
Capture, Analyze, Diagnose: Realizability
Checking Of Requirements in FRET

Andreas Katis1(B) , Anastasia Mavridou1, Dimitra Giannakopoulou2,
Thomas Pressburger2(B), and Johann Schumann1

1 Employed by KBR; NASA Ames Research Center,
Moffett Field, CA, USA

andreas.katis@nasa.gov
2 NASA Ames Research Center, Moffett Field, CA, USA

tom.pressburger@nasa.gov

Abstract. Requirements formalization has become increasingly popu-
lar in industrial settings as an effort to disambiguate designs and opti-
mize development time and costs for critical system components. For-
mal requirements elicitation also enables the employment of analysis
tools to prove important properties, such as consistency and realizabil-
ity. In this paper, we present the realizability analysis framework that we
developed as part of the Formal Requirements Elicitation Tool (FRET).
Our framework prioritizes usability, and employs state-of-the-art analysis
algorithms that support infinite theories. We demonstrate the workflow
for realizability checking, showcase the diagnosis process that supports
visualization of conflicts between requirements and simulation of coun-
terexamples, and discuss results from industrial-level case studies.

1 Introduction

Requirements elicitation is a proactive process which, by capturing the intended
behavior of a system at an early stage, safeguards against decisions that could
lead to increased development costs and even catastrophic failures. Formal
requirements analysis can solidify engineers’ confidence in the expressed specifi-
cation. Our work is concerned with ensuring requirements consistency for system
components, as a pre-requisite for subsequent system-level analysis. In partic-
ular, we focus on the notion of realizability : a realizable set of requirements
guarantees that an implementation exists, such that it always behaves in a man-
ner consistent with the specification, no matter what input it receives from its
environment. The notion of realizability, first described as implementability by
Pnueli and Rosner [47], has since then shaped an entire research area over the
specification and synthesis of reactive systems.

This paper presents the realizability analysis framework that we have devel-
oped as part of NASA’s open source tool FRET [3] for writing, understanding,
and formalizing requirements. FRET is designed with a strong focus on usabil-
ity, and is used by several NASA projects to explore the benefits of writing

Dimitra Giannakopoulou contributed to this work prior to joining AWS.
This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13372, pp. 490–504, 2022.
https://doi.org/10.1007/978-3-031-13188-2_24

https://doi.org/10.5281/zenodo.6512113
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13188-2_24&domain=pdf
http://orcid.org/0000-0001-7013-1100
https://doi.org/10.1007/978-3-031-13188-2_24


Capture, Analyze, Diagnose: Realizability Checking of Requirements 491

requirements that can be processed by formal analysis tools [10,17,42,45]. Addi-
tionally, FRET has been used by external (to NASA) industrial and research
teams, e.g., for the formalization of aircraft engine controller requirements [19].
FRET’s realizability framework has two main goals: 1) to implement efficient algo-
rithms for checking realizability, and 2) to provide user support in understanding
and correcting sources of unrealizability. With these features, FRET provides an
end-to-end solution to capturing, analyzing, and diagnosing requirements.

FRET’s realizability framework provides a user-friendly interface for analyz-
ing the requirements of system components. We have designed a graphic environ-
ment, in which the user can observe a (potentially) decomposed version of the
specification that is sound with respect to realizability, as well as further dive into
the task of diagnosing unrealizable requirements. Compositional analysis is based
on our theoretical framework for checking realizability of a global specification
through smaller, more tractable parts [25,43]. The diagnosis process is based on
the theoretical work by Könighofer et al. [33,34] on generating minimal conflicts of
unrealizability. We adjusted the diagnosis algorithm to support the discovery of all
minimal conflicts in a contract, accompanied by a counterexample of unrealizabil-
ity. The computed artifacts can be visualized as an interactive diagram that depicts
the dependencies between requirements and conflicts. Counterexample traces that
originate from these conflicts can also be simulated to enhance the understanding
of unrealizability sources. For the analysis, we have integrated in FRET state-of-
the-art tools with respect to realizability checking modulo infinite theories.

In particular, the contributions of this work are:

– The design and implementation of a realizability checking framework in
FRET that tightly integrates the JKind [23] and Kind 2 [35] analysis tools;

– a diagnosis feature for unrealizability that returns all minimal conflicts and
their counterexamples in an easy-to-use, graphical user interface;

– the extension of the simulator component in FRET, to be used for the sim-
ulation of conflicting requirements in unrealizable specifications; and

– improvements of the algorithms in our in-house fork of the JKind model
checker, following recent work from the Kind 2 and GenSys [48] tools.

2 Related Work

Table 1 provides a comparison between prominent requirements specification
tools that support realizability checking with respect to various aspects, such
as support for liveness properties, specification decomposition, algorithms.

