l‘)

Check for
updates

Randomized Synthesis for Diversity
and Cost Constraints with Control

Improvisation
(o7.\Y) CAV
Artifact Andreas Gittis, Eric Vin, and Daniel J. Fremont® Artifact
Evaluation Evaluation
* University of California, Santa Cruz, USA * *
Available {agittis,evin,dfremont}Qucsc.edu

Abstract. In many synthesis problems, it can be essential to gener-
ate implementations which not only satisfy functional constraints but
are also randomized to improve variety, robustness, or unpredictability.
The recently-proposed framework of control improvisation (CI) provides
techniques for the correct-by-construction synthesis of randomized sys-
tems subject to hard and soft constraints. However, prior work on CI
has focused on qualitative specifications, whereas in robotic planning
and other areas we often have quantitative quality metrics which can be
traded against each other. For example, a designer of a patrolling security
robot might want to know by how much the average patrol time needs
to be increased in order to ensure that a particular aspect of the robot’s
route is sufficiently diverse and hence unpredictable. In this paper, we
enable this type of application by generalizing the CI problem to sup-
port quantitative soft constraints which bound the expected value of a
given cost function, and randomness constraints which enforce diversity
of the generated traces with respect to a given label function. We estab-
lish the basic theory of labelled quantitative CI problems, and develop
efficient algorithms for solving them when the specifications are encoded
by finite automata. We also provide an approximate improvisation algo-
rithm based on constraint solving for any specifications encodable as
Boolean formulas. We demonstrate the utility of our problem formula-
tion and algorithms with experiments applying them to generate diverse
near-optimal plans for robotic planning problems.

1 Introduction

Correct-by-construction synthesis of systems from high-level specifications has
become a popular paradigm in fields ranging from circuit design [5] to robotic
task planning [25]. Synthesis techniques for many different types of specifica-
tions have been developed, especially for temporal logic formulas, which can
encode many properties of interest [14]. One less-studied type of specification
are randomness constraints that require the system’s behavior to be sufficiently
random, for instance by being close to a uniform distribution over the set of

A. Gittis and E. Vin—The two first authors contributed equally to the paper.

© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13372, pp. 526-546, 2022.
https://doi.org/10.1007/978-3-031-13188-2_26

https://doi.org/10.5281/zenodo.6558391
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13188-2_26&domain=pdf
http://orcid.org/0000-0002-9992-9965
https://doi.org/10.1007/978-3-031-13188-2_26

Randomized Synthesis for Diversity and Cost Constraints with CI 527

allowed behaviors. Such specifications are useful in many applications, as ran-
domness can provide robustness, variety, and unpredictability to a system. For
example, fuzz testing tools often use constraints to select classes of inputs which
are more likely to trigger bugs, but then search randomly within that class to
prevent bias [29]. In robotic planning, a patrolling security robot that uses a fixed
plan satisfying its requirements might be vulnerable to exploitation; adding ran-
domness to make its route unpredictable can make exploitation more difficult.
While there has been substantial work on synthesis with stochastic environ-
ments (e.g. [2,9]), randomness constraints require the system itself to behave
randomly even if the environment is deterministic. Furthermore, unlike most
specifications used in synthesis, randomness constraints are properties not of
individual behaviors but rather of their distribution, and they cannot be con-
cisely encoded into existing specification formalisms like PCTL [22] and SGL [3].
As a result, synthesis of systems under such constraints requires new techniques.
A recently-proposed paradigm for the correct-by-construction synthesis of
systems under randomness constraints is algorithmic improvisation [13,15,16].
Algorithmic improvisation comprises a class of synthesis problems whose goal
is to construct a randomized algorithm, an improviser, satisfying three kinds of
constraints: hard constraints that the improviser’s output must always satisfy,
soft constraints that need only be satisfied to a certain (tunable) extent, and ran-
dommness constraints requiring the output to be sufficiently random. These types
of constraints correspond to natural requirements arising for example in robot
planning: the hard constraints can encode safety or other functional require-
ments, the soft constraints can encode notions of efficiency or optimality, and
the randomness constraints enforce diversity or unpredictability. The original
and most-studied form of algorithmic improvisation is the control improvisation
(CI) problem (introduced in [12] and formalized in [16,17]), where the improviser
generates finite sequences of symbols, the hard constraint is a trace property, the
soft constraint requires some trace property hold with at least a desired proba-
bility, and the randomness constraint puts upper and lower bounds on the proba-
bility of individual outputs. Control improvisation and its extensions have been
successfully used for musical improvisation [13], robotic planning [19], human
modeling subject to constraints [1], and generating synthetic datasets for testing
and training cyber-physical systems with machine learning components [18].
However, the prior work on CI is not general enough to cover many random-
ized synthesis problems of interest, for two reasons. First, many planning, design
space exploration, and other problems come with a cost function expressing how
optimal a particular solution is; in the setting of generating randomized solu-
tions, the most natural soft constraint would be to require that the expected cost
of a solution should be low, so that we can obtain a diverse set of near-optimal
solutions. In a patrolling robot application, for example, the fastest patrol route
might be unique and so predictable, and we then want to know by how much we
would need to increase the average patrol time in order to enable a sufficiently-
diverse set of routes. The prior work on CI cannot provide such an analysis.

528 A. Gittis et al.

Second, while the CI randomness constraint is sufficient to make the impro-
viser’s exact output unpredictable, it is not sufficient to ensure diversity when
many outputs are similar to each other. Continuing our patrolling robot exam-
ple, suppose that the robot has a choice of two rooms to go through: one room is
larger, and so there are (say) 10 possible paths through it, vs. only 10% through
the other room. Even if a perfectly-uniform distribution over all these paths is
possible given our other constraints, the robot will end up entering the larger
room almost all of the time. But from the point of view of an adversary that
wishes to avoid being seen by the robot, the exact path is not relevant: what
matters is which room the robot will enter, and that is highly predictable. For
this application, we need a randomness requirement that enforces diversity not
over the output of the improviser, but over some attribute of the output.

To enable such applications, in this paper we introduce the concept of Labelled
Quantitative Control Improvisation (LQCI). This problem extends CI with a soft
constraint bounding the expected cost of generated traces, and a randomness
constraint requiring near-uniformity of the label of a trace, given by an arbitrary
label function. We study the theory of LQCI, establishing precise conditions for
when an LQCI problem is solvable and a general construction for solving it. We
use our construction to develop efficient improvisation algorithms for a broad
class of specifications given by finite automata, including common cost func-
tions such as mission time or path length. For specifications not easily encoded
to (reasonably-sized) automata, we provide an approximate improvisation algo-
rithm based on constraint solving that handles symbolic specifications encoded
as Boolean formulas. We also explore an extension of the LQCI problem for
finding the mazimum-entropy distribution satisfying the other constraints (as in
[30]), and develop an algorithm for solving it using convex optimization. Finally,
we conduct a case study demonstrating that our approach allows us to formalize
and solve realistic robotic planning problems.

