Chapter 6 )
Decomposition Methods Shethie

In the process of developing a new algorithm, this chapter should logically have been
placed just after the one devoted to problem modeling. But, decomposition methods
are only used when the data size to process is large. Thus, the phase is optional. The
reader can glance it over before moving on to the following parts, devoted to the
stochastic and learning methods. This is the reason justifying its place at the end of
the first part of this book, devoted to the essential ingredients of metaheuristics.

6.1 Consideration on the Problem Size

The algorithmic complexity, very briefly exposed in Sect. 1.2.1, aims to evaluate the
computational resources necessary for running an algorithm according to the data
size it has to treat. We cannot classify the problems—Iarge or small—only by their
absolute size: sorting an array of 1000 elements is considerably easier than finding
the optimal tour of a TSP instance with 100 cities. The time available to obtain a
solution is clearly important: the perception of what a large instance is might not
be the same if we have to perform a real-time processing in a few microseconds or
a long-term planning for which a 1-day computation is perfectly convenient. Very
roughly, we can put NP-hard problem instances in the following categories:

Toy Instances ~ Approximative size: n =~ 10. To ensure an algorithm works
correctly, it is performed by hand. Another possibility is to compare its results
to those of a method, easy to implement, but much less efficient. For instance,
this can be an exhaustive enumeration of all solutions. Yet, we can empirically
consider a computer is able to perform 10° elementary operations per second. If
one has a time budget of this order of magnitude, one can consider an exhaustive
enumeration for a permutation problem instance up to n & 10; for a binary
variable problem, we have n =~ 20. Naturally, for polynomial algorithms, the
instance size processed in one second varies from n &~ 50 for complexity in
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132 6 Decomposition Methods

O (n?) to n & 108 for linear complexity, passing through n &~ 10* for quadratic
complexity, and n 22 10 for an algorithm in O (n log n).

Small Instances  Typical size: 10 T n < 102. When the size no longer allows
an exhaustive enumeration of all solutions, we go into the category of small
instances. We could characterize them by those for which we know robust
algorithms that allow getting an optimal solution in a reasonable time. It should
be mentioned that the literature frequently reports exact algorithms for solving
examples of “difficult” problems of much larger size than those mentioned
above. However, one should be careful with such statements: indeed, optimal
solutions of traveling salesman or knapsack instances with tens of thousands of
elements have been found, but much smaller instances are out of the scope of
these programs. Small instances are useful for designing and calibrating heuristic
methods. Knowing the optimal solutions allows determining the quality of
heuristics and tuning the value of their parameters while maintaining reasonable
computational times.

Standard Instances ~ Typical size: 10> Sn s 10*. This is the typical application
area of metaheuristics. These are frequently encountered in real-world applica-
tions. They are too large to be solved efficiently by exact methods or for a human
to guess a good quality solution. The maximum instance size a metaheuristic can
handle is related to its algorithmic complexity, whether in terms of computational
time or memory. With more than 10* elements, it becomes challenging to use a
constructive method or a neighborhood size in O (1n?). This is specially the case
if one has to memorize an n x n matrix for efficiency reasons. The algorithmic
complexity of a metaheuristic-based program is frequently larger than O (n?).
Thus, many authors speak of a “large” instance for a size of 100.

Large Instances  Typical size: 103 Sns 103. Some real instances often have a
higher number of items than standard instances, or they must be solved with less
computational effort than a direct method would take. We can think, for instance,
to vehicle routing for mail delivery or item labeling on a geographic map. For
such problems, a size of 107 is not exceptional. In this case, decomposition
methods must be used. This chapter presents some general techniques for
approaching large instances. Let us mention that these techniques sometimes
can advantageously be applied to smaller instances, even with just a few dozen
elements.

Huge Instances  Size: n > 108 items. When the size of the problem exceeds 10%
to 10! items, it is no longer possible to completely store the data in RAM. In
this case, it is necessary to work on parts of the instance, usually using parallel
algorithms to maintain adequate processing times. The treatment of this type of
instances essentially raises mainly technical issues and is beyond the scope of
this book.
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6.2 Recursive Algorithms

When a large instance has to be solved with limited computational effort, it is cut
into small parts, independently solved. Finally, they are put together to reconstruct
a solution to the complete problem. An efficiency gain is only possible with such
a technique by the conjunction of several conditions: directly solving the problem
requires a computational effort more than linear; otherwise, a decomposition only
makes sense for a parallel computation. The parts must be independent of each
other. Combining the parts together should be less complex than directly solving
the problem. The difficulty lies in how to define the parts: they must represent a
logical portion of the problem so that their assembly, once solved, is simple.

