
Chapter 4
Constructive Methods

Having ascertained that the problem to be solved is intractable and that the design of
a heuristic is justified, the next step is to imagine how to construct a solution. This
step is directly related to the problem modeling.

4.1 Systematic Enumeration

When we have to discover the best possible solution for a combinatorial optimiza-
tion problem, the first idea that comes is to try to build all the solutions to the
problem, evaluate their feasibility and quality, and return the best that satisfies all
constraints. Clearly, this approach can solely be applied to problems of moderate
size. Let us examine the example of a small knapsack instance in 0-1 variables with
two constraints:

max r = 9x1 + 5x2 + 7x3 + 3x4 + x5

Subject 4x1 + 3x2 + 5x3 + 2x4 + x5 � 10
to : 4x1 + 2x2 + 3x3 + 2x4 + x5 � 7

xi ∈ {0, 1}(i = 1, . . . , 5)

(4.1)

To list all the solutions of this instance, an enumeration tree is constructed. The
first node separates the solutions for which x1 = 0 of those where x1 = 1. The
second level consists of the nodes separating x2 = 0 and x2 = 1, etc. Potentially, this
problem has 25 = 32 solutions, many of which are unfeasible, because of constraint
violations. Formally, the first node generates two sub-problems that will be solved
recursively. The first sub-problem is obtained by setting x1 = 0 in (4.1):

© The Author(s) 2023
É. D. Taillard, Design of Heuristic Algorithms for Hard Optimization, Graduate
Texts in Operations Research, https://doi.org/10.1007/978-3-031-13714-3_4

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13714-3_4&domain=pdf

 711 4612 a 711 4612 a

https://doi.org/10.1007/978-3-031-13714-3_4

86 4 Constructive Methods

max r = 0 + 5x2 + 7x3 + 3x4 + x5

Subject 3x2 + 5x3 + 2x4 + x5 � 10
to : 2x2 + 3x3 + 2x4 + x5 � 7

xi ∈ {0, 1}(i = 2, . . . , 5)

The second sub-problem is obtained by setting x1 = 1 in (4.1):

max r = 9 + 5x2 + 7x3 + 3x4 + x5

Subject 3x2 + 5x3 + 2x4 + x5 � 6
to : 2x2 + 3x3 + 2x4 + x5 � 3

xi ∈ {0, 1}(i = 2, . . . , 5)

To avoid enumerating too many solutions, the tree can be pruned by noting
that all branches arising from a node with a constraint violation will lead to
unfeasible solutions. Indeed, for this problem instance, all constraint coefficients
are non-negative. For instance, if the x1, x2, x3 variables are already fixed to 1, both
constraints are violated, and all the sub-problems that could be created from there
will produce unfeasible solutions. Therefore, it is useless to develop this branch by
trying to set values of the x4 and x5 variables.

Another way to prune the non-promising branches is to estimate by a short
computation whether a sub-problem could lead to a better solution than the best
found so far. This is the branch and bound method.

4.1.1 Branch and Bound

To quickly estimate whether a sub-problem may have a solution, and if the latter
is promising, a technique is to relax one or more constraints. The optimal solution
of the relaxed problem is not necessarily feasible for the initial one. However, few
interesting properties can be deduced by solving the relaxed problem: If the latter
has no solutions or its optimal solution is worse than the best feasible solution
already found, then there is no need to develop the branch from this sub-problem. If
the relaxed sub-problem contains an optimal solution feasible for the initial problem,
then developing the branch is also unnecessary. In addition to the Lagrangian
relaxation seen above (Sect. 3.1.1), several relaxation techniques are commonly
used to simplify a sub-problem.

Variable integrality Imposing integer variables makes Problem (4.1) difficult. We
can therefore remove this constraint and solve the problem:

4.1 Systematic Enumeration 87

max S = 9x1 + 5x2 + 7x3 + 3x4 + x5

Subject 4x1 + 3x2 + 5x3 + 2x4 + x5 � 10
to: 4x1 + 2x2 + 3x3 + 2x4 + x5 � 7

0 � xi � 1(i = 1, . . . , 5)

(4.2)

This linear problem can be solved efficiently in polynomial time. Its optimal
solution is (0.5; 1; 1; 0; 0) with objective value of 16.5. Since it comprises a
fractional value, this solution is not feasible for the initial problem. However,
it informs us that there is no solution to Problem (4.1) whose value exceeds 16.5
(or even 16 since all the coefficients are integers). Therefore, if an oracle gives
us the feasible solution (1; 0; 1; 0; 0) of value 16, we can deduce this solution to
be optimal for the initial problem.