In summary, the main contributions of this paper are:

— The labelled quantitative control improvisation problem definition (Sect. 2);
— A characterization of which LQCI problems are solvable, and a general con-
struction for solving them (Sect. 3);

Efficient improvisation algorithms for finite automata specifications (Sect. 4);
— An approximate algorithm for Boolean formula specifications (Sect. 5);

— An algorithm for maximum-entropy LQCI problems (Sect. 6);

— Experiments using our algorithms for robotic planning (Sect. 7).

We conclude in Sect. 8 with a summary of results and directions for future work.
For brevity, we defer full proofs of all results to the Appendix [21].

2 Overview and Problem Definition

In this section we formally define the LQCI problem, first using applications to
robotic planning and fuzz testing to motivate various aspects of our definitions.
We will return to the robotic planning example for our experiments in Sect. 7.

Randomized Synthesis for Diversity and Cost Constraints with CI 529

2.1 Motivating Examples

Robotic Planning. Consider the problem of generating a path for a package
delivery robot, where the robot should efficiently visit various drop-off points,
visiting charging stations as necessary along the way. Discretizing the world
into a grid, we can represent a path as a finite sequence of north, south, east,
and west moves. We might have various requirements for such paths, falling
into the three types of constraints of a control improvisation problem described
above: hard constraints such as completing mission objectives and not navigating
into impassable terrain, soft constraints such as preferring shorter paths, and
randomness constraints to ensure the chosen path is unpredictable. However, as
we saw in Sect. 1, randomness over paths can be less important than randomness
over specific features of a path: here, it might be that charging leaves the robot
vulnerable for an extended period, so that it is important to limit the extent
to which an adversary can predict ahead of time which charging station will be
used. If there are 3 charging stations, then all possible paths are divided into 3
classes, and we want the class of a generated path to be unpredictable; we can
formalize this as a label function which assigns labels to paths, and require that
the distribution over labels be close to uniform. Since we do not want to simply
pick a single path from each label class, we can also enforce randomness within
each class, either by bounding the conditional probabilities of paths (so that
no path is too likely relative to others in its class) or by taking the maximum-
entropy distribution that satisfies our randomness-over-labels condition (we will
return to this approach in Sect. 6).

For efficiency, we want our robot to use routes which are as fast as possible,
taking into account varying terrain. We could model this using a cost function
assigning numerical costs to each path: here, the total time needed to traverse it.
However, as mentioned in Sect. 1, prior work on CI can only encode Boolean soft
constraints, such as requiring the cost of a path to be at most 5 with probability
at least 0.9. While this does allow for some control over the cost, it requires
setting an arbitrary threshold, and otherwise ignores the actual values of the cost;
thus, a path of cost 6 is treated no differently than a path of cost 10°. Instead,
we want to bound the expected cost of a path, so that both the probabilities of
individual paths and their absolute costs are taken into account.

Putting all this together, we define our example planning problem as generat-
ing paths through the grid worlds in Fig. 1, subject to the following constraints:

Hard Constraint:
(a) The robot must begin in the start cell S and must end in the end cell E.
(b) The robot must visit all package drop-off points O.
(¢) The robot must charge at a charging station C.
(d) The robot must not enter impassable locations X.
Cost Constraint:
The expected time to complete the mission must be at most a constant c.
Randomness over Labels:
For each choice of charging station, the chance that the robot uses that station
must be at least A and at most p.

530 A. Gittis et al.

©

O] |OX

S

(a) Small Grid World (6x6) (b) Large Grid World (7x7)

Fig.1. Grid worlds for our robotic planning example. Darker background indicates
higher cost and letters indicate: start and end points (S, E), impassable locations (X),
delivery locations (O), charging stations (C).

Randomness over Words:
Conditioned on selecting a certain charging station, the probability of picking
any path must be at least o and at most (.

Here, we assume that each grid cell has a cost representing how long it takes
to traverse, with the cost of a path (the total mission time) being the sum of the
costs of its cells. In Fig. 1, we show higher-cost cells as being darker, with the costs
ranging from 0-3 for the small world and 0-10 for the large world. The layout of
the map was chosen to admit a variety of different paths, motivated as follows:
we envision an impassible river dividing the top and bottom halves of the map,
with one low-cost bridge and two high-cost fords. The top-left charging station
is a windmill and requires climbing a hill to access; there is also a hydroelectric
station next to the river, and an easily-accessible substation near the main north-
south road.

Fuzz Testing. Prior work has shown that a variety of programs and protocols
can be comprehensively tested by randomly sampling from automata encoding
constraints on acceptable tests [11]. LQCI allows us to preserve such guarantees
while exercising additional control over which tests are generated.

As an example, consider the problem of generating randomized network activ-
ity for a set of devices communicating over TCP; this could be useful to test
robustness of a network monitoring application or network stack. There are a
variety of different constraints we might wish to impose on the sequences of pack-
ets we generate: each connection should conform to the TCP protocol, so that
the tests are meaningful'; tests should exhibit a variety of different behaviors

! We might also want to generate tests that deviate from the protocol. This could be
done in a variety of ways, e.g. modifying our constraints to allow certain types of
deviations, or first generating tests that conform to the protocol and subsequently
mutating them.

Randomized Synthesis for Diversity and Cost Constraints with CI 531

such as successful/failed connections, interleaving of packets between different
connections, etc.; and tests should be as short as possible while still exhibiting
these different behaviors, so that we can maximize the number of tests we can
perform in a given time. These constraints have trade-offs: for example, tests
with failed connections that must be retried will necessarily be longer. As in
the robotic planning example, we formulate these requirements as cost and label
constraints, which allow us to balance our randomness and control needs.

For concreteness, consider the specific example of generating packet traces for
5 systems communicating over TCP. Our hard constraint can enforce that each
connection follows the TCP protocol, using an encoding of the operation of the
protocol as a finite automaton [24] (we will present efficient algorithms for LQCI
with automata specifications below). Our cost function can assign a cost equal to
the length of the trace, so that we prefer shorter sequences (whereas if we simply
sampled uniformly from the language of the TCP automaton up to some length,
longer sequences would be generated more frequently as there are exponentially
more of them). Our label function could use two labels, distinguishing traces with
connections that terminate cleanly from those that involve system failures and
timeouts (we could also further subdivide into several types of failures). There
are many more ways for a connection to fail than to terminate cleanly, and
these two classes of traces might have significantly different lengths on average,
but we want to ensure that our tests cover both cases adequately. By imposing
constraints on the expected cost of a trace, as well as randomness constraints
over the label and within each label class, we can control test length while
enforcing sufficient diversity among the tests. In fact, we will see below that
our LQCI algorithms can find the minimum-cost distribution consistent with
the randomness constraints, thereby allowing us to test as efficiently as possible
given coverage requirements.

2.2 Problem Definition

To formalize synthesis problems like those described above, we define the LQCI
problem. Following the definition of CI [16,17], we frame the problem as sampling
words over a finite alphabet X' subject to several constraints. We use the general
term specification to refer to an encoding of a property of words (a language):
for example, a deterministic finite automaton (DFA) is a specification, where
the DFA accepts a word if and only if it satisfies the specification; a Boolean
formula is another kind of specification. The complexity of the LQCI problem
will vary depending on the type of specifications used, as we will see later.

