
Chapter 7
Solving Quadratic Equations

Poh-Shen Loh proposed a method for solving quadratic equations that is based on a
relation between the coefficients of the quadratic polynomial and its roots. Section 7.1
reviews the traditional methods for solving quadratic equations. Section 7.2 tries to
convince the reader that Loh’s method makes sense and then explains how to compute
the roots. In Sect. 7.3 the computation is carried out for two quadratic polynomials
and a similar computation for a quartic polynomial. Section 7.4 derives the traditional
formula for the roots from Loh’s formulas.

The introduction of algebra and modern algebraic notation is relatively recent.
Previously, mathematicians used geometry almost exclusively, so it is interesting
to look at al-Khwarizmi’s geometric construction of the formula for the roots of
quadratic equations (Sect. 7.5). Section 7.6 shows a clever geometric construction
used by Cardano in developing the formula for the roots of cubic equations.

Section 7.8 presents other geometric methods for finding the roots of quadratic
equations.1 The chapter concludes with Sect. 7.9 which discusses numerical com-
putation of the roots of quadratic equations.

7.1 Traditional Methods for Solving Quadratic Equations

Every student of mathematics memorizes the formula for obtaining the roots of a
quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0:

𝑥1, 𝑥2 =
−𝑏 ±

√
𝑏2 − 4𝑎𝑐
2𝑎

.

1 Chapter 11 is a prerequisite for a full understanding of these methods.
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74 7 Solving Quadratic Equations

For now we will work with monic polynomials, 𝑥2 + 𝑏𝑥 + 𝑐 = 0, whose roots are:

𝑥1, 𝑥2 =
−𝑏 ±

√
𝑏2 − 4𝑐
2

. (7.1)

Another method of solving quadratic equations is by factoring the polynomials
more-or-less by trial-and-error. Sometimes it is easy to obtain the roots by factoring:

𝑥2 − 4𝑥 + 3 = (𝑥 − 1) (𝑥 − 3) . (7.2)

It is much harder to factor 𝑥2 − 2𝑥 − 24 because there are many possible pairs of
roots that must be considered:

(±1,∓24) , (±2,∓12) , (±3,∓8) , (±4,∓6) .

7.2 The Relation Between the Roots and the Coefficients

Theorem 7.1 If 𝑟1, 𝑟2 are the roots of 𝑥2 + 𝑏𝑥 + 𝑐 then:

(𝑥 − 𝑟1) (𝑥 − 𝑟2) = 𝑥2 − (𝑟1 + 𝑟2)𝑥 + 𝑟1𝑟2 = 𝑥2 + 𝑏𝑥 + 𝑐 .

Therefore, even if we do not know the values of the roots, we do know that:

𝑟1 + 𝑟2 = −𝑏 , 𝑟1𝑟2 = 𝑐 . (7.3)

There is really nothing to prove because the result emerges from the computation.
Consider some values of −𝑏, 𝑟1, 𝑟2 and let 𝑚12 be the average of 𝑟1, 𝑟2:

−𝑏 𝑟1 𝑟2 𝑚12

33 12 21 16 1
2

33 8 25 16 1
2

33 1 32 16 1
2

−𝑏 𝑟1 𝑟2 𝑚12

−4 −16 12 −2
−4 −4 0 −2
−4 −3 −1 −2

For any quadratic equation the average of the two roots is constant:

𝑚1,2 =
𝑟1 + 𝑟2

2
=

(−𝑏 − 𝑟2) + 𝑟2
2

= −𝑏

2
.
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𝑚12 − 𝑟1 𝑚12 − 𝑟2

Fig. 7.1 Relation between the roots 𝑟1, 𝑟2 = 2, 6 and their average 𝑚12 = 4

Let 𝑠 be any number. Then:

−𝑏 = −𝑏 + 𝑠 + (−𝑠) =
(−𝑏

2
+ 𝑠

)
+
(−𝑏

2
− 𝑠

)
= 𝑟1 + 𝑟2 .