Spectra Tools [37] and RATSY [8] are requirements specification tools for
reactive synthesis over the General Reactivity of Rank 1 (GR(1)) fragment of
LTL. The GR(1) fragment is particularly appealing, because it subsumes a subset
of requirements that may appear in real world problems, adheres to the popular
Assume-Guarantee paradigm, and a polynomial-time synthesis algorithm exists
for it [9,46]. Both tools are limited to finite-state problems, and provide the abil-
ity to diagnose unrealizable specifications, primarily through the computation
of minimal unrealizable cores [33,40] and counterstrategy synthesis, where an



492 A. Katis et al.

Table 1. Comparison of requirements specification tools w.r.t. realizability checking.

Tool F
in
it
e
St
at
e

In
fin
it
e
St
at
e

D
ec
om

po
si
ti
on

L
iv
en
es
s

U
nr
ea
liz
ab
le

C
or
es

A
lg
or
it
hm

s

B
ac
ke
nd

O
th
er

fe
at
ur
es

Spectra ✔ ✘ ✘ ✔ ✔
BDD-based

fixpoint

CUDD

+

JTLV

Well-separation,

Vacuity Checking,

Counterstrategies

SpeAR ✔ ✔ ✘ ✘ ✘ k -induction JKind N/A

AGREE ✔ ✔ ✘ ✘ ✘ k -induction JKind N/A

RATSY ✔ ✘ ✘ ✔ ✔
BDD-based

fixpoint

CUDD+

NuSMV
Counterstrategies

EARS-CTRL ✔ ✘ ✘ ✘ ✘
BDD-based

fixpoint
autoCode4 N/A

FRET ✔ ✔ ✔ ✘ ✔
k -induction,

SMT-based fixpoint

JKind,

Kind 2

Simulation of

conflicting

requirements

implementation for the environment is generated, such that its actions always
lead to the violation of the specification [34,39]. Furthermore, Spectra Tools
provide the ability to repair unrealizable specifications [38].

SpeAR [22] and AGREE [14] are tools developed at Collins Aerospace for
the purpose of requirements specification and analysis. Realizability checking is
provided as a feature in both tools with limited support. Both tools depend on
JKind’s k -induction algorithm for realizability checking, which supports infinite-
state problems, but is not sound with respect to unrealizable results [24].

EARS-CTRL [36] is yet another requirements specification platform that
enables analysis of requirements written in Easy Approach to Requirements
Syntax (EARS) [41]. Its realizability checking implementation relies upon
autoCode4 [13], and is limited to the GXW subset of LTL [12]. Similar to Spectra
Tools and RATSY, its analysis is limited to finite-state problems.

FRET’s realizability-checking framework encapsulates desirable features of
the aforementioned tools into an interface that is designed for users of vary-
ing backgrounds in formal methods. Additionally, it is the only requirements
specification tool that provides a powerful decomposition approach to help with
analysis performance [25,43]. FRET’s realizability framework is powered by the
algorithms in JKind and Kind 2. As such, it can analyze requirements that
are as expressive as arbitrary discrete past-time metric LTL (pmLTL) formulas,
and which may involve arithmetic expressions over the Linear Integer and Real
Arithmetic SMT-LIB logics [7]. In practice, the framework targets analysis of
formulas corresponding to requirements written in FRETish, as presented in the
next section. FRETish requirements correspond to templates that form only a
subset of all pmLTL formulas. As long as future FRETish extensions can be
translated into pmLTL, analysis will be supported by the realizability backend.

3 The FRETish Language

In FRET, requirements are written in a restricted natural language called
FRETish [27]. FRET formalizes FRETish requirements in pmLTL and then



Capture, Analyze, Diagnose: Realizability Checking of Requirements 493

Table 2. Two FSM requirements in FRETish and pmLTL from Katis et al. [32].

[FSM-006]
FSM shall for 5 ticks satisfy (state = 2 & standby & good) => STATE = 3

H ((O[<=5] (! (Y TRUE))) -> (state = 2 & standby & good) -> STATE = 3

[FSM-007]

FSM shall within 5 ticks satisfy (state = 2 & supported & good) => STATE = 0

H ((H (! (state = 2 & supported & good) -> STATE = 0)) -> (O[<5] (! (Y

TRUE))))

into Lustre. A FRETish requirement is described using up to six distinct fields
(the * symbol designates mandatory fields): 1) scope specifies the time intervals
where the requirement is enforced, 2) condition is a Boolean expression that
triggers the response to occur at the time the expression’s value becomes true,
or is true at the beginning of the scope interval, 3) component* is the system
component that the requirement is levied upon, 4) shall* is used to express that
the component’s behavior must conform to the requirement, 5) timing specifies
when the response shall happen, subject to the constraints defined in scope and
condition and 6) response* is the Boolean expression that the component’s
behavior must satisfy.