Definition 1. A Labelled Quantitative Control Improvisation (LQCI) instance
over an alphabet X is a tuple C = (H,KC, L,m,n,c, A, p, &,) which contains:

- m,n € N, lower and upper bounds on word length (with m < n);

- 'H, a hard specification that must be satisfied by all words;

- K:X* > Q, a cost function mapping words to rational costs;

- L :X* — £, a label function mapping words to a finite set of labels 2 =

{51, .. E|Q|}7

532 A. Gittis et al.

~ ¢ € QT, an upper bound on expected cost;

- A\ p € Q, lower and upper bounds on the marginal probability of selecting a
word with a certain label (with 0 < A < p <1);

- di,@ € Q, lower and upper bounds on the conditional probability of words in
label class €; (with 0 < &; < Bl <1 for alli).

We note that the specifications and functions above are abstract, and our
definition does not make any assumptions about how they will be encoded in
a particular problem. For example, the hard constraint H over words might
be instantiated as the language of a DFA, context-free grammar, etc. Later in
the paper we will develop algorithms for solving classes of LQCI instances with
specification formalisms that satisfy certain properties.

The restriction to finite traces (via the length bounds m and n) is consistent
with prior work on using CI for robotic planning [19]: we frequently want plans
that complete within a time limit. Likewise in fuzz testing we want tests of
bounded length. Furthermore, as we will see, finite-trace LQCI is still a highly
nontrivial problem, so we leave its extension to infinite traces as future work.

Given an LQCI instance, we define several convenient notations:

— Y™ s all words satisfying the length bounds: {w € 2* | m < Jw| < n}.

— The set of improvisations I consists of all words satisfying the length bounds
and the hard specification. These are all the words which our improviser is
allowed to generate.

— Since the length bounds m,n ensure [is finite, we can consider the image of
I under K, which must also be finite. We will refer to this set of possible costs
as © = {01,...,0,0/} (note that enumerating © may require an algorithm).

— The cost class I}, consists of all words with label ¢; and cost), which sat-
isfy the length bounds and the hard specification, i.e., {w € X™" | w €
L(H),L(w) = ¢;, K(w) = 0x}. As the costs of all words in a cost class are
equal, we may speak of the cost of a cost class without ambiguity.

— The label class I; consists of all words with label ¢; as above but any cost,
ie, U2 Ik

— We write Pr[X(w) | w « D] for the probability (or EI...] for the expected
value) of X (w) given that w is sampled from distribution D.

Definition 2. Given an LQCI instance C, a distribution D over X* is an impro-
vising distribution for that instance if it satisfies the following constraints:

Hard Constraint: Prlw € I |w «— D] =1

Cost Constraint: E[K(w) |w«— D] <c

Randommness over Labels: Vi e {1,...,|2|}, A\<Prlwel,|w—D]<p
Randomness over Words: Vi € {1,...,|2|}, Vy € I,
diSPr[y:w|w€Ii,wHD]§/3¢

B oo~

We say that an LQCI instance is feasible if there exists an improvising dis-
tribution for it (and infeasible otherwise). An improviser for an LQCI instance

Randomized Synthesis for Diversity and Cost Constraints with CI 533

s a probabilistic algorithm which takes mo input, has finite expected runtime,
and whose output distribution is an improvising distribution. Given an LQCI
instance C, the LQCI problem is then to determine if C is feasible, and, if so,
to generate an improviser for C. Finally, an improvisation scheme for a class
of LQCI instances is a probabilistic algorithm with finite expected runtime that
solves the LQCI problem for instances in that class.

As described in the preceding sections, the goal of our problem definition
is to provide formal guarantees about the randomness of improvisations while
respecting the various constraints. In some applications, we may simply wish
to maximize randomness: then precise control over the randomness parameters
for each label class is not needed, and in fact finding values of di,ﬁi which
maximize randomness while remaining feasible is nontrivial. Building on our
analysis of the basic LQCI problem in the next several sections, in Sect.6 we
will introduce a mazimum-entropy version of LQCI which directly maximizes
randomness without requiring &; and B, to be explicitly specified.

3 Feasibility Conditions and the Greedy Construction

In this section, we introduce a greedy construction which will be used to provide
necessary and sufficient conditions for an LQCI instance to be feasible. This
construction will also form the basis of the improvisation schemes presented
later in the paper. For now, we will present the construction without assuming
any particular specification formalism and ignoring algorithmic concerns: the
description presented here will consider traces one by one and thus be inefficient.
The next section will develop efficient implementations of these ideas.

The greedy LQCI construction is separated into two phases. In the first phase,
the greedy cost construction, we define a distribution over each label class indi-
vidually, greedily optimizing cost by giving as much weight as we can to the
cheapest elements while respecting the randomness over words condition. In
the second phase, the greedy label construction, we define a distribution over
labels, greedily assigning maximum marginal probability to the label classes
with the cheapest expected costs under the distributions from the first phase
while respecting the randomness over labels condition. The intuition is that we
want to first make sampling within each label class as cheap as possible, and
then sample from the cheapest classes as often as possible, while satisfying the
randomness requirements. We will prove below that this greedy approach in fact
yields an improvising distribution whenever one exists.

Toy Example. We will begin with a toy example which illustrates the idea and
correctness of the greedy construction. Suppose we want to sample from words
of length 3 (m = n = 3) over the binary alphabet X' = {0,1}, subject to the
hard constraint that each word must contain at least one 1. We will have two
label classes: words with an odd number of 1s will be in label 1, and those with
an even number in label 2. The cost of each word will be its integer value in
binary. The label parameters will be A = 0.2 and p = 1.0, so that each label

534 A. Gittis et al.

must be sampled from with a probability at least 0.2 and at most 1.0. The word
randomness parameters will be & = & = 0.1 and Bl = Bg = 0.5, so that when
sampling from a particular label class, each word in the class must be selected
with probability at least 0.1 and at most 0.5.

Figure 2 shows the greedy construction applied to this LQCI instance. Begin-
ning with label 1, we need to construct a probability distribution over the words
001, 010, 100, and 111. We start by assigning 0.1 to each word, since &; = 0.1.
Then we assign as much additional probability as we can (up to 3 = 0.5) to
the cheapest words first until a total of 1 is reached, as shown in the bottom
left of Fig. 2. The result is that there are 3 distinct probabilities within the label
class: the minimum &; = 0.1, the maximum Bl = 0.5, and the overflow prob-
ability 0.3 on the word 010. This process results in a distribution over label 1
with expected cost 2.2, the minimum achievable while satisfying the randomness
over words constraint. A similar process yields a distribution of expected cost
4.1 on label 2. Now that we know the minimum expected cost for each label, we
should sample from the cheaper label as frequently as possible. Since A = 0.2
and p = 1.0, we sample from label 2 with probability 0.2 (the minimum allowed)
and from label 1 with probability 0.8, yielding a distribution over improvisations
with expected cost 2.58. Our analysis will show that this is in fact the minimum
possible expected cost over all distributions satisfying conditions (1) (3), and
(4) in Definition 2. So if the cost bound ¢ in the LQCT instance is at least this
large, then we have an improvising distribution, and otherwise the instance is
infeasible.