If one root is at distance 𝑠 from the average, the other root is at distance −𝑠 from the
average. For 𝑟1, 𝑟2 = 2, 6, where 𝑚12 = 4, 𝑠 = 2, we have:

−𝑏 𝑟1 𝑟2 𝑚12 𝑚12−𝑟1 𝑚12−𝑟2

33 12 21 16 1
2 4 1

2 −4 1
2

33 8 25 16 1
2 8 1

2 −8 1
2

33 1 32 16 1
2 15 1

2 −15 1
2

−4 −16 12 −2 14 −14
−4 −4 0 −2 2 −2
−4 −3 −1 −2 1 −1

Figure 7.1 visualizes this relation. If we use other values 𝑟1, 𝑟2 = 3, 5 for which
𝑟1 + 𝑟2 = 8 then 𝑚12 = 4 remains the same while 𝑠 becomes 1 (Fig. 7.2).

The offset 𝑠 seems to be arbitrary in:

𝑟1 =

(−𝑏
2

+ 𝑠

)
, 𝑟2 =

(−𝑏
2

− 𝑠

)
,

but there is an additional constraint 𝑟1𝑟2 = 𝑐, where 𝑐 is the constant term in the
polynomial. By multiplying the two expressions we have derived for 𝑟1, 𝑟2, we can
determine 𝑠 and then 𝑟1, 𝑟2:

𝑐 =

(
−𝑏

2
+ 𝑠

) (
−𝑏

2
− 𝑠

)
=

𝑏2

4
− 𝑠𝑠

𝑠 =

√
𝑏2 − 4𝑐

2
.
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𝑟1
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𝑚12

𝑚12 − 𝑟1 𝑚12 − 𝑟2

Fig. 7.2 Relation between the roots 𝑟1, 𝑟2 = 3, 5 and their average 𝑚12 = 4

7.3 Examples of Loh’s Method

Example 7.1 Consider the polynomial 𝑥2 − 2𝑥 − 24 where 𝑏 = −2, 𝑐 = −24:

𝑐 =

(
− (−2)

2
+ 𝑠

) (
− (−2)

2
− 𝑠

)
−24 = (1 + 𝑠) (1 − 𝑠)

𝑠 = 5
𝑟1 = 1 + 5 = 6
𝑟2 = 1 − 5 = −4 .

Check: (𝑥 − 6) (𝑥 − (−4)) = 𝑥2 − 2𝑥 − 24.

Example 7.2 Let us find the roots of 𝑥2 − 83𝑥 − 2310:

−2310 =

(
83
2

+ 𝑠

) (
83
2

− 𝑠

)

𝑠2 =
6889

4
+ 2310 =

16129
4

𝑠 =
127
2

𝑟1 =
83
2

− 127
2

= −22

𝑟2 =
83
2

+ 127
2

= 105 .

Check: (𝑥 + 22) (𝑥 − 105) = 𝑥2 − 83𝑥 − 2310.
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Compare this computation with the computation using the traditional formula:

−𝑏 ±
√
𝑏2 − 4𝑐
2

=
−(−83) ±

√︁
(−83)2 − 4 · (−2310)

2

=
83 ±

√
16129

2
=

83 ± 127
2

𝑟1 =
83 − 127

2
= −22

𝑟2 =
83 + 127

2
= 105 .

Example 7.3 Theorem 7.1 can be generalized to polynomials of higher degrees.
Here is an interesting example for a quartic equation 𝑥4 − 10𝑥2 − 𝑥 + 20 = 0. As
with quadratic equations there are formulas for solving cubic and quartic equations
(though not equations of higher powers), but the formulas are quite complicated.

Does this polynomial of degree four factor into two quadratic polynomials with
integer coefficients? If so, the coefficients of the 𝑥 terms must be equal and of
opposite signs since the coefficient of the 𝑥3 term is zero. Therefore, the form of the
quadratic factors is:

𝑓 (𝑥) = (𝑥2 − 𝑛𝑥 + 𝑘1) (𝑥2 + 𝑛𝑥 + 𝑘2) .