Constraint aggregation (surrogate constraint) A number of constraints are lin-
early combined to get another one. In our simple example, we get:

max S = 9x1 + 5x2 + 7x3 + 3x4 + x5

Subject 8x1 + 5x2 + 8x3 + 4x4 + 2x5 � 17
to : xi ∈ {0, 1}(i = 1, . . . , 5)

(4.3)

This problem is a standard knapsack. It is easier to solve than the initial problem.
The solution (1; 1; 0; 1; 0) is optimal for the relaxed Problem (4.3) but is not
feasible for the initial problem because the second constraint is violated. As the
relaxed problem is NP-hard, this approach may be problematic.

Combined relaxation Clearly, several types of relaxation can be combined, for
instance, the aggregation of constraints and the integrality variables. For our
small example, we get:

max S = 9x1 + 5x2 + 7x3 + 3x4 + x5

Subject 8x1 + 5x2 + 8x3 + 4x4 + 2x5 � 17
to : 0 � xi � 1(i = 1, . . . , 5)

(4.4)

This problem can be solved in O(n logn) as follows: the variables are sorted in
the order of decreasing ri/vi values, where ri represents the revenue of the object
i and vi its aggregated volume. In our example, the indices are already sorted.
The objects are selected one after the other in this order until a new object would
overcharge the knapsack. This leads to x1 = x2 = 1. The next object is split to
completely fill the knapsack (�⇒ x3 = 4/8 for a total value of the knapsack
S = 9 + 5 + 7 · 4/8 = 17, 5). Since all the coefficients are integers in our
example, S = �17, 5� = 17 is also a valid bound for the optimal value of the
initial problem.

Algorithm 4.1 provides the general framework of the branch and bound method.
Figure 4.1 shows a partial enumeration tree that can be obtained by solving the
small problem instance (4.1). Three components should be specified by the user for
implementing a complete algorithm.

88 4 Constructive Methods

Algorithm 4.1: Branch and bound framework for an objective to maximize.
It is necessary to provide three methods: α for the management of the sub-
problems to be solved (generally, a priority queue (based on a heuristic
criterion) or a stack), a method β for evaluating the relaxation of the sub-
problems, and a heuristic γ for choosing the next variable to separate for
generating new sub-problems

Input: A problem with n variables x1, . . . ,xn, policy for managing sub-problems,
relaxation method , branching method

Result: An optimal solution x∗ of value f ∗
1 f ∗ ← − // Value of best solution found
2 F ← // Set of fixed variables
3 L ← {x1, . . . ,xn} // Set of free variables
4 Q ← {(F,L)} // Set of sub-problems to solve
5 while Q �= do
6 Remove a problem P = (F,L) from Q according to policy
7 if P can potentially have feasible solutions with values already fixed in F then
8 Compute a relaxation x of P with method , modifying only variables xk ∈ L
9 if x is feasible for the initial problem and f ∗ < f (x) then Store the improved

solution
10 x∗ ← x
11 f ∗ ← f (x)
12 else if f (x)> f ∗ then Expand the branch
13 Choose xk ∈ L according to policy
14 forall possible value v of xk do
6161 Q ← Q∪{(F ∪{xk = v},L\{xk})}

17 else No solution better than x∗ can be obtain
18 Prune the branch

First, the management policy of the set Q of sub-problems awaiting treatment
must be specified. If Q is managed as a queue, we have a breadth-first search. If
Q is carried as a stack, we have a depth-first search. The last promotes a rapid
discovery of a feasible solution to the initial problem.

A frequent choice is to manage Q as a priority queue. This implies computing
an evaluation for each sub-problem. Ideally, this evaluation should be strongly
correlated with the best feasible solution that can be obtained by developing the
branch. A typical example is to use the value S of the relaxed problem. The choice of
a management method for Q is frequently based on very empirical considerations.

