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Abstract. In digital design practice, the connection and feedback between phys-
ical and digital modelling is receiving increasing attention and is seen as a source
of creativity and design innovation. The authors present a workflow that supports
real-time design collaboration between human and machine intelligence through
physical model building. The proposed framework is investigated through a case
study, where we test the direct connectivity of physical and digital modelling
environments with the integration of artificial neural networks. By combining 3D
capturing tools and machine learning algorithms, the research creates an instant
feedback loop between human and machine, introducing a hybrid immediacy that
puts physical model building back at the centre of the digitally focused design
process. By fusing physical models and digital workflows, the research aims to
create interactivity between data, material and designer already at the early stage
of the design.
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1 Introduction

Modelling is the core technique in any architectural design process. Amodelmaterialises
design intentions and “objectifies” them by embedding design knowledge in the object
(Oxman 2008). Herbert Stachowiak defined the general nature of models through key
characteristics: They are illustrations of content that they are abstracting or “abbreviat-
ing” in order to record only the aspects that are relevant to their user. They are designed
for a special purpose or task and are therefore evaluated according to their “usefulness”
for the model-maker (Stachowiak 1973).
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The “conceptmodel” has a very unique role in the design process, it does not illustrate
a design outcome but the initial and essential design intention. It is a tool in itself
for materialising and communicating design ideas that keeps a purposeful ambiguity
in order to leave space for imagination and further development1. According to Vera
Bühlmann “models maintain a relation with ideas, and seek to sustain and communicate
their power”; they do not determine the concept but rather enrich it through a “surplus
capacity” (Bühlmann 2013). In the research, the concept model is an instrument for
communication and exploration and in that sense a medium and a tool at the same time.

The feedback between physical and digital modelling has received heightened atten-
tion as a source of design innovation (Stavrić et al. 2013). The integration of the physi-
cal model into digital workflows opens the door for interactivity between data, material
and designer (Thomsen and Tamke 2012). A common interest in many physical-digital
experimentations is to increase creative capacity and immediate/intuitive control of the
process without the need to explicitly define underlying geometrical rules of design
objects as Mario Carpo suggested designers might directly „use“ chunks of scanned
objects (Carpo 2017). Combined with artificial neural networks and growing archives of
3D point clouds of objects this vision could reach a further dimension - designers will
not simply sample chunks, but they will be able to learn from spatial objects, deduce
features and apply them to architectural designs without remodelling.

1.1 Related Work

Due to the continued introduction of new 3D capturing tools and scanning devices, there
are promising opportunities to re-integrate physical design processes into digital design
workflows. In the field of Reverse Engineering (RE), scanning technologies are used to
build digitalmodels fromphysical objects (Hsieh 2015).Although scanning technologies
have been around for decades, their performance has improved significantly in recent
years.AfterMicrosoft developedKinect in 2010 amuchmore affordable scanning device
than LIDAR could offer, there has been a growing interest in its use in architectural
modelling. While some research projects were focusing on the materialisation of the
sensed point clouds in digital environments (Hsieh 2015), others utilised Kinect devices
as navigation tools in VR environments allowing immediate ways of connecting the
physical to the digital (Souza et al. 2011).

While connecting the physical with the digital through scanning devices is crucial
for hybrid concept modelling, the project aims additionally to introduce artificial neural
networks as interpreters in the design process. Some of the earliest attempts to implement
AI as a participatory system in the early stage of design are the projects by John and Jane
Frazer presented in the book An Evolutionary Architecture (Frazer 1995). In their work,
the role of AI is to recognize patterns and react to the design suggestions, generating
a responsive design loop. A more contemporary take on this approach is developed
by SPACEMAKER where immediacy and real-time feedback become a key feature of
human-machine collaborative design (Jeffrey et al. 2020). Although this project situates
the process entirely in the digital space, the input of ANNs can be channelled in various

1 A famous example of such a concept model is the digital model for the Moebius house by UN
Studio. See image in (Hirschberg et al., 2020).
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captured formats of the physical space. Just like the project,DeepPerception byFernando
Salcedo (Leach 2021) showcases through real-time cameras how captured folded textiles
can be directly connected to a trained network.

1.2 Objectives

The authors present a workflow that supports real-time design collaboration between
human and machine intelligence through physical model building. In the tested use
case the immediate connectivity of the physical and digital modelling environments is
challenged through artificial neural networks. Kinects are used as 3D capturing devices
and a machine learning network capable of processing 3D point cloud data directly from
the Kinects is established.

2 Conceptual Overview

The followingworkflow (Fig. 1) outlines a real-timedesign collaboration betweenhuman
and machine intelligence through physical model building. The proposed workflow is
centred around a physical installation consisting of a large black table, two Kinects, ring
lights, a screen, an Arduino control panel and a computer (Fig. 2) - and is organised into
four interlinked modules:

• Build
• Capture
• Machine Learning
• Post-processing

Fig. 1. Diagram of the implemented workflow. From left to right, the build, capture, machine
learning and post-processing modules.