Carrying out the multiplication results in:

𝑓 (𝑥) = 𝑥4 +𝑛𝑥3 +𝑘2𝑥
2

−𝑛𝑥3 −𝑛2𝑥2 −𝑛𝑘2𝑥

+𝑘1𝑥
2 +𝑛𝑘1𝑥 +𝑘1𝑘2 .

Equating the coefficients gives three equations in the three unknowns 𝑛, 𝑘1, 𝑘2 gives:

(𝑘1 + 𝑘2) − 𝑛2 = −10
𝑛(𝑘1 − 𝑘2) = −1

𝑘1𝑘2 = 20 .

Since we are looking for factors with integer coefficients, from the last two equations
it is clear that:

𝑛 = 1, 𝑘1 = 4, 𝑘2 = 5 or 𝑛 = 1, 𝑘1 = −5, 𝑘2 = −4 .

Only 𝑛 = 1, 𝑘1 = −5, 𝑘2 = −4 satisfy the first equation for the coefficient of 𝑥2:

𝑓 (𝑥) = (𝑥2 − 𝑥 − 5) (𝑥2 + 𝑥 − 4) .
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Solving these quadratic equations gives four solutions of the quartic equation:

𝑥 =
1 ±

√
21

2
or 𝑥 =

−1 ±
√

17
2

.

7.4 Derivation of the Traditional Formula

For an arbitrary monic polynomial 𝑥2 + 𝑏𝑥 + 𝑐, Loh’s formulas are:

𝑐 = 𝑟1𝑟2 =

(−𝑏
2

+ 𝑠

) (−𝑏
2

− 𝑠

)
=

(
𝑏2

4
− 𝑠2

)

𝑠 =

√︄(
𝑏2

4

)
− 𝑐

𝑟1, 𝑟2 =
−𝑏
2

±
√︄(

𝑏2

4

)
− 𝑐 =

−𝑏 ±
√
𝑏2 − 4𝑐
2

,

the traditional formula for obtaining the roots of a monic quadratic polynomial. If
the polynomial is not monic divide it by 𝑎, substitute in the equation and simplify:

𝑥2 + 𝑏

𝑎
𝑥 + 𝑐

𝑎
= 0

𝑟1, 𝑟2 =
−(𝑏/𝑎) ±

√︁
(𝑏/𝑎)2 − 4(𝑐/𝑎)

2

=
−𝑏 ±

√
𝑏2 − 4𝑎𝑐
2𝑎

.

7.5 Al-Khwarizmi’s Geometric Solution of Quadratic Equations

Let us write a monic quadratic polynomial as 𝑥2 + 𝑏𝑥 − 𝑐. The roots can be found by
completing the square:

𝑥2 + 2
(
𝑏

2

)
𝑥 +

(
𝑏

2

)2
= 𝑐 +

(
𝑏

2

)2

(
𝑥 + 𝑏

2

)2
= 𝑐 +

(
𝑏

2

)2

𝑥 = −𝑏

2
±
√︄
𝑐 +

(
𝑏

2

)2
=
−𝑏 ±

√
𝑏2 + 4𝑐
2

.
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This is the familiar formula for finding the roots of a quadratic equation, except that
4𝑐 has the opposite sign since the coefficient of the constant term was −𝑐.

Completing the square was developed in the 8th century by Muhammad ibn Musa
al-Khwarizmi in a geometric context. Given the equation 𝑥2 + 𝑏𝑥 = 𝑐, assume that
there is a square whose side is 𝑥 so that its area is 𝑥2. To the area 𝑥2 add 𝑏𝑥 by adding
four rectangles of area 𝑏𝑥/4 whose sides are 𝑏/4 and 𝑥 (Fig. 7.3a). Now complete
the diagram to a square by adding the four little squares of area (𝑏/4)2 (Fig. 7.3b).

We can’t construct the diagram in Fig. 7.3a because we don’t know what 𝑥 is, but
the area of the larger square in Fig. 7.3b is:

𝑥2 + 𝑏𝑥 + 𝑏2

4
= 𝑐 + 𝑏2

4
,

which we do know since we are given the coefficients 𝑏, 𝑐. By constructing the
diagram and erasing the small squares whose sides are (𝑏/4)—another known
quantity—we obtain the line segment of length 𝑥.