The merge sort is a typical decomposition algorithm. A list to sort is split into
two roughly equal parts. These are sorted by two recursive calls, if they contain more
than one element. Finally, two locally sorted sub-lists are scanned to reconstruct a
complete sorted list.

6.2.1 Master Theorem for Divide-and-Conquer

In many cases, the complexity of a recursive algorithm can be assessed by the
divide-and-conquer master theorem. Suppose the time to address a problem of size
n is given by T (n). The algorithm proceeds by splitting the data into b parts of
approximately identical size, n/b. Among them, a are recursively solved. Next,
these parts are combined to reconstruct a solution to the initial problem, which
requires a time given by f(n). To assess the complexity of such an algorithm,
we must solve the functional equation 7'(n) = a - T (n/b) + f(n) whose solution
depends on the reconstruction effort.

Introducing €, a positive constant forcing the function f(n) to be either smaller
or larger than n'°%(®) | the master theorem allows deducing the complexity class of
T (n) in some case:

o If f(n) = O(M°%@D=€) then T (n) = O (n'°%@),

o If f(n) = On'°%@), then T(n) = O (1'% . logn).

o If f(n) = Q%D+ andifa - f(n/b) < c- f(n), with ¢ < 1, constant, then
T(n) = O(f(n)).

Often, a = b: we have a recursive call for all parts. In this case, the theorem states
that, if the reconstruction can be done in a sublinear time, then we can deal with the
problem in linear time. If the reconstruction takes a linear time—which is typically
the case for sorting algorithms—then the problem can be solved in O (nlogn). The
last case simply indicates all the difficulty of the algorithm is concentrated in the
reconstruction operations. Finally, let us mention that the theorem does not cover all
cases for the function f(n).
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There are also cases where a # b. An example is a query for a point of the
Euclidean plane from a set of n points stored in a balanced 2D-tree (see the data
structure discussed in Sect. 5.5.3.2). With such a data structure, one can halve the
number of points remaining to be examined by processing a maximum of a = 2
parts among b = 4. Indeed, unlike a binary tree in one dimension, we cannot ensure
to divide this number by two at every single level of the tree but only every two
levels. Since this is a query problem, there are no reconstruction and f(n) = O(1).
As log4(2) = 1/2, we can choose € = 1/2, and we are in the first case. We can
deduce that the complexity of a query in a 2D-tree is in @ (n'/?). However, if the
points are well spread, the empirical behaviour is better, closer to log n.

Heuristic algorithms proceeding by recursion commonly stop prematurely,
before the part size is so small that its resolution becomes trivial. Even if the
parts are exactly solved, the reconstitution phase does not generally guarantee
optimality. Hence, both cutting and reconstitution procedures are heuristics. This
means that the “border areas” between two parts are, more or less obviously, not
optimum. To limit this effect of sub-optimality, it is necessary to assemble as few
parts as possible, while being able to process them. Indeed, if they are excessively
large, their exact resolution requires too much time, or the heuristics may produce
low-quality parts.

6.3 Low Complexity Constructive Methods

Solving large instances implies limiting the complexity of the constructive method
for generating an initial solution. This means that even the most basic greedy method
is not appropriate. If the function c(s, e) that provides the cost of the addition of an
element e actually depends on the partial solution s, then its complexity is in §2 (n?).
Indeed, before including one of the n elements, it is necessary to evaluate c(s, e) for
all the remaining elements. A random construction in linear time is not suitable, due
to the bad quality of the solution produced.

It is therefore necessary to “cheat,” making the hypothesis that not all the
elements of the problems have a direct relationship with all the others. Put
differently, an element is in relation with a relatively limited number of other
elements, and this relationship possesses a certain symmetry. It is reasonable to
make the hypothesis that it is possible to quantify the proximity between two
elements. In such a case, we can avoid complexity in O(n*) by sampling and
recursion. We can limit the phenomenon of sub-optimality due to the assembly of
parts by stopping the recursion at the first or the second level.
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6.3.1 Proximity Graph Construction

There are relatively good automatic classification heuristics to partition a problem
of size n into k groups. The fast variant of Algorithm 2.7 (k-medoids) mentioned in
Sect. 2.7.2 achieves such a heuristic partition with complexity of O (k - n + (Z )2).!