FRETish provides 8 scopes: global , in, before, after , notin, only in, only
before, and only after . The scope global means always; the others are with respect
to when the system is in a mode or satisfies a Boolean expression. For example,
In mode M means the requirement is enforced when the system is in mode M, as
determined by the Boolean variable M. Also allowed for scope in place of a single
Boolean variable is a Boolean expression, except for in which in the expression
case is written with while; e.g., While vehicle mode = hover . In FRETish, the
optional condition field is introduced by the words upon, when, or if , which
are synonymous in FRETish, or the word unless, which is the same as when
! . FRETish provides 10 timings: immediately , at the next timepoint , always,
eventually , never , for N time steps, within N time steps, after N time steps,
until bool expr, and before bool expr. When the scope is omitted it is taken as
global ; when the condition is omitted, it is taken as true; when the timing is
omitted, it is taken as eventually . If we consider the condition being omitted
as a separate case, there are 8 × 2 × 10 = 160 possible combinations of 〈scope,
condition, timing〉, each formalized as a distinct pmLTL formula template. The
templates are generated by an algorithm that has been formally proven to gen-
erate formalizations with the intended semantics [15].

Boolean expressions can use the standard logical connectives (!, &, |) and can
involve arithmetic relations (=,!=,<,<=,>,>=) and operators (+,−,∗,/) over integer
and real variables. There are two predefined predicates preInt and preReal that
refer to previous values: the expression preInt(init, n), for integer expression n,
returns the value of n at the previous timepoint; if at the beginning of the trace
where there is no previous value, then the value of init is returned. Currently,
FRETish does not allow arbitrary nesting of temporal operators, e.g. “In mode
m, before q the system shall . . .”. Timed operators with intermediate bounds are
also not currently expressible; e.g., the equivalent of H[i,j] p, where i �= 0.



494 A. Katis et al.

Fig. 1. Implementation views for realizability checking in FRET.

For the remainder of the paper we use a running example, namely Finite
State Machine (FSM), to demonstrate the various aspects of our framework.
FSM contains 13 requirements for an abstracted version of an advanced autopi-
lot system, and is part of the Lockheed-Martin Cyber-Physical Challenge Prob-
lems [18,32,42]. The requirements capture safety expectations with regards to
the autopilot system’s state transitions. Table 2 contains two FSM requirements
written in FRETish and their pmLTL formulas, which are generated by FRET.

4 Implementation

Figure 1a shows the architectural components of FRET that communicate with
or belong to the Realizability Analysis framework.1 Grayed components illustrate
the contributions of this paper. The asterisks in Simulator and JKind indicate
that their existing implementation and features were considerably extended for
this work. Arrows show the flow of data between components. All components are
implemented in JavaScript using the React, Material-UI and D3 libraries [2,5,6].

FRET requirements are written using the Editor/Elicitor component, which
also provides semantic explanations in various forms to assist users to clarify sub-
tle semantic issues. The Simulator component provides an interactive visualizer
based on graphical signal representation. Given a FRET requirement, it shows

1 The FRET architecture is described in previous work by Giannakopoulou et al. [26].



Capture, Analyze, Diagnose: Realizability Checking of Requirements 495

temporal traces of each of the variables involved as well as the valuation of the
requirement for each point in time. The user can interactively modify the input
signals, which results in automatically updating the valuation of the requirement
and thus, visually inspecting the temporal behavior of the requirement. As part
of this work, we extended the Simulator with the following features: 1) the abil-
ity to import and export simulation traces, 2) support for numerical expressions,
and 3) simultaneous visualization of multiple requirements. We integrated the
Simulator in our realizability analysis workflow, to provide the ability to inspect
and interact with counterexample traces in unrealizable specifications.

The Variable Mapping component collects essential information provided by
the user regarding the variables of the requirements, e.g., data types and corre-
spondence to system inputs or outputs. Realizability Analysis consists of three
sub-components. The Realizability Checking Engine is responsible for checking
realizability of requirement sets either monolithically or compositionally. Given
an unrealizable set of requirements, the Realizability Diagnosis Engine imple-
ments the algorithm proposed by Könighofer et al. [33,34] to compute all min-
imal unrealizable sets of requirements, called minimal unrealizable cores. For
each such core, a counterexample trace is computed that depicts a case under
which the environment can lead the system into a deadlocking state. For the
computation of minimal conflicts, our implementation uses the delta-debugging
algorithm [49]. The Visualizer implements the user interface that displays anal-
ysis results as well as diagnostic results in the case of unrealizable specifications.
These results are typically hard to digest in their original form. As such, the visu-
alizer translates the information into an interactive diagram that allows the user
to focus on unrealizable cores and inspect or simulate conflicting requirements.

We have integrated into FRET the JKind [23] and Kind 2 [11] tools for
checking realizability. We actively maintain a fork of JKind [30], because the
original repository lacks an implementation for the fixpoint algorithm by Katis
et al. [31]. Formerly, the fork implementation relied on the AE-VAL solver’s
Model-Based Projection algorithm to perform quantifier elimination over forall-
exists formulas [20,21]. As part of this work, we have improved its performance
by utilizing Z3’s [16] quantifier elimination tactics. For instance, for the analysis
of FSM the version of JKind using AE-VAL took 1524.82 s [43], whereas our
optimization through Z3 dramatically decreased the time to 0.6 s.