We now describe the two phases of our construction formally.

The Greedy Cost Construction. For a particular label class i € {1,...,|2|},
we proceed as follows. Let §° = (4%, ..., 5‘1'@‘) be a list of all the cost classes I; j,
1-di| L]
Bi—a&;
is the maximum number of words that can be assigned ﬁl probability (the max-
imum allowed) while still leaving at least &; probability (the minimum allowed)
for each remaining word. Then, moving through the cost classes in the order
given by %, we assign B; probability to each word in the class, until we get to a
class 6¢ where the cumulative number of words so far (including the new class)
would exceed o;. To this class we assign Gi(0; — S 7_3 |04]) + @ (X r_y [64] — 0;)
probability (spread uniformly over words in the class), the maximum allowed
while leaving exactly &; for each remaining word. Assigning &; to the remaining
words, we obtain a distribution D; over the whole label class I;.

We note that this process is not well-defined when &; = Bl (in which case we
simply assign probability &; to every word in I;) or when &;|I;| > 1 (in which
case the instance is infeasible due to &; being too large); also, the process does
not result in a probability distribution if 3;|I;| < 1 (in which case the instance is
infeasible due to ﬂAl being too small). Except in these cases, we get a well-defined
distribution D; over I; which satisfies conditions (1) and (4) of Definition 2.
Moreover, the expected cost of D; is minimal among all such distributions, since
it assigns as much weight as possible to the words with lowest cost.

with label 4, sorted in increasing order of cost. Then fix o; = , whose floor

Randomized Synthesis for Diversity and Cost Constraints with CI 535

Word | Label [Cost

000 0.8 0.2

001 | L, k=1

010 | L, k=2

011 L, k=3

100 L | k=4 05 1 05 04
101 | L, | k=5 ~ 03 0.1 "\ yar §
10| L, k=6

T TTpy

011

= 3
E[k] =
PI‘ = 0 5 0.3 0 1 0.1 0.5 0.4 0.1 t] = 2 2 4'1
Pr= 038 0.2
Il B Minimum Conditional Probability (c) Il Minimum Marginal Probability (\)
[J I Additional Conditional Probability (Up to) [Additional Marginal Probability (Up to p)

Fig. 2. Applying the greedy LQCI construction to our toy example. Counter-clockwise
from upper left: table of improvisations, the greedy cost construction, the greedy label
construction, and the final improvising distribution.

The Greedy Label Construction. Given the distributions D; for each label
class I; from the first stage, we now choose a distribution over labels. Following
a similar pattern as before, let § be a list of the distributions D; sorted in order
of increasing expected cost. Then fix u = Ll;‘_rf\p‘J, which is the number of label
classes that can be assigned probability p (the maximum allowed) while still
leaving at least A (the minimum allowed) for each remaining class. We assign
p probability to the first u label classes in §. To the next label class we assign
probability 1 — pu— A(|£2] —u— 1), the maximum allowed while leaving exactly A
for each remaining label class. Finally, we assign A to all remaining label classes,
and call the resulting distribution over labels D. Similar to before, this process
will be well-defined and result in a distribution when % <0< %; otherwise, p

is too small or X is too large for condition (3) of Definition 2 to be satisfied.

To complete the construction, we obtain a final distribution D over words by
first sampling a label ¢ from D and then sampling from D;. The greedy cost con-
struction ensured that D; is defined over the class I; C I and assigns probability
between ¢&; and Bl to each word, so D will satisfy the hard and randomness over
words constraints in Definition 2. The greedy label construction ensures that D
assigns probability between A and p to each label, so D will also satisfy the ran-
domness over labels constraint. Finally, since each phase selects a distribution
of minimal cost amongst those satisfying the corresponding constraints, if any

536 A. Gittis et al.

improvising distribution exists then D will have no greater cost, thereby satisfy-
ing the cost constraint and being an improvising distribution. Formalizing this
argument yields the following theorem (see the Appendix [21] for details):

Theorem 1. An LQCI instance is feasible if and only if all of the following
conditions are true:
1 1
1. - < |2 <<
p A
. 1 1
2.Vied{l,... |2}, = <|L|<—
. ai
8. The greedy LQCI coznstruction produces a distribution D whose expected cost
is at most ¢ (i.e., EIK(w) | w «— D] < ¢).

We conclude this section with a reminder that the greedy LQCI construction
is a construction and not a practical algorithm: it defines a distribution but not
a practical way to compute it for a specified LQCI instance. With common spec-
ification formalisms such as DFAs and Boolean formulas, the number of possible
improvisations can easily be exponential in the size of the problem instance. In
this case, assigning probabilities to words one at a time as described above in
the abstract construction would be highly impractical. Instead, the algorithms
we present in the following sections are able to avoid enumerating exponentially-
large sets by working with implicit representations to create distributions equal
to or approximating the one produced by the greedy LQCI construction.

4 Exact LQCI for Automata Specifications

The greedy LQCI construction from Sect.3 gives us a way to determine if an
LQCI instance is feasible and, if so, to build an improvising distribution. Imple-
menting the construction requires several operations—such as computing the
size of the label/cost classes—which may or may not be tractable depending on
the types of specification used in the instance. In this section, we will identify a
sufficient list of operations which yield an efficient generic improvisation scheme
for any class of LQCI instances with specifications supporting these operations.
Then we will instantiate the scheme for two natural classes of specifications given
by deterministic finite automata, obtaining efficient improvisation algorithms.

Following the description of the preceding section, we can see that for a given
LQCI instance, the operations listed below are sufficient to complete the greedy
LQCI construction and sample from the resulting distribution:

Definition 3. (Sufficient Operations) Given an LQCI instance C:

1. Compute the list of possible costs ©.
2. For eachi € {1,...,|02|} and k € ©, compute |I, 1|
3. For eachi € {1,...,|2|]} and k € O, sample uniformly from I, j,.

Randomized Synthesis for Diversity and Cost Constraints with CI 537

If we can implement these operations in polynomial time, we can build a
polynomial-time improvisation scheme in the sense of [16,17], i.e., an algorithm
which solves the LQCI problem in polynomial time, and whose generated impro-
visers themselves run in polynomial (expected) time. To do this we first compute
the list of possible costs and the size of each I; ;. We then perform a modified ver-
sion of the greedy construction which assigns probabilities to entire cost classes
instead of individual words. As each word in a class has the same label and cost,
we can satisfy our cost and randomness requirements with a distribution that
assigns the same probability to every word within a class. Then to implement
placing probability p on each word of I; ;, without enumerating this potentially
exponentially-large set, we simply choose the set with probability p|I; x| and
then sample uniformly from it (see the Appendix [21] for a detailed argument).