This complexity can be minimized by choosing k = ./n. Thus, it is possible
to partition a problem of size n in /n parts, each comprising approximately /n
elements. Performing the clustering on a random sample of the elements (e.g.,
©®(4/n)) can significantly speed up the procedure. This method is illustrated in
Fig.6.1.

It is possible to get a decomposition with smaller clusters by applying a second
recursion level: the instance is first cut into a large parts of relatively similar size
as presented above. A proximity relationship is defined between large part, so that
each includes O (1) neighbors. A rudimentary proximity definition is as follows: if
an element has ¢; as its nearest center and ¢; as its second nearest, then ¢; and ¢ are
considered as neighbors. Each large part is then partitioned into b small clusters.

Similarly, a proximity relationship is defined between small clusters. A small
cluster is related to all those belonging to the large part of which it belongs. By
choosing a = ®(4/n) and b = O (4/n), we get a decomposition into a number of
small clusters proportional to n, whose size is approximately identical. The overall
algorithmic complexity is O (n3/?).

For some problems, it can make sense. Indeed, for the vehicle routing problem,
the maximum number of customers that can be placed on a tour depends on the
application (home service, parcel distribution, rubbish collection) and not on the
total number of customers of the instance.

This decomposition technique is illustrated in Fig. 6.2. Bold lines show proximity
relations between large parts. The small clusters obtained by decomposition of
large parts contain about 15 elements. The elements of large parts are represented
by points of the same color. By exploiting such a decomposition and proximity
relationships, it becomes possible to efficiently generate a solution to a large
problem instance. A computational time of about one second was enough to obtain
the structures of Fig. 6.2, with more than 16,000 entities.

! The notation O(-) cannot be used here because it is assumed that the k groups contain
approximately the same number of elements. In the worst case, a few groups could contain
©® (n) elements, and ® (n) groups could contain O (1) elements, which would imply a theoretical
complexity in O(n?). To limit the complexity, the algorithm must be stopped prematurely, if
needed, by repeating a constant number of times the external loop.
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(c) Centers (d) Clusters

Fig. 6.1 Illustration of the method for partitioning a problem instance: from a complete set of n
elements of the instance (a), a random sample is selected (b). Algorithm 2.7 is run on the sample
and k = ©(y/n) medoids are identified (c). All the n elements are allocated to the closest medoid

(@

6.3.2 Linearithmic Heuristic for the TSP

It is possible to extend this decomposition principle to a number of levels depending
on the instance size and thus get an O(nlogn) algorithm. This section illustrates
the principle on the Traveling Salesman Problem. Rather than reasoning on the
construction of a tour, we build paths passing through all the cities of a given subset.

It is actually straightforward to adapt Code 12.3 so that it is able to treat a
path rather than a tour. An algorithm to optimize a path can equally be used to
provide a tour. Indeed, a TSP tour can be seen as a path starting by city ¢; € C
and ending by c¢;. If we have a problem with n cities, the path P = (b =
CiyCly -+ Ci—1,Cit1,-..,Cn,ci = e) defines a feasible (random) tour. The path
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Fig. 6.2 Two-level decomposition of a problem instance. The elements are clustered into © (y/n)
large parts of approximately identical size. Bold lines show the proximity relationship between
large parts. The latter are themselves decomposed into ® (y/n) small clusters. The complexity of
the process is in O (n3/2). It can be applied to non-geometrical problems

P is either directly optimized if it does not contain too many cities, or decomposed
into r sub-paths, where r is a parameter that does not depend on the problem size.
To fix the ideas, the value of r is typically between 10 and 20. If n < r2, a very good
path passing through all the cities of P, starting in ¢; and ending in ¢; can be found,
for example, with an ejection chain or even an exact method. This feasible tour is
returned by the heuristic.