The flow of usage of our framework is as follows (Fig. 1b). Once requirements
are written in FRETish and variable information is provided, the user may start
the analysis. Realizability can be performed through two different modes: 1)
monolithic and 2) compositional, i.e., through the computation of independent
sub-specifications, namely connected components. Each connected component
is an undirected dependency graph with requirements as vertices and system
outputs as edges. Compositional analysis has been proved faster and more prone
to return result, compared to the monolithic option [43]. At the next step, the
specification is translated to Lustre [29] and fed into JKind and Kind 2 to
perform realizability checking. If the specification is unrealizable, the user can
diagnose it using the generated counterexamples, and the FRET simulator.



496 A. Katis et al.

5 Features Walkthrough

We next demonstrate the features of framework through our running example.

Fig. 2. The realizability checking interface in FRET.

Realizability Checking. Figure 2 provides a snapshot of the overall graphical
user interface (GUI) for realizability checking in FRET. As soon as the system
component is selected, its connected components (CC) are computed. In the case
of FSM, three CCs are identified. The GUI provides a focused view for each one
(‘CCX’ tabs, with X being the corresponding index value), where the user can
see which requirements participate in each CC via a table that dynamically grays
out unrelated requirements. As soon as the CCs are computed, the realizability
checking options become available, i.e., compositional and monolithic.

To check realizability, the user clicks the ‘Check’ button. Depending on the
input specification, four possible answers may be given i.e., the specification is
realizable, unrealizable, inconsistent, or the analysis is inconclusive (“unknown”
result). Figure 2 shows the results of a compositional check for FSM, where con-
nected components CC0 and CC1 are unrealizable, and CC2 is realizable.

Diagnosing Unrealizability. The compositional results above suggest that
the FSM requirements are, as a whole, unrealizable. The next step in the process
is to try and understand the source(s) of unrealizability. Since only CC0 and CC1
are unrealizable, it suffices to diagnose these independently. Following Fig. 2, the
user selects the ‘CC0’ tab and clicks the ‘Diagnose’ button. The computation of
minimal unrealizable cores kicks in, as outlined in Sect. 4, identifying 4 cores.

VisualizingUnrealizability. The raw artifacts produced by realizability check-
ing and diagnosis are difficult for the users to digest. Therefore, the ability to
visualize data in a user-friendly format is necessary, especially for unrealizable



Capture, Analyze, Diagnose: Realizability Checking of Requirements 497

specifications. The core of our proposed solution to visualize unrealizability relies
on the use of chord diagrams [1]. A chord diagram is a graphic representation of
interrelationships between data, where each individual element is placed along
the perimeter of a circular construct and relationships are depicted through edges
between elements. An important feature of chord diagrams is the ability to main-
tain a clear representation of dependencies through hierarchical edge bundling [28],
even when the size of data is large.

Fig. 3. (a) Chord Diagram for connected component CC0 in FSM. (b) Chord Diagram
for Infusion Manager. (c) Focused view (one core) for Infusion Manager. (d) Focused
view (one requirement) for Infusion Manager.

Figure 3a shows the chord diagram that is generated for connected component
CC0 in FSM. Requirements and conflicts (i.e., unrealizable cores) define the input
data to the chord diagram, which depicts each set using a distinguishable arc on
the circular pattern (left and right arc, respectively). Chords, i.e., edges, connect
each requirement to the conflicts that it appears in, with each edge being assigned
a distinct color that matches the color-coded conflicts.

Table 3. Counterexample for conflicting
requirements [FSM-006] and [FSM-007].

Variable Variable Step Step Step Step Step Step
name type 0 1 2 3 4 5
good bool true true true true true true

standby bool false false false false false true
state int 2 2 2 2 2 2

supported bool true true true true true true
STATE int 1 4 5 6 7 0

FSM-006 bool true true true true true false
FSM-007 bool true true true true true true

While hierarchical edge bundling
helps us maintain a clear total view,
it may be the case that the engi-
neer would like to focus on a partic-
ular subset of dependencies, related
to either a particular requirement
or a specific conflict. We enable
this through interactive means where
parts of the interface that are not



498 A. Katis et al.

related to the selected element can be filtered out. Figure 2 shows an instance
where the user has already interacted with the chord diagram for CC0, focusing
on the unrealizable core containing [FSM-006] and [FSM-007]. The table of
requirements is dynamically sorted so that relevant requirements appear on the
top, and are outlined with the color of the corresponding conflict. Additionally, a
counterexample witnessing the unrealizability of the conflict is displayed. Table 3
shows the counterexample for requirements [FSM-006] and [FSM-007].

Fig. 4. Simulation of conflicting requirements [FSM-006] and [FSM-007].

Simulating Conflicting Requirements. Our experience with counterexam-
ples has indicated that a single execution trace is not enough to truly understand
interactions between requirements. Therefore, we provide the ability for the user
to interact with the set of conflicting requirements by using the FRET simulator,
which we have substantially extended to meet our needs in visualizing conflicting
requirements. Figure 4 shows how the counterexample (Table 3) for [FSM-006]
and [FSM-007] is displayed in the simulator window: each line shows the values
of the input signals as well as the valuation of each of the requirements.