Example 7.4 Let 𝑥2+12𝑥 = 64. Then 𝑐+(𝑏2/4) = 64+36 = 100. It is easy to construct
a square of area 100 since each side has length 10. Now subtract (𝑏/4) + (𝑏/4) = 6,
the sides of the smaller squares, to get 𝑥 = 10 − 6 = 4.

7.6 Cardano’s Construction for Solving Cubic Equations

The formula for the roots of cubic equations was first published in the 16th century
by Gerolamo Cardano. We will not develop the formula here, but it is interesting
that the central idea is based on a geometric construction similar to al-Khwarizmi’s.

𝑥

𝑥

𝑥

𝑥

𝑏
4

𝑏
4

𝑏
4

𝑏
4

𝑏
4

𝑏
4

𝑏
4

𝑏
4

𝑥

𝑥

𝑥

𝑥

𝑏
4

𝑏
4

𝑏
4

𝑏
4

𝑏
4

𝑏
4

𝑏
4

𝑏
4

Fig. 7.3a The area is 𝑥2+4(𝑏/4)𝑥 = 𝑥2+𝑏𝑥 Fig. 7.3b The area is 𝑥2 + 4(𝑏/4)𝑥 +
4(𝑏/4)2 = 𝑥2 + 𝑏𝑥 + (𝑏2/4)
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The construction can be obtained very simply using algebra. By multiplication:

(𝑎 + 𝑏)3 = 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3 = (𝑎3 + 𝑏3) + 3𝑎𝑏(𝑎 + 𝑏) . (7.4)

Geometrically, we start with a cube whose side is 𝑎 + 𝑏 so that its volume is (𝑎 + 𝑏)3.
The cube is decomposed into five pieces. The first two are cubes whose sides are 𝑎

and 𝑏 with volumes 𝑎3 (blue) and 𝑏3 (red), respectively (Fig. 7.4).
The other three parts are boxes (the technical term is cuboid) each with one side

of length 𝑎 + 𝑏 coinciding with a side of the cube, one side of length 𝑎 and one side
of length 𝑏, so that the volume of each of the three boxes is 𝑎𝑏(𝑎 + 𝑏). In Fig. 7.5,
there is one box at the left side of the cube (blue), one at the back of the cube (red)
and one at the top of the cube (green). By combining the five solids in Fig. 7.4 and
Fig. 7.5 we obtain Eq. 7.4.

0,0,0 𝑎+𝑏,0,0

𝑎+𝑏,𝑎+𝑏,0
0,𝑎+𝑏,0

𝑏,0,0

𝑏,𝑎,0

𝑏,𝑎+𝑏,0

𝑎+𝑏,𝑎,0

0,0,𝑎+𝑏
𝑎+ 𝑏,0,𝑎+𝑏

𝑎+𝑏,𝑎+𝑏,𝑎+𝑏
0,𝑎+𝑏,𝑎+𝑏

0,𝑎,𝑎+𝑏
𝑏,𝑎,𝑎+𝑏

𝑏,𝑎+𝑏,𝑎+𝑏

𝑎+𝑏,𝑎,𝑎+𝑏

𝑎+𝑏,𝑎,𝑎

𝑎+𝑏,0,𝑎
𝑏,0,𝑎

0,0,𝑎

0,𝑎,𝑎

0,𝑎+𝑏,𝑎 𝑏,𝑎+𝑏,𝑎

𝑏,𝑎,𝑎

Fig. 7.4 (𝑎3 + 𝑏3 ) = (𝑎3 + 𝑏3 ) + · · ·
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0,0,0 𝑎+𝑏,0,0