Else, if n > r2, the path P is reordered by considering r sub-paths. This is
performed by choosing a sample S of r cities by including:

e u € C\{b, e}, the city closest to b
e veC)\{b,e,u},the city closest to e
e r — 2 other cities of C \ {b, e, u, v} randomly picked

A good path Pg through all the cities of sample S, starting at city b and ending at
city e, can be found with a local search or an exact method. Let us rename the cities
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Fig. 6.3 Recursive TSP tour construction. Left: path on a random sample (bold and light line) and
reordered path Pg completed with all cities before recursive calls of the procedure. Paths P; to Ps
are drawn with different colors and different backgrounds highlight them. Right: the path P; was
recursively decomposed into r = 5 pieces. Final state with all sub-paths optimized

of S so that Ps = b, s1, 52, ..., S-—1, Sr, e. Path Pg can be completed to contain all
the cities of C by inserting them, one after the others, just after the closest city of
S. So, the completed path Ps = (b, s1,...,52,...,,5;,...,e) improves the initial

path P. The left side of Fig. 6.3 illustrates this construction using a sample of r = 5
cities. The shaded areas highlights the first » sub-paths found.

At this step, the order of the cities in the completed path Ps between two cities s
and s; + 1 is arbitrary (as it was for P at the beginning of the procedure). The sub-
paths Py = (b =s],...,5), P = (s}, ...,83), ..., P = (s,...,e = 5,41) C
Ps can be further improved with r recursive calls of the same procedure, where
s} is the city just preceding the first one of the path P;. The right side of Fig. 6.3
illustrates the solution returned by this recursive procedure.

It can be noted in this figure that only the sub-path P; has been decomposed. The
others, not comprising more than 2 cities, were directly optimized by a procedure
similar to that given by Code 12.3. The solution finally obtained is not excellent,
but it was obtained very quickly and is suitable as an initial solution for partial
improvement techniques, like POPMUSIC, which will be detailed in Sect. 6.4.2.

6.4 Local Search for Large Instances

After reviewing some techniques for constructing solutions for large instances,
let’s now take a look at some techniques for improving them. LNS, POPMUSIC,
and Corridor assume that an initial solution to the problem is available. These
techniques are sometimes called fix-and-optimize [4] or, more recently, magnifying
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glass heuristics [3]. The key idea is to fix a relatively large portion of the problem
variables and to solve a sub-problem with additional constraints on the remaining
variables. When a heuristic includes an exact optimization method, we now speak
of matheuristic.

6.4.1 Large Neighborhood Search

Large neighborhood search (LNS) has been proposed by Shaw [5]. The general idea
is to gradually improve a solution by alternating destruction and repair phases. To
illustrate this principle, let’s consider the example of integer linear programming.
The destruction phase involves selecting a subset of variables while incorporating
some randomness into the process. In its simplest form, this consists in selecting
a constant number of variables, in a completely random fashion. A more elaborate
form is to randomly select a seed variable and a number of others, which are most
related to the seed variable. The repair phase consists in trying to improve the
solution by solving a sub-problem on the variables that have been selected. The
value of the other variables being set to the one taken in the starting solution.

The name of this technique comes from the fact that a very large number of
possibilities exist to reconstruct a solution. This number exponentially increases
with the size of the sub-problem, meaning that they could not reasonably be
extensively enumerated. Thus, the reconstruction phase consists in choosing a
solution among a large number of possibilities. As the significant part of the
variables preserves their value from one solution to the next, it is conceptually a
local search but with a large neighborhood size. The framework of LNS is provided
by Algorithm 6.1.

Algorithm 6.1: LNS framework. The destroy, repair, and acceptance func-
tions must be specified by the programmer, as well as the stopping criterion

Input: Solution s, destroy method d(-), repair method r(-), acceptance criterion a(-, )
Result: Improved solution s*
st s
repeat

s'—r(d(s))

if a(s,s") then

| s+
6 if s better than s* then
| 5"

until a stopping criterion is satisfied

T R I S

®
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This frame leaves considerable freedom for the programmer to select various
options:

Destroy method d(-) This method is supposed to destroy part of the current
solution. The authors recommend that it is not deterministic, so that two
successive calls destroy various portions. Another vision of this method is to fix
a certain number of variables of the problem and release the others, which can be
modified. This method additionally includes a parameter that allows modulating
the amount of destruction. Indeed, if the number of independent variables is
too small, the repair method has too many constraints to be able to differently
reconstruct the solution, and the algorithm is not able to improve the current
solution. Conversely, if the number of independent variables is too large, the
repair method may encounter difficulties in improving the current solution. This
is peculiarly true if an exact method is used, implying a prohibitive computational
time.

Repair method r(-)  This method is supposed to repair the part of a solution that
was destroyed. Another vision of this method is to re-optimize the portion of the
problem corresponding to the variables that were freed by the destroy method.
One possible option for the repair method is to use an exact method, for instance,
constraint programming. Another option is to use a heuristic method, either a
simple one, like a greedy algorithm, or a more advanced one, such as taboo
search, variable neighborhood search, etc.