The counterexample in Table 3 is not the only witness to the unrealizability of
these requirements. Another example is a trace where requirement [FSM-006]
holds for 5 consecutive ticks, leading to a violation of requirement [FSM-007]
at the last tick, assuming that the antecedent of the latter was true at least once
within the last 5 ticks. By modifying the values of the input variables, a user
may identify additional witnesses to unrealizability causes. Combined with the
ability to store and review traces, the simulator makes for an integral element
towards understanding and repairing unrealizable specifications.



Capture, Analyze, Diagnose: Realizability Checking of Requirements 499

6 Case Studies

6.1 Lift Plus Cruise Aircraft

This study reports preliminary results on requirements for an autonomous ‘lift
plus cruise’ concept aircraft.2 This aircraft has a hovering vehicle mode, using
its lifting rotors. From the hover mode, it can transition to a flying forward
mode, eventually using its rear pusher propeller, and where lift is provided by
the wing instead of the lifting rotors. Inbetween the hover and forward modes is
a transitional mode which is a phase of concern for the aircraft engineers.

Table 4. FRETish requirements for Lift Plus Cruise from Katis et al. [32].

[LPC01]
The vehicle shall immediately satisfy vehicle mode = hover

H ((! (Y TRUE)) -> vehicle mode = hover)

[LPC02]
While vehicle mode = hover, the vehicle shall never satisfy gndspeed > 20.0

H ((vehicle mode = hover) -> (! (gndspeed > 20.0)))

[LPC03]

While vehicle mode = hover, the vehicle shall eventually satisfy ! rear propeller

(H (((! (vehicle mode = hover)) & (Y (vehicle mode = hover))) -> (Y (!

((! (! rear propeller)) S ((! (! rear propeller)) & ((vehicle mode =
hover) & ((! (Y TRUE)) | (Y (! (vehicle mode = hover))))))))))) & (((!

((! (vehicle mode = hover)) & (Y (vehicle mode = hover)))) S ((! ((!

(vehicle mode = hover)) & (Y (vehicle mode = hover)))) & ((vehicle mode

= hover) & ((! (Y TRUE)) | (Y (! (vehicle mode = hover))))))) -> (! ((!

(! rear propeller)) S ((! (! rear propeller)) & ((vehicle mode = hover) &

((! (Y TRUE)) | (Y (! (vehicle mode = hover)))))))))

[LPC04]

The vehicle shall always satisfy if (preInt(hover,vehicle mode) = hover & pre-
Real(0.0,gndspeed) > 15.0) then vehicle mode = transitional

(H (((preInt(hover,vehicle mode) = hover) & (preReal(0.0,gndspeed) >

15.0)) -> vehicle mode = transitional))

[LPC09]

The vehicle shall always satisfy if (preInt(hover,vehicle mode) = transitional & pre-
Real(0.0,airspeed) > 100.0) then vehicle mode = forward

(H (((preInt(hover,vehicle mode) = transitional) & (preReal(0.0,airspeed)

> 100.0)) -> (vehicle mode = forward)))

As of this paper, 11 requirements have been formalized in FRET [32]. A
subset is shown in Table 4, describing the transition relations and constraints
among various vehicle modes and vehicle motion. Requirement [LPC01] states
that the vehicle starts in hover mode. Requirement [LPC04] specifies that if
the previous mode is hover, and ground speed is greater than 15 knots, then the
vehicle enters transitional mode. Requirement [LPC09] states the conditions for
transitioning to forward mode. Variables hover, transitional and forward are
specified as distinct integer constants. All of the other variables, e.g., airspeed,
rear propeller, are outputs.

2 We acknowledge discussions with John Kaneshige, Michael Feary and the Revolu-
tionary Vertical Lift Technology team.



500 A. Katis et al.

The first complete set of FRETish requirements raised concerns, as realiz-
ability checking yielded non-sensical counterexamples, where at least one require-
ment between [LPC04] and [LPC09] was violated in the initial state. We
quickly identified the issue: both requirements were written using a version of
the ‘previous’ operator pre which is undefined at the initial state. We addressed
this by introducing the preInt and preReal operators, which at the initial state
return the value of their first argument.

The resulting 11 requirements are in one CC, so we ran analysis in mono-
lithic mode. The requirements are shown to be realizable in about 8 s. As a san-
ity check for realizability, we experimented with various subsets of the original
requirements, as well as adding contradictions. A notable example was omitting
[LPC01], while modifying [LPC03] so that in hover mode, the vehicle must fly
faster than 30 knots. This experiment, unexpectedly to us, led to realizability.
Further inspection quickly revealed how omitting [LPC01] allows the controlled
variable vehicle mode to never enter the hover mode. Including [LPC01] led
to unrealizability with minimal conflict [LPC01], [LPC02] and [LPC03].