Theorem 2. Suppose for a class of LQCI instances the operations in
Definition 3 can be performed in polynomial time (in the size of the instance).
Then there is a polynomial-time improvisation scheme for that class.

One broad class of specifications to which this scheme can apply is determin-
istic finite automata (DFAs): for example, we can encode the specifications from
our robotic planning example as DFAs. While a DFA can encode the hard speci-
fication ‘H directly, encoding cost and label functions is not as clear. We consider
two natural encodings: most simply, we can label each state of the DFA with an
integer, assigning the associated label/cost to words ending at that state.

Theorem 3. Consider the class of LQCI instances where H is a DFA, K and
L are given by DFAs which output an integer cost/label associated with the state
they end on, the length bounds are given in unary and all other numerical param-
eters in binary. This class has a polynomial-time improvisation scheme.

Proof (Sketch). Operation (1) is trivial. For (2) and (3), we can easily construct
DFAs accepting all improvisations with a given label and cost, then apply clas-
sical techniques for counting/sampling from the language of a DFA [23]. O

To capture cost functions like path length or mission time (as in our planning
example), we consider a second encoding using weighted DFAs: states are again
labeled with integers, but the cost is now given by accumulating costs from every
state passed through. Here, the number of possible costs can grow linearly with
the largest cost of a single state, and so be exponential in the size of the (binary)
encoding; as a result we only obtain a pseudopolynomial improvisation scheme
by applying Theorem 2. The algorithm can still be feasible, however, when the
magnitude of possible costs is not too large, as we will see in Sect. 7.

Theorem 4. Consider the class of LQCI instances as in Theorem 3 but where
K is given by a weighted DFA, i.e. summing the integer costs associated with
each state of a DFA accepting path (with multiplicity). This class has a pseu-
dopolynomial improvisation scheme.

538 A. Gittis et al.

Proof (Sketch). We can perform operation (1) by dynamic programming over
the states and word lengths up to the length bound n. If the maximum cost of
a state in the DFA for I is M, then the cost of an improvisation is at most
M(n + 1); so for (2) and (3) we can build DFAs of size poly(M,n) recognizing
I; ,, and then apply counting/sampling as above. If state costs were encoded in
unary, the operations above would take polynomial time and Theorem 2 would
apply. Converting from binary to unary yields a pseudopolynomial scheme. O

5 Approximate LQCI for Symbolic Specifications

The LQCI algorithms for DFAs that we developed in the previous section cover
many useful specifications; however, as we will see in Sect. 7, even fairly simple
specifications can require very large automata when represented explicitly. In
this section we propose an algorithm that avoids such blowup by working with
symbolic specifications given by Boolean formulas. We cannot use our scheme of
Theorem 2 directly, because counting the number of solutions of a Boolean for-
mula is #P-hard. Nevertheless, we will show that by leveraging recent advances
in SAT solving, we can approxzimately solve LQCI to any desired accuracy.

We consider LQCI instances with specifications given by Boolean formulas,
whose variables encode traces and costs; for modeling convenience, we also allow
a vector of auxiliary variables z. Specifically, we assume we are given:

— a conjunctive normal form (CNF) formula h(z, z) such that 3z.h(z, z) holds
if and only if the bitvector x encodes a trace satisfying the hard constraint;

— a CNF formula ¢(z,y, z) such that 3z.£(z,y, z) holds if and only if trace x
has the label encoded by the bitvector y;

— a CNF formula k(z,y, z) such that 3z.k(z,y, z) holds iff trace = has cost y (a
positive integer).

We further assume that the instance has only a polynomial number of labels,
although there can be exponentially-many costs.

Given such an instance, we can readily build a CNF formula ¢;(x, y, z) which
is satisfiable iff x encodes a word which has length between m and n, satisfies the
hard constraint, belongs to label 7, and has cost y. The solutions x for a particular
choice of 7 and y comprise the associated cost class, so that the operations we
need for the greedy construction are instances of the model counting and uniform
generation problems for SAT.? Recent work has yielded practical algorithms
based on SAT solvers which solve these problems approximately [7,27]3:

2 Since we do not want to count over the auxiliary variables z, we actually require
projected counting/sampling, which the algorithms we use can also perform [7,17].

3 We note that UniGen [6,7] is not strictly speaking an almost-uniform generator as in
Definition 4 since it only supports sufficiently-large tolerances; for theoretical results,
one can substitute the algorithm of [4] to do ezact (projected) uniform sampling.

Randomized Synthesis for Diversity and Cost Constraints with CI 539

Definition 4. (/7]) An approximate counter is a probabilistic algorithm C
which given a CNF formula F with set of solutions Rp, a tolerance 7 > 0,
and a confidence 1 — 6 € [0,1) guarantees that

Pr[|Rp|/(1+7) <C(F,7,1—8) < (1+7)|Rpl] >1-0.

An almost-uniform generator G is a probabilistic algorithm that, given F as above
and a tolerance € > 0, guarantees that for every y € Rp, we have

(1 +6)|Rp|) < Pr(G(Fe) =yl < (1 +€)/|Rp|.

We can modify our greedy construction to work with only approximate count-
ing/sampling as follows. If the cost bitvector has |y| bits, the cost of a word
is between 1 and 2/¥!. To avoid enumerating exponentially-many cost classes
for label i, we group words into “cost buckets” by subdividing this interval
into powers of r for some r > 1, i.e. [1,7),[r,72),...,[r*"1,7?). We will have
b = O(log,.(2!")) = O(|y|/logr) buckets, and we can estimate the size of bucket
§ by approximately counting solutions to 3z.[¢;(z,y,2) A (17 <y < rit1)]. We
will then use these estimates to choose a distribution over buckets, following
the intuition of the greedy cost construction that we should assign the most
probability to buckets with lowest estimated cost, but with some adjustments
to bound the error that approximate sampling introduces.

For each label class ¢ with randomness parameters o and (3, we apply a
modified form of the greedy cost construction, shown in Algorithm 1. We start
in lines 1-3 by using model counting as above (with a tolerance 7 and confidence
1 — ¢ to be specified later) to find estimates ¢, of the size of each bucket k, and
corresponding lower bounds p; on how much probability the bucket would have
received in the exact greedy construction (the extra 1 + 7 factor accounting for
possibly overestimating the size of the bucket). If these lower bounds total more
than 1, then we know there are too many improvisations for the instance to be
feasible (assuming the model counts are within their tolerance) and we return
false on line 4. Otherwise, on lines 5-7 we proceed as in the greedy construction,
starting from the cheapest bucket, increasing the assigned probability per word
to (1 + 7)06 until a probability of 1 is reached. The factor of 1 + 7 ensures that,
even if the model counts have underestimated the size of the cheaper buckets, we
still assign them at least as much probability as the exact greedy construction
would. Next, line 8 checks if there are too few improvisations, similarly to line
4. Finally, we return our distribution over buckets, as well as a lower bound on
its expected cost that we will use next.