Acceptance criteria a(-, -)  The simplest acceptance criterion is to use the fitness
function value of both solutions provided as parameters:

as.s') = { True If s’ better than s
’ False Otherwise
Other criteria have been proposed, for instance, those inspired by simulated
annealing (see Sect. 7.1).

Stopping criterion  The framework does not provide any suggestion for the stop-
ping criterion. Authors frequently use the limit of their patience, expressed in
seconds. Also, it can be the patience of other authors who have proposed a
concurrent method! This kind of stopping criteria is hardly convincing. This point
is discussed further in Sect. 11.3.4.2. The quite close POPMUSIC framework,
presented in Sect. 6.4.2, incorporates a natural stopping criterion.

To illustrate a practical implementation of this method, let us consider those
of Shaw [5], originally adapted to the vehicle routing problem. The destroy
method selects a seed client at random. The remaining customers are sorted using
a function measuring the relationship with the seed customer. This function is
inversely proportional to the distance between customers and depends on whether
the customers are part of the same tour. The idea is to select a subset of customers
who are close to the seed one but from different routes. These clients are randomly
selected, with a bias to favor those most closely related to the seed client.
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W

(a) Initial solution (b) Destroyed solution (c) Repaired solution

Fig. 6.4 Illustration of LNS on a VRP instance. The initial solution (a) is destroyed by removing a
few customers (b). The destroyed solution is repaired by optimally inserting the removed customers

(©)

The repair method is based on integer linear programming. The method imple-
ments a branch and bound technique with constraint propagation. This method can
only modify the variables associated with the clients chosen by the destruction
method. In addition, to prevent the explosion of computational times, common with
exact methods, the enumeration tree is partially examined and heuristically pruned.
A destroy-repair cycle is illustrated in Fig. 6.4.

There are algorithms based on the LNS framework that have been proposed
well before it. Among these applications is the shifting bottleneck heuristic for
the jobshop scheduling problem [1]. In this article, the destroy method selects the
bottleneck machine and frees the variables associated with the operations processed
by this machine. The repair method reorders these operations, considering that
the sequences on other machines are not modified. Hence, each operation on the
bottleneck machine has a release time corresponding to the earliest finishing time of
the preceding operation on the same job. In addition, each operation has a due date,
corresponding to the latest starting time of the following operation on the same job.
In this heuristic, all choices are deterministic and all optimization are exact. So,
the current solution is modified only if it is strictly improved and the method has a
natural stopping criterion.

The POPMUSIC method presented in the following section was developed
independently from LNS. It can be seen as a less flexible LNS method, in the
sense that it better suggests to the programmer the choice of options, particularly
the stopping criterion.

6.4.2 POPMUSIC

The primary idea of POPMUSIC is to locally optimize a part of an existing solution.
These improvements are repeated until no part that can be optimized are detected.
It is, therefore, a local search method. Originally, this method received the less
attractive acronym of LOPT (for local optimizations) [8, 9].
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For large problem instances, one can consider that a solution is composed of
a number of parts, which are themselves composed of a number of items. Taking
the example of clustering, each cluster can be a part. In addition, it is assumed
that one can define a proximity measure between the parts and that the latter are
somewhat independent of each other in the solution. In the case of clustering,
there are closely related clusters, containing items that are not well separated,
and independent clusters, that are clearly well separated. If these hypotheses are
satisfied, we have the special conditions necessary to develop an algorithm based on
the POPMUSIC framework. The name was proposed by S. Vo8. It is the acronym
of Partial OPtimization Metaheuristic Under Special Intensification Condition.

First, let us assume that a solution s can be represented by a set of g parts
1, ..., 84, and next that we have a method for measuring the proximity between
two parts. The germinal idea of POPMUSIC is to select a seed part s, and a number
r < g of the parts the nearest to s, to build a sub-problem R. With an appropriate
definition of the parts, improving the sub-problem, R can reveal an improvement for
the complete solution. Figures 6.5 and 6.6 illustrate what a part and a sub-problem
can be for various applications.