The second component to be defined by the user is the relaxation technique. This
is undoubtedly one of the most delicate points for designing an efficient branch
and bound. This point strongly depends on both the problem to be solved and the
numerical data.

The third choice left is how to separate the problem into sub-problems. A simple
policy is to choose the smallest index variable or a non-integer variable in the

4.1 Systematic Enumeration 89

8 9

6

5

7

4

3

1

2

unfeasible

unfeasible
S = 15

(1,1,0,0,1)

Pruned by 11
S = 17 S = 17.5

S = 17.5

S = 17.5

S = 15
(0,1,1,1,0)

S = 17.5

S = 16.25

x1 = 0 x1 = 1

x2 = 1x2 = 0

x3 = 1x3 = 0

x4 = 1x4 = 0

10 11

x3 = 0 x3 = 1

(1,0,1,0,0)
SS == 16116S = 16.75

Fig. 4.1 Solving Problem (4.1) with a branch and bound. Sub-problem set Q managed as a stack.
The nodes are numbered by creation order. Branching is done by increased variable index. Nodes
9 and 7 are pruned because they cannot lead to feasible solutions. Node 10 is pruned because it
cannot lead to a solution better than node 11

solution of the relaxed problem. Frequently, the policy adopted for branching is
empirical.

A simple implementation of this framework is the A* search algorithm. The last
manages Q as a priority queue and evaluates a heuristic value before inserting a
sub-problem in Q.

In some cases, the number of possible values for the next xk variable to set is
significant, especially when xk can take any integer value. A branching technique is
to consider the fractional value y taken by a variable xk and to develop two branches,
one with the additional constraint xk � �y� and the other with xk � �y�+ 1. In this
case, the sets of fixed and independent variables are unchanged on Line 16. This
technique was proposed by Dakin [2].

Another technique, known as branch and cut is to add constraints to the relaxed
sub-problem. The goal of the new constraints is to remove the unfeasible solution
obtained by solving the sub-problem. For instance, such a constraint may prevent a
variable to take a given fractional value.

4.1.1.1 Example of Implementation of a Branch and Bound

A naive branch and bound implementation manages the sub-problem set as a stack
(policy α). This is performed automatically with a recursive procedure.

For the TSP, a solution is a permutationp of the n cities. The element pi provides
the ith city visited. Assume that the order of cities has been fixed up to and including
i and L is the set of cities remaining to be ordered. A lower bound on the optimal
tour length can be obtained by considering that:

1. The ith city is connected to the closest of L.

90 4 Constructive Methods

2. Each city of L is connected to another of L that is the closest.
3. The first city is connected to the closest of L.

Doing so, a valid tour is eventually obtained for the complete problem. When
only one “free” city remains (|L| = 1), we have to go to this one and then to return
to the departure city. In this situation, a valid tour is obtained. The procedure given
by Code 4.1 returns a flag indicating whether a feasible tour is found.

Code 4.1 tsp_lower_bound.py Code for computing a naive lower bound to the optimal tour. The
procedure returns the bound and can alter the order of the last cities of the tour. In the event the
length of the modified tour is equal to the value of the lower bound, the procedure indicates that
the tour is optimal

1 ######### Computation of a naive lower bound for the TSP
2 def tsp_lower_bound(d, # Distance matrix
3 depth, # tour[0] to tour[depth] fixed
4 tour): # TSP tour
5

6 n = len(tour)
7 lb = 0 #Compute the length of the path for the cities already fixed in tour
8 for j in range(depth):
9 lb += d[tour[j]][tour[j+1]]

10

11 valid = 1 # valid is set to 1 if every closest successor of j build a tour
12 for j in range(depth, n-1): # Add the length to the closest free city j
13 minimum = d[tour[j]][tour[j+1]]
14 for k in range(n-1, depth, -1):
15 if k != j and minimum > d[tour[j]][tour[k]]:
16 minimum = d[tour[j]][tour[k]]
17 if (k > j):
18 tour[k], tour[j+1] = tour[j+1], tour[k]
19 else:
20 valid = 0
21 lb += minimum
22