If Algorithm 1 does not return false for any label class, then we complete
our approximate LQCI algorithm by running the greedy label construction from
Sect. 3, using the lower bounds from Algorithm 1 as the expected cost of each
label class. As before, we declare the instance infeasible if the construction fails or
if its expected cost exceeds the cost bound c. Otherwise, we obtain a distribution
over all the cost buckets; our improviser then simply chooses a bucket from this
distribution and applies almost-uniform sampling to sample a word from it.

Choosing the bucket count and counting/sampling tolerances appropriately,
our algorithm can approximate an improvising distribution to within arbitrarily-
small multiplicative error, using polynomially-many calls to a SAT solver:

540 A. Gittis et al.

Algorithm 1. ApproximateGreedyCost (i, o, 3,7,b, 7,)
1: for k=1tobdo

2 ek = #SAT(3z.¢i(z,y, 2) A (r* 71 <y < F), 7,1 =)
3 pr = ack/(1+7)

4: if 22:1 p;j > 1 then return False

5: for k=1tobdo
6.
7
8
9

pr = min((1 4+ 7)Bex, 1 = 32, ;. pj)
if 23:1 p; = 1 then break

:if 2321 p; < 1 then return False

b j—
t Lo:=37_ pir’ !
10: return {pj}?:17L0

Theorem 5. There is an algorithm which, given a Boolean LQCI instance C,
a cost tolerance ¢ > 0, a randomness tolerance v > 0, and a confidence 1 — 4 €
[0,1), runs in poly(|C|,1/¢,1/~,log(1/0)) time relative to an NP oracle and either
returns L or an algorithm sampling from a distribution D over words. With
probability at least 1 — 6§, if L is returned then C is infeasible, and otherwise:

1. Hard Constraint: Pr[H(w) | w — D] =1
2. Cost Constraint: E[K(w) | w — D] < (14 ()¢
3. Randommness over Labels: Vi€ {1,...,|2|}, A\<Prlwel;|w« 5] <p
4. Randomness over Words: Vi € {1,...,|02|} Yy € I,
&;/(14+7) <Prly=w|we L,w — D] < (1+)f

6 Maximum-Entropy LQCI

Our LQCI definition requires providing conditional probability bounds for every
label, which while allowing maximal control of the distribution, can be unwieldy
to use. However, if we drop conditional bounds entirely, trivial solutions with
unnecessarily-poor randomness can appear. For example, consider an LQCI
instance with parameters A = 0.5, p = 0.5, & = (0,...,0), B =(1,...,1). With
this choice, any distribution will satisfy the randomness over words constraint,
and all labels have the same marginal probability of being selected. Then assume
that we have two labels, costs © = (1,2), and cost bound ¢ = 1.5, along with
the following cost class sizes: |I11]| = 1, |I21] = 1, |I1,2] = 1000, |I22| = 1000.
Now simply assigning 50% probability to I ; and 50% probability to I2; is an
improvising distribution. Assigning 25% probability to all 4 classes is also an
improvising distribution, and clearly preferable from the perspective of random-
ness. Unfortunately, without a nontrivial randomness over words constraint, we
have no way to push the improviser to select the second distribution. To enforce
this, we introduce the concept of entropy from information theory.

Definition 5. Given a discrete random variable X with a set of outcomes {2 and
probabilities p : 2 — [0,1], the entropy of X is H(X) = =3 _,p(x)lgp(z).

Randomized Synthesis for Diversity and Cost Constraints with CI 541

To obtain a problem formulation that maximizes randomness without requir-
ing probability bounds for each class, we invoke the Principle of Maximum
Entropy: amongst all improvising distributions (without a randomness over
words constraint), we should select the one with the highest entropy (as first
proposed for reactive CI in [30]). This yields a notion of Maximum-Entropy
LQCI:

Definition 6. A Maximum-Entropy LQCI (MELQCI) instance is an LQCI
instance where & = (0,...,0) and 8= (1,...,1). A m-improviser for a MELQCI
instance C is an improviser (as in LQCI) whose output distribution has entropy
at most T less than the mazimum-entropy improvising distribution for C. We
define the MELQCI problem as, given an instance C and 7 > 0, determining if
C is feasible, and, if so, generating a T-improviser for C.

We can solve MELQCT efficiently in the same cases as LQCI:

Theorem 6. Given a class of MELQCI instances for which one can perform
the operations in Definition 3 in polynomial time, there is a polynomial-time
algorithm which given an instance from the class and a T > 0, computes a T-
1mproviser.

Proof. (Sketch). Once cost class sizes have been computed as in Theorem 2,
the search for the desired distribution over cost classes can be formulated as
an optimization problem with a separable convex objective (the entropy of the
distribution) and linear constraints (improviser constraints). This problem can
be solved in time polynomial in the size of the instance and log(1/7) [10].

As in Sect.4, we can transform this algorithm into a pseudopolynomial
scheme for accumulated-cost DFA specifications.

7 Experiments

We ran several experiments on the robotic planning problems from Sect. 2 (code
available at [20]). These experiments aim to demonstrate that we can encode
practical problems as LQCI instances solvable using our algorithms, highlight
the relative advantages/disadvantages of our exact/approximate algorithms, and
show the necessity of the label function in ensuring meaningful randomness.
As a minimal experiment, we used a 6 x 6 grid world with a small range
of costs (0-3 per cell, 8-39 for paths); we compared against a 7 x 7 grid world
with a much larger range of costs (0-9 per cell, 38-137 for paths).* We encoded
the specifications in Sect.2 both as DFAs for our exact LQCI and MELQCI
algorithms, and as Boolean formulas for our approximate LQCI algorithm. The
Boolean encodings were obtained by formulating the specifications in the SMT
theory of bitvectors, and bit-blasting them with Z3 [26]; the resulting formu-
las had several thousand variables and tens of thousands of clauses. We used
UniGen3 [7,27] for uniform generation with its default tolerance® of 17, and an

4 A larger 8 x 8 map exceeded our 24-hour wallclock timeout for all exact and approx-
imate experiments.
5 UniGen3 cannot guarantee a multiplicative error of less than 7.48 [6]; see footnote 3.

542 A. Gittis et al.

Table 1. Experiment parameters and improviser construction times (in minutes).