6.2 Generic Infusion Pump

This study explores 12 formalized requirements, proven unrealizable by Gacek et
al. [24], of the Infusion Manager subcomponent for a Generic Patient Controlled
Analgesic (GPCA) infusion pump [44]. The GPCA system originates from the
Generic Infusion Pump Research project, a joint effort to identify best software
engineering practices in the development of medical devices [4].

Taking advantage of FRETish’s support for system modes (scope field),
we derived 26 requirements, as opposed to the original 12 [32]. The increased
number is a direct product of the declaration of 8 distinct modes, stemming from
the system variable Current System Mode, which was originally of integer type.
For example, requirement G1 from Gacek et al.:

G1 def= (Current System Mode’ ≥ 0) ∧ (Current System Mode’ ≤ 8) ∧
(Current System Mode’ = 0 ⇒ Commanded Flow Rate’ = 0) ∧
(Current System Mode’ = 1 ⇒ Commanded Flow Rate’ = 0)

was rewritten into three requirements: G11 ensures that the system is in at least
one of the 8 modes at any time, while requirements G12 and G13 ensure that the
pump’s flow rate is equal to 0 when the system is in mode 0 or 1, respectively. We
additionally introduced requirements to ensure mutual exclusion between modes,
something that was not needed with a single mode variable. We used Kind 2 to
show equivalence between our requirements and the original specification.

Gacek et al. had already shown that the Infusion Manager requirements are
unrealizable, verbally attributing unrealizability to a conflict between G1 and
requirement G7:

G7 def= (System On ∧ Highest Level Alarm = 3) ⇒
(Commanded Flow Rate’ = Flow Rate KVO)



Capture, Analyze, Diagnose: Realizability Checking of Requirements 501

The authors claimed that the requirements are unrealizable because they dis-
agree on the value of output Commanded Flow Rate under specific conditions.
However, FRET’s diagnostic procedure provided a different answer, identifying
8 minimal unrealizable cores. Furthermore, the assumed conflict between require-
ments G1 and G7 does not really exist. While the two requirements do disagree
on the value for the system output Commanded Flow Rate under specific cir-
cumstances, a realization still exists: one which would never exercise modes 0 or
1! Nevertheless, the report by Gacek et al. was still on the right track, as part of
G1 (FRETish requirement G13) and G7 participate in at least one minimal
unrealizable core with requirement G11, the latter enforcing the system to enter
mode 1, given specific system input values:

G11 def= (System On ∧ Configured < 1) ⇒ Current System Mode’ = 1

Figure 3b shows the chord diagram for Infusion Manager, depicting the 8
minimal unrealizable cores. Figures 3c and 3d show resulting states of the dia-
gram after the user interacted with it in order to focus on a specific core, or a
specific requirement, respectively.

7 Conclusion

We presented the realizability analysis framework in FRET and demonstrated
its interactive GUI, which helps users diagnose unrealizable specifications
through visualizations and simulation of conflicts. The framework employs state-
of-the-art analysis algorithms that support infinite theories. In the future, we
plan to extend the tool with recommendations in the form of environment
assumptions.

References

1. Chord diagram. https://www.data-to-viz.com/graph/chord.html
2. D3.js: Data-driven documents. https://d3js.org/
3. FRET: Formal requirements elicitation tool. https://tinyurl.com/ycxe9fv4
4. Generic infusion pump research project. https://rtg.cis.upenn.edu/gip/
5. Material-UI. https://mui.com/
6. React: a javascript library for building user interfaces. https://reactjs.org/
7. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library

(SMT-LIB) (2016). www.SMT-LIB.org
8. Bloem, R., et al.: RATSY – a new requirements analysis tool with synthesis. In:

Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 425–429.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 37

9. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive
(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

10. Bourbouh, H., et al.: Integrating formal verification and assurance: an inspection
rover case study. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I.
(eds.) NFM 2021. LNCS, vol. 12673, pp. 53–71. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-76384-8 4

https://www.data-to-viz.com/graph/chord.html
https://d3js.org/
https://tinyurl.com/ycxe9fv4
https://rtg.cis.upenn.edu/gip/
https://mui.com/
https://reactjs.org/
www.SMT-LIB.org
https://doi.org/10.1007/978-3-642-14295-6_37
https://doi.org/10.1007/978-3-030-76384-8_4
https://doi.org/10.1007/978-3-030-76384-8_4


502 A. Katis et al.

11. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 29

12. Cheng, C.-H., Hamza, Y., Ruess, H.: Structural synthesis for GXW specifications.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 95–117.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 6

13. Cheng, C.-H., Lee, E.A., Ruess, H.: autoCode4: structural controller synthesis.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 398–404.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 23

14. Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Compo-
sitional verification of architectural models. In: Goodloe, A.E., Person, S. (eds.)
NFM 2012. LNCS, vol. 7226, pp. 126–140. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28891-3 13

