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Abstract. Satisfiability Modulo Linear Integer Arithmetic, SMT (LIA)
for short, has significant applications in many domains. In this paper, we
develop the first local search algorithm for SMT (LIA) by directly operat-
ing on variables, breaking through the traditional framework. We propose
a local search framework by considering the distinctions between Boolean
and integer variables. Moreover, we design a novel operator and scoring
functions tailored for LIA, and propose a two-level operation selection
heuristic. Putting these together, we develop a local search SMT (LIA)
solver called LS-LIA. Experiments are carried out to evaluate LS-LIA on
benchmarks from SMTLIB and two benchmark sets generated from job
shop scheduling and data race detection. The results show that LS-LIA is
competitive and complementary with state-of-the-art SMT solvers, and
performs particularly well on those formulae with only integer variables.
A simple sequential portfolio with Z3 improves the state-of-the-art on
satisfiable benchmark sets of LIA and IDL benchmarks from SMT-LIB.
LS-LIA also solves Job Shop Scheduling benchmarks substantially faster
than traditional complete SMT solvers.

Keywords: SMT - Local Search - Linear Integer Arithmetic - Integer
Difference Logic

1 Introduction

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability
of a first order logic formula with respect to certain background theories. Inspired
by the great success of propositional satisfiability (SAT) solving, SMT attempts
to generalize the advances of satisfiability solvers from propositional logic to
fragments of first order logic. Typical theories supported by SMT include the
theories of integers, real numbers, lists, arrays and bit-vectors. The field of SMT
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has seen significant progress in the past two decades. SMT solvers have become
important formal verification engines, with applications in various domains.

In this paper, we focus on the theory of Linear Integer Arithmetic (LIA),
consisting of arithmetic atomic formulae in the form of ), a;,x; + ¢ > 0, where
<eE€ {=, <}, cand a;’s are rational numbers and x;’s are integer variables. More-
over, we are also interested in a popular fragment of LIA, namely Integer Dif-
ference Logic (IDL), consisting of arithmetic atomic formulae to constrain the
difference between pairs of integer variables in the form of a — b < k, where
a,b are integer variables and k is integer constant. The SMT problem with
the background theory of LIA and IDL, is to determine the satisfiability of the
Boolean combination of respective arithmetic atomic formulae and propositional
variables, and referred to as SMT (LIA) and SMT (IDL).

SMT (LIA) is important in software verification and automated reasoning,
since most programs use integer variables and perform arithmetic operation on
them [35]. Specifically, SMT (LIA) has various applications in automated termi-
nation analysis [16], sequential equivalence checking [34], and state reachability
checking under weak memory models [24]. SMT (IDL) has found applications
in problems with timing-related constraints [17], such as hardware models with
ordered data structures [23], stable models computing [30], and job shop schedul-
ing [40].

Much effort has been devoted to solving SMT (LIA) and SMT (IDL). The
most popular approach is the lazy approach [3,41], also known as DPLL(T)
[38], which is a central development of SMT. Many DPLL(T) solvers have been
developed for SMT (LIA) [7,19] and SMT (IDL) [31,37,47]. In this approach,
the formula is abstracted into a Boolean formula by replacing arithmetic atomic
formulae with fresh Boolean variables. A SAT solver is used to reason about the
Boolean structure and solve the Boolean formula, while a theory solver receives
assignments from the SAT solver and performs decision procedure to solve the
conjunctions of atomic subformulae, including consistency checking of the assign-
ments and theory-based deduction.

The effort in this approach is mainly devoted to producing more effective
theory solvers. Simplex-based linear arithmetic solvers that can be integrated
efficiently in the DPLL(T) framework were studied [19]. A simplex-based deci-
sion procedure that minimizes the sum of infeasibilities of constraints was pro-
posed [32]. A theory solver made use of layering and several heuristics to achieve
good performance [26]. A theory solver called SPASS-IQ was designed to effi-
ciently handle unbounded problems [6,8]. According to recent SMT Competi-
tions,! almost all state-of-the-art SMT (LIA) and SMT (IDL) solvers are based
on the lazy approach, including MathSATS5 [15], CVC5 [2], Yices2 [21], Z3 [18],
SMTInterpol [14] and SPASS-SATT [7].

The other approach is the eager approach, where the formula is reduced
to an equi-satisfiable Boolean formula and then solved by a SAT solver. This
approach works well for SMT (IDL). Typically, all intrinsic dependencies between
integer variables are computed and encoded as Boolean constraints. Encoding to

! https://smt-comp.github.io/.
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Boolean formula is done either by deriving adequate ranges for formula variables
(a.k.a. small domain encoding) [9,39,45], or by deriving all possible transitivity
constraints (a.k.a per-constraint encoding) [44]. A hybrid method combining the
strengths of two encoding scheme showed robust performance [43].