23 minimum = d[tour[n-1]][tour[0]] # Come back to first city of the tour
24 for j in range (depth+1, n-1):
25 if (minimum > d[tour[j]][tour[0]]):
26 valid = 0
27 minimum = d[tour[j]][tour[0]]
28 lb += minimum
29 return lb, tour, valid # Lower bound, tour modified, lb == tour length

To implicitly list all possible tours on n cities, an array as well as a depth
index can be used. From the depth index, all the possible permutations of the
last elements of the array are enumerated. This procedure is called recursively with
depth + 1 after trying all the remaining possibilities for the depth array entry.
To prune the enumeration, no recursive call is performed either if the lower bound
computation provides an optimal tour or if the lower bound of the tour length is
larger than that of a feasible tour already found. Code 4.2 implements an implicit
enumeration for the TSP.

4.2 Random Construction 91

Code 4.2 tsp_branch_and_bound.py Code for implicitly enumerating all the permutations of n

elements

1 from tsp_lower_bound import tsp_lower_bound # Listing 4.1
2

3 ######### Basic Branch & Bound for the TSP
4 def tsp_branch_and_bound(d, # Distance matrix
5 depth, # current_tour[0] to current_tour[depth] fixed
6 current_tour, # Solution partially fixed
7 upper_bound): # Optimum tour length
8

9 n = len(current_tour)
10 best_tour = current_tour[:]
11 for i in range(depth, n):
12 tour = current_tour[:]
13 tour[depth], tour[i] = tour[i], tour[depth]
14 lb, tour, valid = tsp_lower_bound(d, depth, tour)
15 if (upper_bound > lb):
16 if (valid):
17 upper_bound = lb
18 best_tour = tour[:]
19 print("Improved: ", upper_bound, best_tour)
20 else:
21 best_tour, upper_bound = tsp_branch_and_bound(d, depth+1, tour, \
22 upper_bound)
23 return best_tour, upper_bound

It should be noted here that this naive approach requires a few seconds to a few
minutes to solve problems up to 20 cities. However, this represents a significant
improvement over an exhaustive search, which would require a computing time
of several millennia. The relaxation based on the notion of 1-tree presented in
Sect. 3.1.1.2 could advantageously replace that provided by Code 4.1.

In recent years, so-called exact methods for solving integer linear programs have
made substantial progresses. The key improvements are due to more and more
sophisticated heuristics for computing relaxations and branching policies. Software
like CPLEX or Gurobi include methods based on metaheuristics for computing
bounds or obtaining good solutions. This allows a faster pruning of the enumeration
tree. Despite this, the computational time grows exponentially with the problem
size.

4.2 Random Construction

A rapid and straightforward method to obtain a solution is to generate it randomly
among the set of all feasible solutions. We clearly cannot hope to reliably find an
excellent solution like this. However, this method is widely implemented in iterative
local searches repeating a constructive phase followed by an improvement phase. It
should be noted here that the modeling of the problem plays a significant role, as

92 4 Constructive Methods

noted in Chap. 3. In case finding a feasible solution is difficult, one must wonder
whether the problem modeling is adequate.

Note that it is not necessarily easy to write a procedure generating each solution
of a feasible set with the same probability. Exercise 4.1 deals with the generation
of a random permutation of n items. Naive approaches such as those given by
Algorithms 4.5 and 4.6 can lead to non-uniform solutions and/or inefficient codes.

4.3 Greedy Construction

In Chap. 2, the first classical algorithms of graphs passed in review—Prim and
Kruskal for building the minimum spanning tree and Dijkstra for finding the shortest
path—were greedy algorithms. They are building a solution by including an element
at every step. The element is permanently added on the base of a function evaluating
its relevance for the partial solution under construction.

Assuming a solution is composed of elements e ∈ E that can be added to a
partial solution s, the greedy algorithm decides which element to add by computing
an incremental cost function c(e, s). Algorithm 4.2 provides the framework of a
greedy constructive method.