Map Problem Type (A, p) (di,@) r v 6 Wall Time CPU Time

Exact QCI (0, 3e-5) (1, 1) 540 5568
Exact LQCI (0, 1e-5) (0.3, 0.4 N/A 444 6102

6 ¢ Exact MELQCI N/A (03,04 4447 6102

Approx. LQCI
Approx. LQCI

()

() (0.3,0.4) 1.2 10> 0.2 21.24+0.7 81.5+1.1
Approx. LQCI (0, le-5)

()

()

()
()
(0.3,0.4) 1.2 10> 0.2 23.7+0.6 93.3+1.4
()
(0.3,0.4) 1.2 10* 0.2 20.240.7 78.4+3.4

Exact QCI (1,1)
0.3,04) N/A
Exact MELQCI N/A (0.3, 0.4)

(Timed out
(

Approx. LQCI (0, 1e-5) (0.3, 0.4) 1.2 10> 0.2 42.8+2.1 186.1+3.9
(
(

Exact LQCI (24-hour wall time)

77

Approx. LQCI (0, 1e-5) (0.3, 0.4) 1.2 10° 0.2 38.8+8.8 152.6+9.0
Approx. LQCI (0, 1e-5) (0.3, 0.4) 1.2 10* 0.2 38.84£9.7 145.5+9.5

The LQCI/MELQCI runtimes were nearly identical, since MELQCI reuses the
LQCI computations and adds a convex optimization step, which took negligible
time.

in-development version of ApproxMC [8,27,28] for approximate model counting
with tolerances of 1.4, 6.7, and 23.25, so that the overall v values were 102, 103,
and 10%. To put these values into context, the small/large maps had on the order
of 107/10° improvisations, and we required that no word have > p = 10~° proba-
bility of being selected. Therefore, with our tightest/loosest v we are guaranteed
that no word will be more than 0.1%/10% of the distribution respectively. The
confidence was set to 0.8 (§ = 0.2), ApproxMC’s default confidence. Each model
counting call however required a much higher confidence to achieve an overall §
of 0.2.

For the small/large maps respectively we used length bounds of (1,25)/(1,30)
and cost bounds of 30/50. We used label probability bounds of (0.3,0.4) through-
out, except for unlabeled “QCI” experiments. The experiments were run on a
64-core machine with 188 GB of RAM; we used 62 parallel threads, unless this
exhausted RAM, in which case we used 16 threads. The experiments are sum-
marized in Table1; due to significant runtime variability for the approximate
experiments, we report means and standard deviations over 10 repetitions. For
all exact experiments which completed within the 24-h wallclock timeout, RAM
usage was < 6 GB per thread, and the average time to sample an improvisation
was < 1 ms; all approximate experiments required < 250 MB RAM per thread
and took ~ 20 s to sample an improvisation.

Randomized Synthesis for Diversity and Cost Constraints with CI 543

Ao
Ap—
’

-

(a) QCI Traces (b) MELQCI Traces

Fig. 3. Randomly-selected traces generated by the QCI/MELQCI improvisers for the
6 x 6 map. Note that all the QCI traces use the same charging station.

We can draw several conclusions from these results. Improviser construction
with the exact algorithm is significantly more expensive than with the approxi-
mate algorithm, in both CPU time and RAM. This is not surprising, as the exact
encodings resulted in enormous DFAs which, for the large map, approached 10'°
states. Conversely, sampling is much faster for the exact algorithm, with no SAT
queries required. We can also see that the approximate algorithm can be used
to practically solve problems that are infeasible to solve exactly, such as the
large-map problem. We expect new developments in the relatively young field of
approximate model counting/sampling will further speed up our algorithm.

Visualizing several randomly-chosen traces from our exact QCI and MELQCI
experiments in Fig. 3, we can see the importance of labels. In unlabeled QCI,
the robot always charged at the substation near the main road due to the lower
expected cost of such paths. In contrast, MELQCI yielded a near-uniform dis-
tribution over the charging stations. This increase in diversity was not free,
with the average cost rising to 21.4 for MELQCI from 8.7 for QCI. This trade-
off demonstrates how LQCI allows us to balance the need for control over our
improvisations with the need for meaningful diversity (not merely randomness)
by choosing appropriate label functions.

8 Conclusion

In this paper, we introduced labelled quantitative control improvisation as a
framework allowing correct-by-construction synthesis of randomized systems
whose behavior must be diverse with respect to a label function and near-optimal
with respect to a cost function. We studied the theory of LQCI problems and
developed algorithms for solving them for broad classes of specifications encoded
as finite automata or Boolean formulas. Our experiments demonstrated how our
framework can be used to formalize and solve realistic robotic planning problems.

544 A. Gittis et al.

There are a number of clear directions for future work. Scalability is an
evident concern: our experiments show that our algorithms can require substan-
tial resources to solve even relatively small LQCI problems. While LQCI with
Boolean formulas is a difficult #P-hard problem, our algorithms will directly
benefit from future progress in model counting; our DFA algorithms could also
be improved through the use of abstraction to reduce state-space explosion.
We also plan to explore generalizations of our algorithms, such as extending
our approximate scheme to MELQCI and to problems with exponentially-many
labels, as well as potentially infinite traces. Finally, we are investigating exten-
sions of the LQCI problem to reactive settings with adversarial environments,
and to black-box settings for design-space exploration and other problems where
we do not have complete models for the cost function and other constraints.

Acknowledgements. The authors thank Skyler Stewart for designing Fig. 2, and
several anonymous reviewers for their helpful comments. This work was supported in
part by DARPA contract FA8750-20-C-0156 (SDCPS).

References

1. Akkaya, I., Fremont, D.J., Valle, R., Donzé, A., Lee, E.A., Seshia, S.A.: Control
improvisation with probabilistic temporal specifications. In: First IEEE Interna-
tional Conference on Internet-of-Things Design and Implementation, IoTDI 2016,
Berlin, Germany, 4-8 April 2016, pp. 187-198. IEEE Computer Society (2016).
https://doi.org/10.1109/I0TDI.2015.33, https://doi.org/10.1109/10TDI.2015.33

2. Almagor, S., Kupferman, O.: High-quality synthesis against stochastic environ-
ments. In: Talbot, J.M., Regnier, L. (eds.) 25th EACSL Annual Conference on
Computer Science Logic (CSL 2016). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 62, pp. 28:1-28:17. Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, Dagstuhl, Germany (2016). https://doi.org/10.4230/LIPIcs.CSL.2016.
28, http://drops.dagstuhl.de/opus/volltexte/2016/6568

3. Baier, C., Brazdil, T., Groler, M., Kucera, A.: Stochastic game logic. Acta infor-
matica pp. 1-22 (2012)

4. Bellare, M., Goldreich, O., Petrank, E.: Uniform generation of NP-witnesses using
an NP-oracle. Inf. Comput. 163(2), 510-526 (2000)

5. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer,
M.: Specify, compile, run: hardware from PSL. In: Proceedings of the 6th
International Workshop on Compiler Optimization meets Compiler Verification
(COCV 2007). Electronic Notes in Theoretical Computer Science, vol. 190, pp.
3-16. Elsevier (2007). https://doi.org/10.1016/j.entcs.2007.09.004, http://www.
sciencedirect.com/science/article/pii/S157106610700583X

6. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: On parallel
scalable uniform SAT witness generator. In: Proceedings of Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pp. 304-319 (4 2015)

7. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and uniformity in
sat-witness generator. In: Proceedings of Design Automation Conference (DAC),
pp. 60:1-60:6, June 2014

https://doi.org/10.1109/IoTDI.2015.33
https://doi.org/10.1109/IoTDI.2015.33
https://doi.org/10.4230/LIPIcs.CSL.2016.28
https://doi.org/10.4230/LIPIcs.CSL.2016.28
http://drops.dagstuhl.de/opus/volltexte/2016/6568
https://doi.org/10.1016/j.entcs.2007.09.004
http://www.sciencedirect.com/science/article/pii/S157106610700583X
http://www.sciencedirect.com/science/article/pii/S157106610700583X