Local search is an incomplete method which plays an important role in many
combinatorial problems [28]. Local search algorithms move from solution to solu-
tion in the space of candidate solutions by applying local changes. It has been
successfully applied to Boolean Satisfiability (SAT) problem [1,4,12,13,33] and
is competitive with CDCL solvers on certain types of instances. However, very
limited effort has been devoted to local search for SMT. The idea of integrat-
ing local search solvers with theory solvers has been explored before, where a
local search SAT solver WalkSAT is used to solve the Boolean skeleton of the
SMT formula [26]. A pure local search solver [22] was proposed to solve SMT
on the theory of bit vectors directly on the theory level, by lifting the successful
techniques in local search SAT solvers to the SMT level. In [36], a precise prop-
agation based local search for SMT on the theory of bit vectors is proposed, by
introducing a notion of essential inputs to lift the concept of controlling inputs
from the bit-level to the word-level. We are not aware of any work on local search
solvers for SMT on integer arithmetic theories.

This work, for the first time, develops a local search solver for SMT (LIA),
which directly operates on both Boolean and integer variables, breaking through
the traditional approaches. We propose a local search framework, which switches
between two modes, namely Boolean mode and Integer mode. Each mode con-
sists of consecutive operations of the same type (either Boolean or integer).
Moreover, for the Integer mode, we propose a literal-level operator named crit-
ical move and a fine-grained scoring function named distance score which takes
into account the distance to truth of literals and distance to satisfaction of clauses.
A two-level heuristic is proposed to pick a critical move operation. By putting
these together, we develop a local search solver for SMT (LIA) called LS-LIA.

Experiments are conducted to evaluate LS-LIA on 4 benchmarks, includ-
ing QF_LIA and QF_IDL benchmarks from SMTLIB (excluding unsatisfiable
instances),? instances encoded from job shop scheduling (JSP) and instances
generated by data race detection system on a real world benchmark [29]. We
compare our solver with state of the art SMT solvers including Z3, CVC5,
Yices and MathSAT5. Experimental results show that LS-LIA is competitive
and complementary with state-of-the-art SMT solvers. Particularly, LS-LIA is
good at solving instances without Boolean variables, noting that a large portion
in SMTLIB (81.1% for LIA and 44.1% for IDL) belongs to this type. A simple
sequential portfolio with Z3 improves the state-of-the-art on satisfiable QF_LIA
and QF_IDL benchmarks from SMT-LIB. LS-LIA also solves Job Shop Schedul-
ing benchmarks substantially faster than traditional complete SMT solvers.

2 http://www.smt-lib.org/.
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2 Preliminary

Definition 1. Linear Integer Arithmetic (LIA): Let P = {p1,p2,...pn} be a set
of propositional (Boolean) variables and X = {x1,za...x,} be a set of integer-
valued variables. The linear integer arithmetic formulae are inductively defined.

1) p € P is a propositional atomic LIA formula.
2) >, a;x; >k is an arithmetic atomic LIA formulae, where e {=,<}, x; €
X, k, and a; are constant coefficients (rationals or integers).

3) If ¢ and @ are LIA formulae, so are ¥V ¢, ¥ A v and —.

In the above definition, we note that with ‘<’ and ‘=’, we other inequalities
can also be expressed. Specifically, we can express ZZL a;z; < k as Z? a;x; <
k—1, Z? a;x; > k as ﬁ(zzn(alxv) < k), Z? a;x; > k as Z?(—aixi) < (—k)
and (37 azz;) #kas (OF aw; < (k= 1)V =X (aixi) < k).

A popular fragment of linear integer arithmetic is call Integer Difference Logic
(IDL), where the arithmetic atomic formulae are in the form of z; —x; > k, where
i€ {=, <}, z;,2; € X and k is constant.

Ezample 1. A typical SMT (LIA) formula F: (p1 V(21 +2z2 < 2))A(p2V (3z3+
4daxg+525 = 2)V(—x9—23 < 3)), where X = {x1, 29,23, 24,25} and P = {p1, p2}
are the sets of integer-valued and propositional variables respectively.

A literal is an atomic formula, or the negation of an atomic formula. A clause
is the disjunction of a set of literals, and a formula in conjunctive normal form
(CNF) is the conjunction of a set of clauses. For an SMT (LIA) formula F, an
assignment « is a mapping X — Z and P — {false, true}, and a(z) denotes the
value of a variable x under a. A complete assignment is a mapping which assigns
to each variable a value. A literal is a true literal if it evaluates to true under
the given assignment, and otherwise it is a false literal. A clause is satisfied if
it has at least one true literal, and falsified if all literals in the clause are false.
A complete assignment is a solution to an SMT (LIA) formula if it satisfies all
the clauses.