Algorithm 4.2: Framework of a greedy constructive method. Strictly
speaking, this is not an algorithm since different implementation options are
possible, according to the definition of the set E of the elements constituting
the solutions and the incremental cost function

Input: A trivial partial solution s (generally); set E of elements constituting a solution;
incremental cost function c(s,e)

Result: Complete solution s
1 R ← E // Elements that can be added to s
2 while R �= do
3 ∀e ∈ R, compute c(s,e)
4 Choose e′ optimizing c(s,e′)
5 s ← s∪ e′ // Include e′ in the partial solution s
6 Remove from R the elements that cannot be added any more to s

Algorithms with significantly different performances can be obtained according
to the definition of E and c(s, e). Considering the example of the Steiner tree, one
could considerE as the set of edges of the problem and the incremental cost function
as the weight of each edge. In this case, a partial solution is a forest.

Another modeling could consider E as the Steiner points. The incremental cost
function would be to calculate a minimum spanning tree containing all terminal
nodes plus e and those already introduced in s.

4.3 Greedy Construction 93

We now provide some examples of greedy heuristics that have been proposed for
a few combinatorial optimization problems.

4.3.1 Greedy Heuristics for the TSP

Countless greedy constructive methods have been proposed for the TSP. Here is a
choice illustrating the variety of definitions that can be made for the incremental
cost function.

4.3.1.1 Greedy on the Edges

The most elementary way to design a greedy algorithm for the TSP is to consider the
elements e to add to a partial solution s are the edges. The incremental cost function
is merely the edge weight. Initially, we start from a partial solution s = ∅. The set
R consists of the edges that can be added to the solution, without creating a vertex
of degree > 2 or a cycle not including all the cities. Figure 4.2 illustrates how this
heuristic works on a small instance.

4.3.1.2 Nearest Neighbor

One of the easiest greedy methods to program for the TSP is the nearest neighbor.
The elements to insert are the cities rather than the edges. A partial solution s is,
therefore, a path in which the cities are visited in the order of their insertion. The
incremental cost is the weight of the edge that connects the next city. Figure 4.3
illustrates the execution of this heuristic on the same instance as above. It is a
coincidence to get a solution identical to the previous method.

Fig. 4.2 Steps of a greedy constructive method based on the edge weight for the TSP

Fig. 4.3 Running the nearest neighbor for a tiny TSP instance

94 4 Constructive Methods

The nearest neighbor greedy heuristic can be programmed very concisely, in
Θ(n2), where n is the number of cities (see Code 4.3).
Code 4.3 tsp_nearest_neighbor.py Nearest neighbor for the TSP. Note the similarities with the
implementation of the Dijkstra algorithm given by Code 2.1

1 ######### Nearest Neighbor greedy heuristic for the TSP
2 def tsp_nearest_neighbor(d, # Distance matrix
3 tour): # List of cities to order
4

5 n = len(tour)
6 length = 0 # Tour length
7 for i in range(1, n): # Cities from tour[0] to tour[i-1] are fixed
8 nearest = i # Next nearest city to insert
9 cost_ins = d[tour[i-1]][tour[i]] # City insertion cost

10 for j in range(i+1, n): # Find next city to insert
11 if d[tour[i-1]][tour[j]] < cost_ins:
12 cost_ins = d[tour[i-1]][tour[j]]
13 nearest = j
14 length += cost_ins
15 tour[i], tour[nearest] = tour[nearest], tour[i] # Definitive insertion
16

17 length += d[tour[n - 1]][tour[0]] # Come back to start
18

19 return tour, length

4.3.1.3 Largest Regret

A defect of the nearest neighbor is to temporarily forget a few cities, which subse-
quently causes significant detours. This is exemplified in Fig. 4.3. To try to prevent
this kind of situation, we can evaluate the increased cost for not visiting city e just
after the last city i of the partial path s. In any case, the city e must appear in the final
tour. This will cost at least minj,k∈R dje + dek . Conversely, if e is visited just after i,
the cost is at least minr∈R die + der . The largest regret greedy constructive method
chooses the city e maximizing c(s, e) = minj,k∈R (dje + dek)−minr∈R (die + der).