The game engine Unity is used as the platform for connecting the components in
real-time while allowing users to switch between four different visualisation modes to
see the immediate outcome of each step.
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Fig. 2. Illustration and image of the physical installation depicting the main components: A large
black table, two Kinects, ring lights, a screen, an Arduino control panel and a computer.

2.1 Build/Physical Setup

The build module is centred around a custom table (Fig. 2) where users can assemble
architectural compositions from physical blocks in different colours. To test the work-
flow, three different colours were selected and applied to a limited number of different
building blocks. Each colour represented a unique geometric group, which, through 3D
capturing, could be manipulated by an artificial neural network on screen. A control
panel embedded in the custom table was used to control the interpolation factor and tar-
get, while an additional three potentiometers controlled the scale, rotation and selection
of the four visualisation modes (Fig. 3).

Fig. 3. The graphic depicts the control panel embedded within the custom table.
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2.2 Capture

The system of capturing and processing the points required accommodating the
Microsoft Azure Kinect and its SDK. A custom application was built using Unity
because the Azure Kinect SDK’s C# bindings interfaced seamlessly with Unity’s C#
front end-user code, and Unity supports custom shaders, including compute shaders,
which allowed us to make heavy optimizations during the point cloud processing phase.

Homography
We ran a simple homography to virtually align the Kinect cameras in a shared 3D
space. Our homography was a custom algorithm that required one scalene triangle to be
placed in the centre of the table. The triangle was detected using Sobol edge detection
(Kanopoulos et al. 1988), and the Kinect’s depth camera was used to bring these edges
into 3D. The triangles were then aligned, resulting in one 4× 4 position and orientation
matrix for each camera.

Point Clouds
Each Kinect device comes with one depth camera and one colour camera. A compute
shader converts these raw Kinect images into a point cloud. First, each depth camera
pixel is treated as a magnitude that scales its corresponding 3D vector (precomputed in
a lookup table) and then this resulting point is transformed by the camera’s homography
matrix so that each camera’s point clouds appear in the same 3D space. This is the first
visualisation mode, the “raw Kinect point cloud”, where each point in the cloud contains
the colour as seen by the colour camera.

Colour Segmentation
The next step uses another compute shader to filter the points, both according to colour
and position. The position filtering is simple: we crop points that lie outside a vertically-
aligned cylinder with an infinite height and a specified radius that matches the circular
installation table in physical space. The colour filtering works by analysing the colours
according to the HSV values. First, the user provides a set of reference colours and ±
ranges on all three HSV dimensions which define a bounding box with the reference
colour at its centre. The shader rejects points based on their relations to the bounding
boxes. The colours that match are categorised and coloured according to their reference
colour. This is the second visualisation mode, the “segmented colour clouds”. Addition-
ally, these segmented colour point cloud arrays contain the data which is sent to the
machine learning application.

2.3 Machine Learning

An artificial neural network is used to transform the Kinect scans of the physically
assembled architectural compositions through a user-selected design point cloud. In the
workflow, machine learning performs the following steps. We get a preprocessed point
cloud from a Kinect scan and a selection of a design point cloud that was chosen by
the user together with an interpolation factor. First, we cluster the point clouds into
equal-sized clusters with (n= 2048) points and then apply the encoder to each of them.
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The next step is to interpolate between each cluster from the Kinect point cloud and
the design point cloud and then apply the decoder to get new (clustered) point clouds.
Finally, the individual clusters are reassembled into one big point cloud. This process can
also be applied to multiple point clouds simultaneously. In our case, the setup processes
three separate instances at a time which encode the three colours of the used building
blocks.

Training Data
A collection of more than 10000 3D point clouds were assembled to provide the training
data for the machine learning network. Each point cloud was part of a category of
geometric structures (Fig. 4) from which the design point clouds were selected. The
intent with the used training data, was to apply the geometric structures of the selected
design point clouds within the captured Kinect point clouds - enhancing the appearance
of physically assembled compositions on the table.

Fig. 4. Training data and a subset of data from three categories From left to right: Basic volumes,
orthographic planes and lattices.

Autoencoder
Our approach is based on the FoldingNet introduced by Yang et al. (2018). However, we
make some adjustments that yield better results for our applications. First, the approach
uses a 3D grid for the fixed folding input instead of a 2D grid and secondly an extended
loss function was implemented, resulting in the biggest improvement. Namely, we use
the Chamfer distance (as in the original) together with the Wasserstein (or earth-mover)
distance which we calculate due to Feydy et al. (2019) (Fig. 5).

Thus we get a neural network that yields good abstract representations of point
clouds. Since these are just vectors we can process them however we want and then
use the decoder part to reconstruct a new point cloud. To be more precise we linearly
interpolate between two points i.e. two outputs of the encoder and then apply the decoder
yielding a new point cloud, resulting in a mix of the two original point clouds.
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Fig. 5. FoldingNet autoencoder structure based on Yang et al. (2018).

