

75

100

125

150

175

200

225
N
um

be
rd

iff
er
en
te
dg
es

Before improvement

After improvement

Improvement

Fig. 8.2 FANT behaviour on a TSP instance with 225 cities. For each iteration, the diagram
provides the number of edges different from the best solution found by the algorithm, before
and after calling the ejection chain local search. Vertical lines indicate improvements in the best
solution found. In this experiment, the last of these improvements corresponds to the optimal
solution

Code 8.1 generate_solution_trail.py Implantation of the generation of a permutation only
exploiting the information contained in the pheromone trails

1 from random_generators import unif # Listing 12.1
2 from tsp_utilities import tsp_length # Listing 12.2
3

4 ######### Building a solution using artificial pheromone trails
5 def generate_solution_trail(d, # Distance matrix
6 tour, # Tour produced by the ant
7 trail): # Pheromone trails
8 n = len(tour)
9 for i in range(1, n - 1):

10 total = 0
11 for j in range(i + 1, n):
12 total += trail[tour[i - 1]][tour[j]]
13 target = unif(0, total - 1)
14 j = i
15 total = trail[tour[i - 1]][tour[j]]
16 while total < target:
17 total += trail[tour[i - 1]][tour[j + 1]]
18 j += 1
19 tour[j], tour[i] = tour[i], tour[j]
20 return tour, tsp_length(d, tour)
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Once the three procedures given by the Codes 8.1 and 8.2 as well as an
improvement procedure are available, the implementation of FANT is very simple.
Such an implantation, using an ejection chain local search, is given by Code 8.3

Code 8.2 init_update_trail.py Implementation of the trail matrix initialization and update for the
FANT method applied to a permutation problem. If the solution just generated is the best previously
found, trails are reset. Otherwise, the trails are reinforced both with the current solution and the
best one

1 ######## (Re-)initialize all trails
2 def init_trail(initial_value, # Initial value for all trails
3 trail): # Pheromone trails
4

5 n = len(trail[0])
6 for i in range(n):
7 for j in range(n):
8 trail[i][j] = initial_value
9 for i in range(n):

10 trail[i][i] = 0
11 return trail
12

13 ######### Updating trail values
14 def update_trail(tour, # Last solution generated by an ant
15 global_best, # Global best solution
16 exploration, # Reinforcement of last solution
17 exploitation, # Reinforcement of global best solution
18 trail): # Pheromone trails
19

20 if tour == global_best:
21 exploration += 1 # Give more weight to exploration
22 trail = init_trail(exploration, trail)
23 else:
24 for i in tour:
25 n = len(trail[0])
26 trail[tour[i]][tour[(i + 1) % n]] += exploration
27 trail[global_best[i]][global_best[(i + 1) % n]] += exploitation
28 return trail, exploration



8.2 Vocabulary Building 179

Code 8.3 tsp_FANT.py FANT for the TSP. The improvement procedure is given by Code 12.3

1 from random_generators import rand_permutation # Listing 12.1
2 from generate_solution_trail import * # Listing 8.1
3 from init_update_trail import * # Listing 8.2
4 from tsp_LK import tsp_LK # Listing 12.3
5

6 ######### Fast Ant System for the TSP
7 def tsp_FANT(d, # Distance matrix
8 exploitation, # FANT Parameters: global reinforcement
9 iterations): # number of solution to generate

10

11 n = len(d[0])
12 best_cost = float(’inf’)
13 exploration = 1
14 trail = [[-1] * n for _ in range(n)]
15 trail = init_trail(exploration, trail)
16 tour = rand_permutation(n)
17 for i in range(iterations):
18 # build solution
19 tour, cost = generate_solution_trail(d, tour, trail)
20 # improve built solution witho a local search
21 tour, cost = tsp_LK(d, tour, cost)
22 if cost < best_cost:
23 best_cost = cost
24 print(’FANT {:d} {:d}’.format(i+1, cost))
25 best_sol = list(tour)
26 exploration = 1 # Reset exploration to lowest value
27 trail = init_trail(exploration, trail)
28 else:
29 # pheromone trace reinforcement - increase memory
30 trail, exploration = update_trail(tour, best_sol,
31 exploration, exploitation, trail)
32 return best_sol, best_cost

8.2 Vocabulary Building

Vocabulary building is a more global learning method than artificial ant colonies.
The idea is to memorize fragments of solutions, which are called words, and to
construct new solutions from these fragments. Put differently, one has a dictionary
used to build a sentence attempt in a randomized way. A repair/improvement
procedure makes this solution attempt feasible and increases its quality. Finally,
this new solution sentence is fragmented into new words that enrich the dictionary.

This method has been proposed in [4] and is not yet widely used in practice,
although it has proved efficient for a number of problems. For instance, the method
can be naturally adapted to the vehicle routing problem. Indeed, it is relatively
easy to construct solutions with tours similar to those of the most efficient solution
known. This is illustrated in Fig. 8.3.

By building numerous solutions using randomized methods, the first dictionary
of solution fragments can be acquired. This is illustrated in Fig. 8.4.
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(a) (b)

Fig. 8.3 (a) The optimal solution to a VRP instance. (b) A few tours quickly obtained with a taboo
search. We notice great similarities between the latter and those of the optimal solution

Fig. 8.4 Fragments of solutions (vehicle routing tours) constituting the dictionary. A partial
solution is built by randomly selecting a few of these fragments (indicated in color)
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(a) (b)

Fig. 8.5 (a) A sentence attempt is constructed by randomly selecting a few words from dictionary
(b). This attempt is completed and improved

Once an initial dictionary has been constructed, solution attempts are built, for
instance, by selecting a subset of tours that do not contain common customers.
This solution is not necessarily feasible. Indeed, during the construction process,
the dictionary might not include tours only containing customers not yet covered.
Therefore, it is necessary to repair this solution attempt, for instance, by means of
a method similar to that used to produce the first dictionary but starting with the
solution attempt. This phase of the method is illustrated in Fig. 8.5. The improved
solution is likely to contain tours that are not yet in the dictionary. These are included
to enrich it for subsequent iterations.

The technique can be adapted to other problems, like the TSP. In this case, the
dictionary words can be edges appearing in a tour. Figure 8.6 shows all the edges
present in more than two-thirds of 100 tours obtained by applying a local search
starting with a random solution. The optimal solution to this problem is known.
Hence, it is possible to highlight the few edges frequently obtained that are not
part of the optimal solution. Interestingly, nearly 80% of the edges of the optimal
solution have been identified by initializing the dictionary with a basic improvement
method.



182 8 Construction Learning

Fig. 8.6 An optimal solution (light color) and fragments of tours constituting an initial dictionary
for the TSP instance pr2392. The fragments are obtained by repeating 100 local searches starting
with random solutions and only retaining the edges appearing in more than 2/3 of the local optima.
Interestingly, almost all these edges belong to an optimal solution. The few edges that are not part
of it are highlighted (darkest color)

Problems

8.1 Artificial Ants for Steiner Tree
For the Steiner tree problem, how to define the trails of an artificial ant colony?
Describe how these trails are exploited.

8.2 Tuning the FANT Parameter
Determine good values for the parameter τb of the tsp_FANT method provided
by Code 8.3 when the latter performs 300 iterations. Consider the TSPLIB instance
tsp225.

8.3 Vocabulary Building for Graph Coloring
Describe how vocabulary construction can be adapted to the problem of coloring
the vertices of a graph.
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