𝑎+𝑏,𝑎+𝑏,0
0,𝑎+𝑏,0

𝑏,0,0

𝑏,𝑎,0

𝑏,𝑎+𝑏,0

𝑎+𝑏,𝑎,0

0,0,𝑎+𝑏
𝑎+ 𝑏,0,𝑎+𝑏

𝑎+𝑏,𝑎+𝑏,𝑎+𝑏
0,𝑎+𝑏,𝑎+𝑏

0,𝑎,𝑎+𝑏
𝑏,𝑎,𝑎+𝑏

𝑏,𝑎+𝑏,𝑎+𝑏

𝑎+𝑏,𝑎,𝑎+𝑏

𝑎+𝑏,𝑎,𝑎

𝑎+𝑏,0,𝑎
𝑏,0,𝑎

0,0,𝑎

0,𝑎,𝑎

0,𝑎+𝑏,𝑎 𝑏,𝑎+𝑏,𝑎

𝑏,𝑎,𝑎

Fig. 7.5 (𝑎3 + 𝑏3 ) = · · · + 3𝑎𝑏 (𝑎 + 𝑏)

7.7 They Weren’t Intimidated by Imaginary Numbers

The history of mathematics demonstrates a progression of concepts that were initially
considered to be meaningless, but were eventually understood, accepted and proved
to be useful. “Obviously,” since numbers count things, −1, a negative number, is
meaningless. “Obviously,” since numbers are ratios of integers (rational numbers),√

2, which can easily be proved to be irrational, is meaningless. “Obviously,”
√
−1, the

square root of a negative number, is meaningless since there is no number—integer,
rational or real—whose square is −1.

A full understanding of the square roots of negative numbers, to this day called
imaginary numbers although they are no less real than real numbers, was not achieved
until the nineteenth century. Therefore, it is surprising that already in the sixteenth
century, Geralamo Cardano and Rafael Bombelli refused to be intimidated by the
concept, and took the first small steps towards understanding these numbers.
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Consider the quadratic equation:

𝑥2 − 10𝑥 + 40 = 0 . (7.5)

By the familiar formula (Eq. 7.1):

𝑟1, 𝑟2 =
10 ±

√
100 − 160
2

= 5 ±
√
−15 .

Well, we don’t know anything about the square roots of negative numbers and we
don’t know what these values are, but like Cardano we do know by Thm 7.1 that:

𝑟1 + 𝑟2 = (5 +
√
−15) + (5 −

√
−15) = 10 = −𝑏

𝑟1𝑟2 = (5 +
√
−15) (5 −

√
−15) = 25 − 5

√
−15 + 5

√
−15 − (−15) = 40 = 𝑐 .

which correspond with the coefficients of the quadratic equation Eq. 7.5. It is rather
intuitive that

√
−15 + (−

√
−15) = 0 even if we know nothing about

√
−15, and,

similarly, it is rather intuitive that
√
−15 · −(

√
−15) = −(−15) = 15 even if we don’t

know what
√
−15 is.

Consider now the cubic equation:

𝑥3 − 15𝑥 − 4 = 0 . (7.6)

It is not hard to observe that 4 is a root, but how can it be computed? Cardano’s
formula gives the root:

𝑟 =
3
√︃

2 + 11
√
−1 + 3

√︃
2 − 11

√
−1 , (7.7)

a quite complicated formula that bears no obviously relation to 4.
Bombelli courageously performed the following computation (see Eq. 7.4):

(2 +
√
−1)3 = 8 + 3 · 4

√
−1 + 3 · 2(−1) + (−1

√
−1) = 2 + 11

√
−1

(2 −
√
−1)3 = 8 − 3 · 4

√
−1 + 3 · 2(−1) − (−1

√
−1) = 2 − 11

√
−1 ,

and by Eq. 7.7:

𝑟 =
3
√︃

2 + 11
√
−1 + 3

√︃
2 − 11

√
−1

=
3
√︃
(2 +

√
−1)3 + 3

√︃
(2 −

√
−1)3

= (2 +
√
−1) + (2 −

√
−1) = 4 .
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−3 −2 −1 0 1 2

−4

−3

−2

−1

1

𝑏 = −4

𝑐 = 3

𝑃1

−45◦

𝑃2

−71.57◦

Fig. 7.6 Lill’s method on 𝑥2 − 4𝑥 + 3

7.8 Lill’s Method and Carlyle’s Circle

Lill’s method can be applied to solve quadratic equations.2 As an example we use
Eq. 7.2 which gives the roots of a quadratic equation obtained by factorization:

𝑥2 + 𝑏𝑥 + 𝑐 = 𝑥2 − 4𝑥 + 3 = (𝑥 − 1) (𝑥 − 3) .