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Randomized Synthesis for Diversity and Cost Constraints with CI 545

Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approxi-
mate counting for probabilistic inference: from linear to logarithmic sat calls. In:
Proceedings of International Joint Conference on Artificial Intelligence (IJCAI),
July 2016

Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: On stochastic
games with multiple objectives. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 266-277. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40313-2_25

Chubanov, S.: A polynomial-time descent method for separable convex optimiza-
tion problems with linear constraints. STAM J. Optim. 26(1), 856-889 (2016).
https://doi.org/10.1137/14098524x

Denise, A., Gaudel, M.C., Gouraud, S.D., Lassaigne, R., Oudinet, J., Peyronnet,
S.: Coverage-biased random exploration of large models and application to testing.
Int. J. Softw. Tools Technol. Transfer 14(1), 73-93 (2011). https://doi.org/10.
1007/s10009-011-0190-1

Donze, A., Libkind, S., Seshia, S.A., Wessel, D.: Control improvisation with
application to music. Tech. Rep. UCB/EECS-2013-183, EECS Department, Uni-
versity of California, Berkeley (Nov 2013). http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2013/EECS-2013-183.html

Donzé, A., Valle, R., Akkaya, I., Libkind, S., Seshia, S.A., Wessel, D.: Machine
improvisation with formal specifications. In: Music Technology meets Philosophy -
From Digital Echos to Virtual Ethos: Joint Proceedings of the 40th International
Computer Music Conference, ICMC 2014, and the 11th Sound and Music Com-
puting Conference, SMC 2014, Athens, Greece, 14—20 September 2014. Michigan
Publishing (2014). http://hdl.handle.net/2027/spo.bbp2372.2014.196

Finkbeiner, B.: Synthesis of reactive systems. In: Esparza, J., Grumberg, O., Sick-
ert, S. (eds.) Dependable Software Systems Engineering. NATO Science for Peace
and Security Series, D: Information and Communication Security, vol. 45, pp. 72—
98. IOS Press, Amsterdam (2016)

Fremont, D.J.: Algorithmic improvisation. Thesis (2019). https://www2.eecs.
berkeley.edu/Pubs/TechRpts/2019/EECS-2019-133.pdf

Fremont, D.J., Donzé, A., Seshia, S.A., Wessel, D.: Control improvisation. In:
Harsha, P., Ramalingam, G. (eds.) 35th TARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS
2015). Leibniz International Proceedings in Informatics (LIPIcs), vol. 45, pp.
463-474. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2015). https://doi.org/10.4230/LIPIcs. FSTTCS.2015.463, http://drops.dagstuhl.
de/opus/volltexte/2015/5659

Fremont, D.J., Donzé, A., Seshia, S.A.: Control improvisation (2017). https://
arxiv.org/abs/1704.06319

Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,
Seshia, S.A.: Scenic: a language for scenario specification and scene generation.
In: McKinley, K.S., Fisher, K. (eds.) Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, 22-26 June 2019, pp. 63—78. ACM (2019). https://doi.org/10.
1145/3314221.3314633, https://doi.org/10.1145/3314221.3314633

Fremont, D.J., Seshia, S.A.: Reactive control improvisation. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 307-326. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3_17

https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1137/14098524x
https://doi.org/10.1007/s10009-011-0190-1
https://doi.org/10.1007/s10009-011-0190-1
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-183.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-183.html
http://hdl.handle.net/2027/spo.bbp2372.2014.196
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-133.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-133.pdf
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.463
http://drops.dagstuhl.de/opus/volltexte/2015/5659
http://drops.dagstuhl.de/opus/volltexte/2015/5659
https://arxiv.org/abs/1704.06319
https://arxiv.org/abs/1704.06319
https://doi.org/10.1145/3314221.3314633
https://doi.org/10.1145/3314221.3314633
https://doi.org/10.1145/3314221.3314633
https://doi.org/10.1007/978-3-319-96145-3_17

546 A. Gittis et al.

20. Gittis, A., Vin, E., Fremont, D.J.: Randomized synthesis for diversity and cost
constraints with control improvisation (artifact). https://doi.org/10.5281/zenodo.
6558391

21. Gittis, A., Vin, E., Fremont, D.J.: Randomized synthesis for diversity and cost
constraints with control improvisation (2022). https://arxiv.org/abs/2206.02775

22. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512-535 (1994)

23. Hickey, T., Cohen, J.: Uniform random generation of strings in a context-free lan-
guage. STAM J. Comput. 12(4), 645-655 (1983). https://doi.org/10.1137/0212044

24. Kozierok, C.M.: The TCP/IP guide. http://tcpipguide.com/free/t_TCPOperat
ionalOverviewandthe TCPFiniteStateMachineF-2.htm, (Accessed Jan 21 2022)

25. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-
sion and motion planning. IEEE Trans. Rob. 25(6), 1370-1381 (2009)

26. de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

27. Soos, M., Gocht, S., Meel, K.S.: Tinted, detached, and lazy CNF-XOR solving
and its applications to counting and sampling. In: Proceedings of International
Conference on Computer-Aided Verification (CAV), July 2020

28. Soos, M., Meel, K.S.: Arjun: an efficient independent support computation tech-
nique and its applications to counting and sampling. CoRR abs/2110.09026 (2021).
https://arxiv.org/abs/2110.09026

29. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley (2007)

30. Vazquez-Chanlatte, M., Junges, S., Fremont, D.J.; Seshia, S.: Entropy-guided con-
trol improvisation (2021). https://doi.org/10.15607/RSS.2021.XVIIL.051, https://
doi.org/10.15607/RSS.2021.XVII.051

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.5281/zenodo.6558391
https://doi.org/10.5281/zenodo.6558391
https://arxiv.org/abs/2206.02775
https://doi.org/10.1137/0212044
http://tcpipguide.com/free/t_TCPOperationalOverviewandtheTCPFiniteStateMachineF-2.htm
http://tcpipguide.com/free/t_TCPOperationalOverviewandtheTCPFiniteStateMachineF-2.htm
https://doi.org/10.1007/978-3-540-78800-3_24
https://arxiv.org/abs/2110.09026
https://doi.org/10.15607/RSS.2021.XVII.051
https://doi.org/10.15607/RSS.2021.XVII.051
https://doi.org/10.15607/RSS.2021.XVII.051
http://creativecommons.org/licenses/by/4.0/

	Randomized Synthesis for Diversity and Cost Constraints with Control Improvisation
	1 Introduction
	2 Overview and Problem Definition
	2.1 Motivating Examples
	2.2 Problem Definition

	3 Feasibility Conditions and the Greedy Construction
	4 Exact LQCI for Automata Specifications
	5 Approximate LQCI for Symbolic Specifications
	6 Maximum-Entropy LQCI
	7 Experiments
	8 Conclusion
	References