Independent parts

Sub-problem |;

Seed-part

Fig. 6.5 To apply the POPMUSIC framework to a clustering problem, one can define a part as all
the items assigned to the same center. The parts the nearest from the seed cluster constitute a sub-
problem that is tentatively optimized independently. The optimization of well separated clusters
cannot improve the solution. Hence, these parts are de facto independent
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O

©)

Fig. 6.6 For the VRP, the definition of a part in POPMUSIC can be a tour. Here, the proximity
between tours is the distance of their center of gravity. A sub-problem consists of customers
belonging to six tours

To prevent optimizing the same sub-problem several times, a set U stores the
seed parts that can define a sub-problem potentially not optimal. If the tentative
optimization of a sub-problem does not lead to an improvement, then the seed part
used to define it is removed from U. Once U is empty, the process stops. If a sub-
problem R has been successfully improved, a number of parts have been modified.
New improvements become possible in their neighborhood. In this case, all parts of
U that no longer exist in the improved solution are removed before incorporating all
parts of R. Algorithm 6.2 formalizes the POPMUSIC method.

To transcribe this framework into a code for a given problem, there are several
options:

Obtaining the initial solution POPMUSIC requires a solution before starting. The
technique presented in Sect.6.3 suggests how to get an appropriate initial
solution with limited computational effort. However, POPMUSIC may also work
for a limited instance size. In this case, an algorithm with a higher complexity
can generate a starting solution.



144 6 Decomposition Methods

Algorithm 6.2: POPMUSIC framework

Input: Initial solution s composed of ¢ disjoint parts sy, .. .,s,; sub-problem improvement
method
Result: Improved solution s
1 U={s1,...,54}
2 while U # & do
3 Select s, € U // s,: Seed part
Build a sub-problem R composed of the r parts of s the closest to s,
Tentatively optimize R
if R is improved then
Update s
From U, remove the part no longer belonging to s
In U, insert the parts composing R
10 else R not improved
1 | Remove s, from U

(- N

Definition of a part  The definition of a part is not unique for a given problem. In
the VRP case, we can consider that all customers on the same tour form a part,
as was done in [2, 7] (see Fig. 6.6). For the same problem, it is equally possible
to define a part as a single client, as in [5].

Definition of the distance between parts For some problems, the definition of
distance between two parts can be relatively easy and logical. For example, [9]
uses the Euclidean distance between centroids for a clustering problem. For map
labeling (Sect. 3.3.3), a graph is built whose vertices represent the objects to be
labeled and the edges represent potentially incompatible label positions. The
distance is measured by the minimum number of edges of a path to the seed
label, as shown in Fig. 6.7.

By cons, this definition can be quite unclear for some problems. For the VRP with
time window, two geometrically close clients can have incompatible opening
time windows. Therefore, they should be considered as distant.

It is possible to use several different proximity definitions simultaneously. If we
take the problem of school timetable design, one definition may aim to create
sub-problems focusing on groups of students following the same curriculum,
another on teachers, and a third on room allocation. Of course, if several
definitions of proximity between parts are used simultaneously, the last line of
Algorithm 6.2 has to be adapted: a seed part s; will only be removed from U if
none of the sub-problems that can be created with s, can improve the solution.

Selection of the seed part To our knowledge, there are no comprehensive studies
on the impact of the seed part selection process. In the literature, only very simple
methods are used to manage the set U': either stack or random selection.
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Fig. 6.7 For map labeling, a part can be an object to be labeled (circle with a number). Here, we
consider four possible label positions (rectangles around each object). Two objects are at a distance
of one if their labels may overlap. The number inside each disc represents the distance from the
seed object, noted 0. A sub-problem has up to r = 25 objects which are the closest to the seed
object. Here, the distance is at most 4. The objects whose labels could collide with these r objects
are included in the sub-problem. Only the positions of the labels of the r objects can be changed
when optimizing a sub-problem

Parameter r  The size of the sub-problems depends on r, the only explicit param-
eter of POPMUSIC. It depends on the ability of the optimization method. A low
value only allows minor improvements, but it requires a limited computational
effort. A high value implies a high computational effort but a better potential to
improve the solution.

Sub-problem optimization method The programmer is free to select any sub-
problem optimization method. Since the sub-problem size can be adjusted, the
implementation is facilitated: the method should be efficient for a limited span
of instance size. In case the optimization method is an exact one, POPMUSIC
framework is a matheuristic.