2.4 Post-processing

After theKinect data has gone through the artificial neural network, the three transformed
points clouds are streamed back into Unity for post-processing. Here the representation
of the points can be enhanced to better visualise the potential within the user-assembled
concept model. This allows for the implementation of a variety of different strategies
and algorithms to be applied according to the design use case.

3 Performance

The case study of the research is a hybrid instrument, a concept modelling station, tested
in two different environments. The first, by being an interactive exhibition space, gives
access to a wider audience for hybrid collaborations, while the second implements the
workflow of the modelling station in a professional design context.

3.1 Exhibited Station

By placing the concept modelling station within an exhibition space (Fig. 6), we aimed
to test its durability and user-friendliness with a non-professional audience. The station
was exhibited in a gallery for three months, where it operated six days a week, ten hours
a day. The age range of the visitors was very diverse, with guided tours from pre-school
children to university staff.

The interactive aspect of the installation was very popular in this setup. The building
blocks were in constant use, while the circular shape of the table allowed up to 4–5 users
to collaborate on one model. Although over the three months the Kinect devices had to
be recalibrated due to the movement of the drafting table to which they were attached,
the real-time connection between the Kinect and Autoencoder was never broken. The
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network processed and generated three point clouds simultaneously every three seconds.
While the number of navigation options via the control panel was quite limited compared
to any digital 3D environment (turn-table and scale function), visitors often found it
difficult to grasp the buttons’ functionalities. In terms of “immediacy”, the hybrid station
met our expectations, but when we applied a higher interpolation factor to the scanned
clouds, the resulting distortions made the real-time representation less obvious.

Fig. 6. Three images from the exhibition, where the concept modelling station was tested by a
non-professional audience.

3.2 Tower Design

To test the workflow and the modelling station in an architectural design context, a
brief for a tower design was defined. This more professional format of the study aims to
explore the benefits of a collaborative, yet hybrid design approach at the early stages of the
design. The design process starts with composing coloured wooden blocks on the table.
In the example (Fig. 7), the colours are used to define different geometric characteristics
in the compositions. As the blocks are placed on the table, the displayed point clouds
give an alternative view of the composition. Although the building blocks and the table
size limit the scale of the model, the scalability of the digital model allows for spatial
interpretations regardless of the physical size of the blocks. The designers can select and
assign specific 3D patterns, porosities, etc. to each of the assembled colour compositions
on the table. The autoencoder (ML), controlled by the user modifies the compositions
through the interpolation of selected features. The resulting Machine-interpreted point
clouds are displayed on the screen in real-time.

During the collaborative tower sketching process a variety of the different composi-
tions - both the original and the machine interpreted - were frequently saved in.xyz point
cloud format. This opened up the integration into existing design software for further
processing of promising concepts.
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Fig. 7. Top: Variation of scanned concepts for a tower design. Middle: Transformation toward
selected design point cloud via autoencoder. Bottom left: Outcome of the transformation. Bottom
right: Post-processed point cloud in Unity. The depicted process is running in real-time and is
responsive.

4 Conclusion

In this paper, we present a workflow that facilitates a real-time interaction with an arti-
ficial neural network through physical modelling. The user-assembled physical objects
allows for an almost instant design dialogue with the trained data of the neural network
through the support of capturing devices and point cloud notation. This establishes an
immediate feedback loop between human andmachine intelligence, introducing a hybrid
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immediacy that reintegrates physical model building at the centre of a digital-focused
design process. The work shows the potential of using Kinects to capture the physical
boundary of a model, while simultaneously using machine learning to apply selected
geometric structures, and 3D patterns to it. The immediacy of the setup creates an intu-
itive way to physically search for conceptual design ideas without the need to remodel
design features digitally.

However, during this research, we have encountered a number of limitations that
need to be acknowledged. To precisely capture a physical composition from all angles,
two Kinects provide a limited field of view, resulting in several unscanned areas when
the physical models get more complex. This could be remedied by more Kinects but
would result in an increased performance cost. Concerning the developed artificial neural
network, the challenges are equally conceptual and technical. Though the integration of
the network with the scanned boundary compositions works very well, the conceptual
idea of blending a selected geometric structure into it was difficult to execute technically.
Partially, this is a result of the inherent dilemmas within computing on large datasets,
where the network gets biassed towards the most common data.

Nevertheless, the work is still in its early phases, and further developments to the
demonstratedworkflow couldminimise the listed limitations and significantly expand on
its useability within a design scenario. Additionally, we plan to expand the interactions
with the produced concept models with the use of a mixed reality (MR) 3D sketching
application. The sketching app combines a familiar stylus-on-tablet input and interaction
paradigm with MR capabilities to allow sketching directly in 3D space, thus providing
additional tools for amending and refining the concept models in real-time.
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