Applying Lill’s method results in the paths shown in Fig. 7.6.
Check that the angles are correct:

− tan(−45◦) = −1, − tan(−71.57◦) ≈ −3 .

For quadratic equations we can find the points 𝑃1, 𝑃2 as the intersections of the line
representing the coefficient 𝑏 and the circle whose diameter is the line connecting
the starting point and the end point of the paths (Fig. 7.7). In order for a point on the
line 𝑏 to be a root, the reflection of the line must be 90◦ and therefore the inscribed
angle is subtended by a diameter.

This can also be checked by computation. The center of the circle is the midpoint
of the diameter (−1,−2). The length of the diameter is:√︁

(−2)2 + (−4)2 =
√

20 ,

2 This section assumes that you have read about Lill’s method in Chap. 11.
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−3 −2 −1 0 1 2

−4

−3

−2

−1

1

𝑏 = −4

𝑐 = 3

𝑃1

−45◦

𝑃2

−71.57◦

Fig. 7.7 Constructing a circle to find the roots

so the square of the length of the radius is
(√︁

20/2
)2

= 5. We need the intersection
of this circle and the line 𝑥 = 1:

(𝑥 − (−1))2 + (𝑦 − (−2))2 = 𝑟2

(𝑥2 + 2𝑥 + 1) + (𝑦2 + 4𝑦 + 4) = 5
𝑦2 + 4𝑦 + 3 = 0

𝑦 = −1, −3 .

A similar method for solving quadratic equations is the Carlyle circle which
predates Lill’s method. Given a quadratic equation 𝑥2 − 𝑏𝑥 + 𝑐 (note the minus sign
on the linear term), construct points at (0, 1) and (𝑏, 𝑐). Construct a circle whose
diameter is the line connecting the two points (Fig. 7.8). Its intersections (if any)
with the 𝑥-axis are the roots of the equation.

In the general case, the center of the circle is (𝑏/2, (𝑐 − (−1))/2) and the length
of the diameter is

√︁
𝑏2 + (𝑐 − 1)2, so the equation of the circle is:
(
𝑥 − 𝑏

2

)2
+
(
𝑦 − 𝑐 + 1

2

)2
=

𝑏2 + (𝑐 − 1)2

4
.

For the example, substituting 𝑏 = 4, 𝑐 = 3 and 𝑦 = 0, we see that 𝑥 = 1 and 𝑥 = 3 are
the roots of the quadratic equation.
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Fig. 7.8 Carlyle circle for 𝑥2 − 4𝑥 + 3

7.9 Numerical Computation of the Roots

Students learn symbolic computation of roots, derivatives and so on. Today, most
computation is performed by computers so symbolic computation is less important.
Numerical analysis is the branch of mathematics and computer science that develops
accurate and efficient computational methods. The main challenge is to deal with the
finiteness of values stored in the computer’s memory. The computation:

0.12 × 0.14 = 0.0168

is easy to do, but:
0.123456789 × 0.123456789

needs eighteen digits to be accurately represented and this cannot be done in a
memory word that stores sixteen digits. This error is called a round-off error.