4.3.1.4 Cheapest Insertion

The cheapest insertion heuristic involves inserting a city in a partial tour. The set E
consists of cities, and the trivial initial tour is a cycle on both cities which are the
nearest. The incremental cost c(s, e) of a city is the minimum detour that must be
consented to insert the city e in the partial tour s between two successive cities of s.
Figure 4.4 illustrates this greedy method.

4.3 Greedy Construction 95

Fig. 4.4 Running the cheapest insertion for a tiny TSP instance

Fig. 4.5 Running the farthest insertion for a tiny TSP instance

4.3.1.5 Farthest Insertion

The farthest insertion heuristic is similar to the previous one, but it selects the city
whose insertion causes the most significant detour. However, each city is inserted
at the best possible place in the tour. Figure 4.5 illustrates this greedy method. It
seems counter-intuitive to choose the most problematic city at each step. However,
this type of construction reveals less myopic and frequently produces better final
solutions than the previous heuristics.

Here, we have provided only a limited range of greedy constructive methods that
have been proposed for the TSP. The quality of the solutions they produce varies. It
is usually not challenging to find problem instances for which a greedy heuristic is
misguided and makes choices increasingly bad. On points uniformly distributed on
the Euclidean plane, they typically provide solutions a few tens of percent above the
optimum.

4.3.2 Greedy Heuristic for Graph Coloring

After reviewing several methods for the TSP, it is necessary to present a not too
naive example for another problem.

A relatively elaborate greedy method for coloring the vertices of a graph tries
to determine the node for which assigning a color may be the most problematic.
The DSatur [1] method assumes it corresponds to the node with already colored
neighbors using the broadest color palette. For this purpose, the saturation degree of
a vertex v is defined, noted DS (v), corresponding to the number of different colors
used by the vertices adjacent to v. At equal degree of saturation—particularly at
the start, when no vertex is colored—the node with the highest degree is selected.
At equivalent degree and saturation degree, the nodes are arbitrarily selected.
Algorithm 4.3 formalizes this greedy method.

96 4 Constructive Methods

Algorithm 4.3: DSatur algorithm for graph coloring. The greedy criterion
used by this algorithm is the saturation degree of the vertices, corresponding
to the number of different colors used by adjacent nodes

Input: Undirected graph G = (V,E);
Result: Vertex coloring

1 Color with 1 the vertex v with the highest degree
2 R ← V \ v
3 colors← 1
4 while R �= do
5 ∀v ∈ R, compute DS(v)
6 Choose v′ maximizing DS(v′), with the highest possible degree
7 Find the smallest k (1 � k � colors +1) such that color k is feasible for v′
8 Assign color k to v′
9 if k > colors then
10 colors = k

11 R ← R\ v′

4.4 Improvement of Greedy Procedures

The chief drawback of a greedy construction is that it never changes a choice
performed in a myopic way. Conversely, the shortcoming of a complete enumerative
method is the exponential growth of the computational effort with the problem
size. To limit this growth, it is therefore necessary to limit the branching. This is
typically achieved on the basis of greedy criteria. This section reviews two partial
enumeration techniques that have been proposed to improve a greedy algorithm.

First, the beam search was proposed within the framework of an application
in speech recognition [5]. Second is the more recent pilot method, proposed by
Duin and Voß [3]. It was presented as a new metaheuristic. Other frames have been
derived from it [4].

4.4.1 Beam Search

Beam search is a partial breadth-first search. Instead of keeping all the branches, at
most, p are kept at each level, on the basis of the incremental cost function c(s, e).
Arriving at level k, the partial solution at the first level is completed with the element
e which leads to the best solution at the last enumerated level. Figure 4.6 illustrates
the principle of a beam search.

4.4 Improvement of Greedy Procedures 97

Partial initial solution

p best candidates at level 1

p best candidates at level 2

Best candidate at level k

Element added to the initial solution

Fig. 4.6 Beam search with p = 3 and k = 3. Before definitively choosing the element to insert in
the partial solution, a breadth-first search is carried out up to a depth of k, only retaining the p best
candidates at each depth

A beam search variant proceeds by making a complete enumeration up to a level
containing more than p nodes. The p best of them are retained to generate the
candidates for the next level.