15. Conrad, E., Titolo, L., Giannakopoulou, D., Pressburger, T., Dutle, A.: A compo-
sitional proof framework for FRETish requirements. In: Popescu, A., Zdancewic,
S. (eds.) CPP 2022, pp. 68–81. ACM (2022). https://doi.org/10.1145/3497775.
3503685

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

17. Dutle, A., et al.: From requirements to autonomous flight: an overview of the
monitoring ICAROUS project. In: Luckuck, M., Farrell, M. (eds.) FMAS 2020.
EPTCS, vol. 329, pp. 23–30. Open Publishing Association (2016). https://doi.
org/10.4204/EPTCS.329.3

18. Elliott, C.: An example set of cyber-physical V&V challenges for S5, Lock-
heed Martin Skunk Works. In: Safe & Secure Systems and Software Sympo-
sium (S5) 2016, AFRL (2016). http://mys5.org/Proceedings/2016/Day 2/2016-
S5-Day2 0945 Elliott.pdf

19. Farrell, M., Luckcuck, M., Sheridan, O., Monahan, R.: FRETting about require-
ments: formalised requirements for an aircraft engine controller. In: Gervasi, V.,
Vogelsang, A. (eds.) Requirements Engineering: Foundation for Software Quality.
REFSQ 2022. LNCS, vol. 13216. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-98464-9 9

20. Fedyukovich, G., Gurfinkel, A., Gupta, A.: Lazy but effective functional synthe-
sis. In: Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 92–113.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11245-5 5

21. Fedyukovich, G., Gurfinkel, A., Sharygina, N.: Automated discovery of simulation
between programs. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.)
LPAR 2015. LNCS, vol. 9450, pp. 606–621. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48899-7 42

22. Fifarek, A.W., Wagner, L.G., Hoffman, J.A., Rodes, B.D., Aiello, M.A., Davis,
J.A.: SpeAR v2.0: formalized past LTL specification and analysis of requirements.
In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp.
420–426. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 30

23. Gacek, A., Backes, J., Whalen, M., Wagner, L., Ghassabani, E.: The JKind model
checker. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982,
pp. 20–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 3

24. Gacek, A., Katis, A., Whalen, M.W., Backes, J., Cofer, D.: Towards realizability
checking of contracts using theories. In: Havelund, K., Holzmann, G., Joshi, R.
(eds.) NFM 2015. LNCS, vol. 9058, pp. 173–187. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-17524-9 13

https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1007/978-3-319-41528-4_6
https://doi.org/10.1007/978-3-662-54577-5_23
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1145/3497775.3503685
https://doi.org/10.1145/3497775.3503685
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.4204/EPTCS.329.3
https://doi.org/10.4204/EPTCS.329.3
http://mys5.org/Proceedings/2016/Day_2/2016-S5-Day2_0945_Elliott.pdf
http://mys5.org/Proceedings/2016/Day_2/2016-S5-Day2_0945_Elliott.pdf
https://doi.org/10.1007/978-3-030-98464-9_9
https://doi.org/10.1007/978-3-030-98464-9_9
https://doi.org/10.1007/978-3-030-11245-5_5
https://doi.org/10.1007/978-3-662-48899-7_42
https://doi.org/10.1007/978-3-662-48899-7_42
https://doi.org/10.1007/978-3-319-57288-8_30
https://doi.org/10.1007/978-3-319-96142-2_3
https://doi.org/10.1007/978-3-319-17524-9_13
https://doi.org/10.1007/978-3-319-17524-9_13


Capture, Analyze, Diagnose: Realizability Checking of Requirements 503

25. Giannakopoulou, D., Katis, A., Mavridou, A., Pressburger, T.: Compositional
Realizability Checking within FRET. NASA Technical Memorandum, March 2021

26. Giannakopoulou, D., Pressburger, T., Mavridou, A., Rhein, J., Schumann, J., Shi,
N.: Formal requirements elicitation with FRET. In: Mehrdad Sabetzadeh, M.,
Vogelsang, A., et al. (eds.) REFSQ 2020. CEUR Workshop Proceedings, vol. 2584
(2020)

27. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Automated
formalization of structured natural language requirements. Inf. Softw. Technol.
137, 106590 (2021)

28. Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hier-
archical data. IEEE Trans. Visual. Comput. Graph. 12(5), 741–748 (2006)

29. Jahier, E., Raymond, P., Halbwachs, N.: The Lustre V6 reference manual
30. Katis, A.: JKind fork. https://github.com/andreaskatis/jkind-1
31. Katis, A., et al.: Validity-guided synthesis of reactive systems from assume-

guarantee contracts. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol.
10806, pp. 176–193. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89963-3 10

32. Katis, A., Mavridou, A., Giannakopoulou, D., Pressburger, T.: Realizability check-
ing of requirements in FRET. NASA Technical Memorandum, June 2021

33. Könighofer, R., Hofferek, G., Bloem, R.: Debugging unrealizable specifications with
model-based diagnosis. In: Barner, S., Harris, I., Kroening, D., Raz, O. (eds.) HVC
2010. LNCS, vol. 6504, pp. 29–45. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19583-9 8