Looking at the stopping criterion—the set U is empty—the computational effort
could potentially be prohibitive for large instances. Indeed, for each sub-problem
improvement, several parts are introduced in U. In practice, the number of sub-
problems to solve grows almost linearly with the instance size. Figure 6.8 illustrates
this for a location-routing problem [2] and Fig. 6.10 for the TSP.

6.4.2.1 POPMUSIC for the TSP

An elementary implementation of the POPMUSIC technique for the traveling
salesman problem is given by Code 6.1. In this adaptation, a part is a city. The
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Fig. 6.8 Computational time observed for creating an initial solution to a location-routing problem
with the technique presented in Sect. 6.3 and overall optimization time for sub-problems with
the POPMUSIC frame. We notice that the growth of the computation time seems lower than the
analysis of @ (n3/2) done in Sect. 6.3 and that the time for the optimization of the sub-problems is
almost linear

distance between parts is measured by the number of intermediate cities that there
are along the current tour. This contrasts with a measure using the distance matrix. A
sub-problem is, therefore, a path of 2r cities whose extremities are fixed. We seek to
move a sub-path of at most r cities in the sub-problems, using a 3-opt neighborhood.
The set U is not represented explicitly because it is identified to the tour. Indeed,
successive sub-problems are just defined by a single city shift. To determine whether
to continue to optimize, the initial city of the last sub-path that was successfully
optimized is stored. If all starting cities are tried without improvement, the process
stops.



1

6.4 Local Search for Large Instances 147

Code 6.1 tsp_3opt_limited.py Basic POPMUSIC implementation for the TSP

######### POPMUSIC for the TSP based on 3-opt neighborhood

> def tsp_3opt_limited(d, # Distance matrix
3 r, # Subproblem size
succ, # Tour provided and returned
length) : # Tour length

len (succ)
if r >n - 2: # Subproblem size must not exceed n - 2

n - 2
last_i =0 # starting city is index 0

16

while True:

succ [i]
0

# do not exceed subproblem and the limits of the neighborhood

while t < r and succ[succ[j]] != last_i:
k = succ[j]
us=20
while u < r and succl[k] != last_i:
delta = d[i] [succ[j]] + d[j] [succ(k]] + d[k] [succ[i]] \
-d[i] [succ[i]] - d[j] [succ[j]] - dlk] [succ[k]]
if delta < 0: # Is there an improvement?
length += delta # Perform move
succ [1], succ[j], succlk] = succ[j], succ(k], succl[i]
j, k=%, 3J # Replace j between i and k
last_i = i
u += 1
k = succ [k] # Next k
t +=1
j = succl[j] # Next j
succ [i] # Next 1
if 1 == last_i: # A complete tour scanned without improvement
break

return succ, length

In order to successfully adapt the POPMUSIC technique to the TSP, it is

necessary to pay attention to some issues:

The initial solution must already possess an appropriate structure; for a Euclidean
problem, it should not include two intersecting edges belonging to portions of
routes that are separated by a long sequence of cities, because the optimization
procedure will be unable to uncross them.

Rather than developing an ad hoc local search like the one in Code 6.1 to
optimize sub-paths, it is easier to use a general TSP solving method, for instance,
Code 12.3.

Ultimately, we must avoid optimizing a second time a sub-path that was already
optimized.

To start with a solution having an appropriate structure, without using an

algorithm of high complexity, we can go along the lines of the technique presented
in Sect. 6.3.2. As the empirical complexity of POPMUSIC is linear, one can obtain
a solution of satisfactory quality in nlogn [10]. In practice, the time to build an
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Fig. 6.9 On the right, independent optimizations of four sub-paths. The bold lines highlight the
tour after optimization. The thin lines are those of the initial tour. On the left, the tour is shifted
and the process is repeated

initial solution is negligible compared to its improvement with POPMUSIC, even
for instances with billions of cities. We can speed up the process as follows, without
significantly degrading the final solution: the route over n cities is cut into [n/7]
sub-paths of approximately r cities. These sub-paths are connected only by their
extremities. Therefore, they can be independently optimized.

Once all these paths have been optimized, the tour is shifted by r/2 cities. Finally,
[n/r] sub-paths overlapping the previous ones are optimized. Thus, with 2 - [n/7]
sub-paths optimizations, we get a relatively good tour. Figure 6.9 illustrates this
process on the small instance solution shown in Fig. 6.3.