4.4.2 Pilot Method

The framework of the pilot method requires a so-called pilot heuristic to fully
complete a partial solution. This pilot heuristic can be a simple greedy method,
for example, the nearest neighbor heuristic for the TSP, but it can equally be a much
more sophisticated method, such as one of those presented in the following chapters.

The pilot method enumerates all the partial solutions that can be obtained by
including an element to the starting solution. The pilot heuristic is then applied to
all these partial solutions to end up with as many complete solutions. The partial
solution at the origin of the best complete solution is used as the new starting
solution, until there is nothing more to add. Figure 4.7 illustrates two steps of the
method.

Algorithm 4.4 specifies how the pilot metaheuristic works. In this framework,
the ultimate “partial” solutions represent a feasible complete solution which is not
necessarily the solution returned by the algorithm. Indeed, the pilot heuristic can
generate a complete solution that does not necessarily include the elements of the
initial partial solution, especially if it includes an improvement technique more
elaborated than a simple greedy constructive method.

98 4 Constructive Methods

Initial partial solution

Best complete solution

Element added to the initial solution

Pilot heuristic completion

Next partial solution

Fig. 4.7 Pilot method. An element is included in the partial solution; then a pilot constructive
heuristic is applied to fully complete it. The process is repeated with another element added to the
partial solution. The element finally inserted is the one that led to the best complete solution

Algorithm 4.4: Frame of a pilot method

Input: sp trivial partial solution; set E of elements constituting a solution; pilot heuristic
h(se) for completing a partial solution se; fitness function f (s)

Result: Complete solution s∗
1 R ← E // Elements that can be added to s
2 while R �= do
3 v ←
4 forall e ∈ R do
5 Complete sp with e to get se
6 Apply h(se) to get a complete solution s
7 if f (s) � v then
8 v ← f (s)
9 sr ← se

10 if s is better than s∗ then Store the improved solution
11 s∗ ← s

12 sp ← sr // Add an element to the partial solution sp
13 Remove from R the elements that cannot properly be added to sp

Code 4.4 provides an implementation of the pilot method for the TSP. The pilot
heuristic is the nearest neighbor.

Problems 99

Code 4.4 tsp_pilot_nearest_neighbor.py Implementation of a pilot method with the nearest
neighbor (Code 4.3) as pilot heuristic

1 from tsp_utilities import tsp_length # Listing 12.2
2 from tsp_nearest_neighbor import * # Listing 4.3
3

4 ######### Constructive algorithm with Nearest Neighbor as Pilot method
5 def tsp_pilot_nearest_neighbor(n, # Number of cities
6 d): # Distance matrix
7 tour = [i for i in range(n)] # All cities must be in tour
8

9 for q in range(n - 1): # Cities up to q at their final position
10 length_r = tsp_length(d, tour)
11 to_insert = q
12 for r in range(q, n): # Choose next city to insert at position q
13 sol = [tour[i] for i in range(n)] # Copy of tour in sol
14 sol[q], sol[r] = sol[r], sol[q] # Tentative city at postion q
15 sol[q:n], _ = tsp_nearest_neighbor(d, sol[q:n])
16 tentative_length = tsp_length(d, sol)
17 if length_r > tentative_length:
18 length_r = tentative_length
19 to_insert = r
20

21 # Put definitively to_insert at position q
22 tour[q], tour[to_insert] = tour[to_insert], tour[q]
23

24 return tour, tsp_length(d, tour)

Problems

4.1 Random Permutation
Write a procedure to generate a random permutation of n elements contained in an
array p. It is desired a probability of 1/n to find any element in any position in p.
Describe the inadequacy of Algorithms 4.5 and 4.6.