34. Könighofer, R., Hofferek, G., Bloem, R.: Debugging formal specifications: a prac-
tical approach using model-based diagnosis and counterstrategies. Int. J. Softw.
Tools Technol. Transfer 15(5–6), 563–583 (2013)

35. Larraz, D., Tinelli, C.: Realizability checking of contracts with Kind 2 (2022).
https://doi.org/10.48550/ARXIV.2205.09082

36. Lúcio, L., Rahman, S., Cheng, C.-H., Mavin, A.: Just formal enough? Automated
analysis of EARS requirements. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM
2017. LNCS, vol. 10227, pp. 427–434. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57288-8 31

37. Maoz, S., Ringert, J.O.: Spectra: a specification language for reactive systems.
Softw. Syst. Model. 20(5), 1553–1586 (2021)

38. Maoz, S., Ringert, J.O., Shalom, R.: Symbolic repairs for GR(1) specifications. In:
Atlee, J.M., Bultan, T, Whittle, J. (eds.) ICSE 2019, pp. 1016–1026. IEEE/ACM
(2019). https://doi.org/10.1109/ICSE.2019.00106

39. Maoz, S., Sa’ar, Y.: Counter play-out: executing unrealizable scenario-based spec-
ifications. In: Notkin, D., Cheng, B.H.C., Pohl, K. (eds.) ICSE 2013, pp. 242–251.
IEEE (2013). https://doi.org/10.1109/ICSE.2013.6606570

40. Maoz, S., Shalom, R.: Unrealizable cores for reactive systems specifications. In:
ICSE 2021, pp. 25–36. IEEE (2021). https://doi.org/10.1109/ICSE43902.2021.
00016

41. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements
syntax (EARS). In: RE (2009)

42. Mavridou, A., et al: The ten Lockheed Martin cyber-physical challenges: formal-
ized, analyzed, and explained. In: RE (2020)

43. Mavridou, A., Katis, A., Giannakopoulou, D., Kooi, D., Pressburger, T., Whalen,
M.W.: From partial to global assume-guarantee contracts: compositional realiz-
ability analysis in FRET. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM

https://github.com/andreaskatis/jkind-1
https://doi.org/10.1007/978-3-319-89963-3_10
https://doi.org/10.1007/978-3-319-89963-3_10
https://doi.org/10.1007/978-3-642-19583-9_8
https://doi.org/10.1007/978-3-642-19583-9_8
https://doi.org/10.48550/ARXIV.2205.09082
https://doi.org/10.1007/978-3-319-57288-8_31
https://doi.org/10.1007/978-3-319-57288-8_31
https://doi.org/10.1109/ICSE.2019.00106
https://doi.org/10.1109/ICSE.2013.6606570
https://doi.org/10.1109/ICSE43902.2021.00016
https://doi.org/10.1109/ICSE43902.2021.00016


504 A. Katis et al.

2021. LNCS, vol. 13047, pp. 503–523. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-90870-6 27

44. Murugesan, A., Sokolsky, O., Rayadurgam, S., Whalen, M., Heimdahl, M., Lee,
I.: Linking abstract analysis to concrete design: a hierarchical approach to verify
medical CPS safety. In: ICCPS 2014, pp. 139–150. IEEE (2014). https://doi.org/
10.1109/ICCPS.2014.6843718

45. Perez, I., Mavridou, A., Pressburger, T., Goodloe, A., Giannakopoulou, D.: Auto-
mated translation of natural language requirements to runtime monitors. In: Fis-
man, D., Rosu, G. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems. TACAS 2022. LNCS, vol. 13243. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99524-9 21

46. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2006). https://doi.org/10.1007/11609773 24

47. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989, pp.
179–190. ACM (1989). https://doi.org/10.1145/75277.75293

48. Samuel, S., D’Souza, D., Komondoor, R.: GenSys: a scalable fixed-point engine for
maximal controller synthesis over infinite state spaces. In: ESEC/FSE 2021, pp.
1585–1589. ACM (2021). https://doi.org/10.1145/3468264.3473126

49. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng. 28(2), 183–200 (2002)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-90870-6_27
https://doi.org/10.1007/978-3-030-90870-6_27
https://doi.org/10.1109/ICCPS.2014.6843718
https://doi.org/10.1109/ICCPS.2014.6843718
https://doi.org/10.1007/978-3-030-99524-9_21
https://doi.org/10.1007/978-3-030-99524-9_21
https://doi.org/10.1007/11609773_24
https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/3468264.3473126
http://creativecommons.org/licenses/by/4.0/

	Capture, Analyze, Diagnose: Realizability Checking Of Requirements in FRET
	1 Introduction
	2 Related Work
	3 The FRETish Language
	4 Implementation
	5 Features Walkthrough
	6 Case Studies
	6.1 Lift Plus Cruise Aircraft
	6.2 Generic Infusion Pump

	7 Conclusion
	References