An even more serious problem is encountered when floating point arithmetic is
performed. Clearly:

(0.12 × 10−10) × (0.14 × 10−8)
would not be computed by writing out all the zero digits. Instead, we multiply the
mantissas and add the exponents to obtain 0.0168 × 10−18, which is normalized
to 0.168 × 10−19 so that the most significant digit appears after the decimal point,
ensuring maximum precision given the fixed size of the mantissa. If the maximum
exponent that can be represented is −16 the result simply cannot even be stored. This
error is called floating-point underflow.
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The formula for finding the roots of the quadratic equation 𝑥2 + 𝑏𝑥 + 𝑐 is:

𝑟1, 𝑟2 =
−𝑏 ±

√
𝑏2 − 4𝑐
2

. (7.8)

Consider what happens if 𝑏 = 1000 and 𝑐 = 4. The roots are:

𝑟1, 𝑟2 =
−1000 ±

√
1000000 − 16
2

.

Depending on the precision of the arithmetic, it is possible that one of the roots is
so close to zero that the value stored is zero. Evaluating the quadratic equation gives
the surprising result 02 + 𝑏 · 0 + 4 = 4 = 0.

Can we do better? By Eq. 7.3:

𝑟1 + 𝑟2 = −𝑏 , 𝑟1𝑟2 = 𝑐 .

If 𝑟2 is much less that 𝑟1, written 𝑟2 ≪ 𝑟1, then 𝑟1 ≈ −𝑏 and 𝑟2 = 𝑐/𝑏. Table 7.1,
computed by a computer program, compares the values of the roots computed by
these formulas with the values obtained from the traditional formula Eq. 7.8. The
value of 𝑐 is fixed at 4 and the roots for increasing values of 𝑏 are shown.

Initially, the true values computed by the traditional formula for 𝑟2 are more
accurate (𝑟2 − 𝑟2𝑣 is negative) but from 𝑏 = 100000, the computation based upon
Eq. 7.3 is more accurate. Such are the surprises of numerical analysis.

Table 7.1 Two computations of the roots of a quadratic equation. 𝑟1, 𝑟2 are the roots computed
by Eq. 7.8. 𝑟1𝑣 , 𝑟2𝑣 are the roots computed using Eq. 7.3. The errors are 𝑟𝑖 − 𝑟𝑖𝑣 . The values are
truncated to four decimal places. Floating-point numbers are written −4𝑒 − 5 in place of 4 × 10−5

because computer programs are normally written as linear sequences of characters.

𝑏 𝑟1 𝑟1𝑣 Error1 𝑟2 𝑟2𝑣 Error2

100 −99.9599 −100 0.0400 −0.04001 −0.04 −1.6012𝑒−05
1000 −999.9959 −1000 0.0040 −0.0040 −0.004 −1.6000𝑒−08

10000 −9999.9996 −10000 0.0004 −0.0004 −0.0004 −1.6270𝑒−11
100000 −99999.9999 −100000 3.9999𝑒−5 −3.9999𝑒−5 −4𝑒−5 1.0104𝑒−12

1000000 −999999.9999 −1000000 4.0000𝑒−6 −3.9999𝑒−6 −4𝑒−6 2.7749𝑒−11
10000000 −10000000.0 −10000000 3.9860𝑒−7 −3.9953𝑒−7 −4𝑒−7 4.6261𝑒−10
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What Is the Surprise?

Poh-Shen Loh’s approach provides a new way of looking at the relation between the
coefficients and the roots that one doesn’t see simply by memorizing the traditional
formula. What is surprising is that this relation is fundamental in Gauss’s algebraic
proof of the constructibility of a regular heptadecagon (Chap. 16).

With the modern dominance of algebraic methods in geometry it is important
to be reminded that the reverse once held. As shown by the constructions of Al-
Khwarizmi and Cardano, geometric methods were used to obtain results in algebra.
Lill and Carlyle both developed geometric methods for solving quadratic equations.
Considerations of numerical computation on computers will surprise students who
have not experienced it before.

Sources

Poh-Shen Loh’s method is from [28, 29]. Al-Khwarizmi’s construction is from
[6, Chapter 1] and [32]. Cardano’s construction can be found in [6, Chap. 1]. For
the colorful history of the development of Cardano’s formula see [52]. The early
attempts at computing with imaginary numbers are from [6, Chapter 2]. Lill’s method
and Carlyle’s circle can be found in [61] together with a discussion of numerical
computation of the roots.
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