Algorithm 4.5: Bad algorithm to generate a random permutation of n

elements
Input: A set of n elements e1, . . . ,en
Result: A permutation p of the elements

1 i ← 0 // Number of element already chosen
2 while i �= n do
3 Draw a random number u uniformly between 1 and n
4 if eu is not already chosen then
5 i ← i+1
6 pi ← eu

100 4 Constructive Methods

Algorithm 4.6:Another bad algorithm to generate a random permutation of
n elements

Input: A set of n elements e1, . . . ,en
Result: A permutation p of the elements

1 i ← 0 // Number of element already chosen
2 while i �= n do
3 Draw a random number u uniformly between 1 and n
4 i ← i+1
5 if eu is already chosen then
6 Find the next u′ such that eu′ is not chosen
7 pi ← eu′

8 else
9 pi ← eu

4.2 Greedy Algorithms for the Knapsack
Propose three different greedy algorithms for the knapsack problem.

4.3 Greedy Algorithm for the TSP on the Delaunay
We want to build the tour of a traveling salesman (on the Euclidean plane) using
only edges belonging to the Delaunay triangulation. Is this always possible? If this
is not the case, provide a counter-example; otherwise, propose a greedy method and
analyze its complexity.

4.4 TSP with Edge Subset
To speed up a greedy method for the TSP, only the 40 shortest edges adjacent to
each vertex are considered. Is this likely to reduce the algorithmic complexity of the
method? Can this cause some issues?

4.5 Constructive Method Complexity
What is the complexity of the nearest neighbor heuristic for TSP? Same question
if we use this heuristic in a beam search by retaining p nodes at each depth and
that we go to k levels down. Similar question for the pilot method where we equally
employ the nearest neighbor as the pilot heuristic.

4.6 Beam Search and Pilot Method Applications
We consider a TSP instance on five cities. Table 4.1 gives its distance matrix.

Apply a beam search to this instance, starting from the city 1. At each level, only
p = 2 nodes are retained, and the tree is developed up to k = 3 levels down.

Apply a pilot method to this instance, considering the nearest neighbor as the
pilot heuristic.

References 101

Table 4.1 Distance matrix
for Problem 4.6

1 2 3 4 5

1 — 5 3 19 7

2 13 — 1 18 6

3 12 4 — 14 6

4 11 9 8 — 10

5 23 11 7 21 —

4.7 Greedy Algorithm Implementation for Scheduling
Propose two greedy heuristics for the permutation flowshop problem. Compare their
quality on problem instances from the literature.

4.8 Greedy Methods for the VRP
Propose two greedy heuristic methods for the vehicle routing problem.

References

1. Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM. 22(4), 251–256
(1979). https://doi.org/10.1145/359094.359101

2. Dakin, R.J.: A tree search algorithm for mixed integer programming problems. Comput. J. 8(3),
250–255 (1965). https://doi.org/10.1093/comjnl/8.3.250

3. Duin, C., Voß S.: The pilot method: a strategy for heuristic repetition with application to the
steiner problem in graphs. Networks. 34, 181–191 (1999). https://doi.org/10.1002/(SICI)1097-
0037(199910)34:3%3C181::AID-NET2%3E3.0.CO;2-Y

4. Furcy, D., Koenig, S.: Limited discrepancy beam search. In: Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pp. 125–131 (2005)

5. Lowerre, B.: The Harpy Speech Recognition System. Ph. D. Thesis, Carnegie Mellon University
(1976)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

 146 2002 a 146 2002 a

https://doi.org/10.1145/359094.359101

 411 2168 a 411 2168 a

https://doi.org/10.1093/comjnl/8.3.250

 1598 2334 a 1598
2334 a

https://doi.org/10.1002/(SICI)1097-0037(199910)34:3%3C181::AID-NET2%3E3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1097-0037(199910)34:3%3C181::AID-NET2%3E3.0.CO;2-Y

 506 3432
a 506 3432 a

http://creativecommons.org/licenses/by/4.0/

	4 Constructive Methods
	4.1 Systematic Enumeration
	4.1.1 Branch and Bound
	4.1.1.1 Example of Implementation of a Branch and Bound

	4.2 Random Construction
	4.3 Greedy Construction
	4.3.1 Greedy Heuristics for the TSP
	4.3.1.1 Greedy on the Edges
	4.3.1.2 Nearest Neighbor
	4.3.1.3 Largest Regret
	4.3.1.4 Cheapest Insertion
	4.3.1.5 Farthest Insertion

	4.3.2 Greedy Heuristic for Graph Coloring

	4.4 Improvement of Greedy Procedures
	4.4.1 Beam Search
	4.4.2 Pilot Method

	Problems
	References