Figure 6.10 gives the evolution of the computational time as a function of the
number of cities. Figure 6.11 measures the quality of the solutions that can be
obtained with these techniques. Interestingly, the greedy nearest neighbor heuristic
(Code 4.3) would have provided, in a few 10 years or a few centuries for a billion
city instance, a solution deviating by about 22% from the optimum.

6.4.3 Comments

The chief difference between LNS and POPMUSIC is the latter unequivocally
defines the stopping criterion and the neighbor solution acceptance. Indeed, POP-
MUSIC accepts to modify the solution only if we have a strict improvement. For
several problems, this framework seems sufficient to obtain good quality solutions,
the latter being strongly conditioned by the capacity of the optimization method
used. The philosophy of POPMUSIC is to keep a framework as simple as possible.
If necessary, the optimization method is improved so that it can better address
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Fig. 6.10 Computational times for building an initial TSP solution with the technique presented in
Sect. 6.3.2. Optimizing it with a fast POPMUSIC (sub-paths of 225 cities). Building a solution with
the nearest neighbor heuristic. Building a tour with one level recursion method (see Problem 6.4).
Optimizing a tour with a standard POPMUSIC (sub-paths of 50 cities). The increase in time for
building a solution, in n log n, is higher than that of optimizing it with POPMUSIC. However, the
last takes a higher time for an instance with more than 2 billion cities
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Fig. 6.11 Quality of the solutions obtained with the constructive method presented in Sect. 6.3.2
and once improved with fast POPMUSIC. Quality of the nearest neighbor heuristic and those of
a standard POPMUSIC starting from an initial solution obtained with a single recursion level.
The problem instances are generated uniformly in the unit square, with toroidal distances (as if
the square was folded so that opposite borders are contiguous). For such a distance measure, a
statistical approximation of the optimal solution length is known. The fluctuations for the initial
solution reflect the recursion levels
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larger sub-problems. So, the framework is kept simple, without adding complicated
stopping criteria.

Defining parts and their proximity in POPMUSIC is perhaps a more intuitive way
than in LNS to formalize a set of constraints that are added to the problem on the
basis of an existing solution. These constraints allow using an optimization method
that would be inapplicable to the complete instance. The Corridor Method [6] takes
the problem from the other end: given an optimization method that works well—
in their application, dynamic programming—how can we add constraints to the
problem so that we can continue to use this optimization method. The components
or options of a method are often all interdependent. Choosing one option affects the
others. It may explain why actually very similar methods are presented by different
names.

Problems

6.1 Dichotomic Search Complexity

By applying the master recurrence theorem (Sect. 5.2.1), determine the algorithmic
complexity of searching for an element in a sorted array by means of a dichotomic
search.

6.2 POPMUSIC for the Flowshop Sequencing Problem

For implementing a POPMUSIC-based method, how to define a part and a sub-
problem for the flowshop sequencing problem? How to take into account the
interaction between the sub-problem and parts that should not be optimized?

6.3 Algorithmic Complexity of POPMUSIC

In a POPMUSIC application, the size of the sub-problem is independent of the size
of the problem instance. Hence, any sub-problem can be solved in a constant time.
Empirical observations, like those presented in Fig. 6.8, show that the number of
times a portion is inserted in U is also independent of the instance size. In terms of
algorithmic complexity, what are the most complex steps of POPMUSIC?

6.4 Minimizing POPMUSIC Complexity for the TSP

A technique for creating an appropriate TSP tour is as follows: first, a random
sample of k cities among 7 is selected. A good tour on the sample is obtained with a
heuristic method. Let us suppose that the complexity of this method is O (k%), where
a is a constant larger than 1. Then, for each of the remaining n — k cities, we find
the nearest from the sample. In the partial tour, each remaining city is inserted (in
any order) just after the sample city identified as the nearest. Finally, sub-paths of
r cities of the tour thus obtained are optimized with POPMUSIC. The value of r is
supposed to be in O(n/k). Also, it is supposed that the total number of sub-paths
optimized with POPMUSIC is in O (n). The paths are optimized using the same
heuristic method as for finding a tour on the sample.
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Fig. 6.12 TSP tour partially optimized with POPMUSIC. The initial tour is obtained with a one-
level recursive method. The tour on a sample of the cities in bold

Figure 6.12 illustrates the process. The sample size k depends on the number

of cities. We suppose that k = @ (n"*), where £ is to be determined. The sub-paths
optimized with POPMUSIC have a number of cities proportional to n/ k. Determine
the value of & (a) that minimizes the global complexity of this method.
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