When applying local search algorithms to solve a satisfiability problem, the
search space consists of all complete assignments, each of which is a candidate
solution. Typically, a local search algorithm starts from a complete assignment,
and iteratively modifies the assignment by changing the value of one variable,
to search for a satisfying assignment.

In local search, an operator defines how to modify the candidate solution.
When an operator is instantiated by specifying the variable to operate, we obtain
an operation. For example, a standard operator for SAT is flip, which modifies
the current assignment by changing the value of a Boolean variable, and flip(z1)
is an operation, where z; is a Boolean variable in the formula.

Given a formula F, the cost of an assignment «, denoted as cost(«), is the
number of falsified clauses under . In dynamic local search algorithms which
use clause weighting techniques, however, cost(a) denotes the total weight of all
falsified clauses under an assignment «. Given a formula and an assignment «,
an operation op is said decreasing if cost(a’) < cost(«), where o is the resulting
assignment by applying op to a.
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Algorithm 1: Local Search of Mode X

/* X can be Integer or Boolean */
while non_impr_steps < L x Px do
if « satisfies F' then return « if 3 decreasing X operations then

L op := a decreasing X operation

if fail to find decreasing X operation then
update clause weights;
op := an X operation from a random falsified clause containing X
literals;

[ B N N

7 perform op to modify «;

3 A Local Search Framework for SMT (LIA)

In this section, we introduce a local search framework for SMT (LIA), which
switches between integer operations and Boolean operations.

\ 2 r \ non_improve_steps>LXP;
|Initialization Integer Mode _| Boolean Mode I
\———————— non_improve_steps>LXP,

Fig.1. An SMT Local Search Framework

In the beginning, the algorithm generates a complete assignment «. Then,
it iteratively modifies a by performing operations on variables. The algorithm
terminates once o becomes a solution to the formula, and outputs “SATISFI-
ABLE” as well as the solution. If the algorithm fails to find a solution within
the pre-set time limit, it is cut off and outputs “UNKNOWN?”.

As depicted in Fig. 1, after the initialization, the algorithm works in two
modes, namely Integer mode and Boolean mode. In each mode X (X is Inte-
ger or Boolean), an X operation is picked to modify «, where an X operation
refers to an operation that works on a variable of data type X. The two modes
switches to each other when the number of non-improving steps (denoted as
non_improve_steps) of the current mode reaches a threshold. The threshold is
set to L x P, for the Boolean mode and L x P; for the Integer mode, where
P, and P; denote the proportion of Boolean and integer literals to all literals
in falsified clauses, and L is a parameter. Note that non_improve_steps is set
to 0 whenever entering a mode, and then in each following step, it increases by
one if cost(a) > cost* in the current step, where cost™ is the cost of the best
assignment visited before.
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The intuitions of the two mode framework are as follows. When all variables
of one type (either Boolean or integer) are fixed, the formula is reduced to a
subformula that contains only variables of the other type. Thus, by consecutively
performing X (X can be Boolean or Integer) operations in a certain period, the
algorithm focuses on dealing with a subformula consisting of only X variables.
The switching threshold is set as L x Px, as we consider that when X literals
accounts for larger proportion of all literals in falsified clauses, more steps should
be allocated for the corresponding mode.
Local Search in One Mode

No matter the mode in which the algorithm works, it adopts a general pro-
cedure as described in Algorithm 1. It prefers to pick a decreasing operation
(according to some heuristic) if any. If the algorithm fails to find any decreasing
operation, it updates clause weights by increasing the weights of falsified clauses,
and then picks an X operation from a random falsified clause containing X liter-
als. Note that we can always pick a falsified clause with X literals (line 7). This
is because when the algorithm works in X mode, since non_impr_steps < L x Px,
we have Px > 0, and so there exists at least one falsified clause with X literals.

As for clause weighting, our algorithm employs the probabilistic version of
the PAWS scheme [13,46]. When the clause weighting scheme is activated, the
clause weights are updated as follows. With probability 1— sp, the weight of each
falsified clause is increased by one, and with probability sp, for each satisfied
clause whose weight is greater than 1, the weight is decreased by one.

4 The Critical Move Operator and a Two-Level Heuristic

In this section, we introduce key techniques in the Integer mode. We propose a
novel operator called critical move, and also a two-level heuristic for choosing a
critical move in the Integer mode.

A key and basic component of a local search algorithm is the operator. For
handling Boolean variables, our algorithm adopts the typical local search oper-
ator for SAT, namely flip, which modifies the value of a Boolean variable to
the opposite of its current value (from True to False, or from False to True).
For handling integer variables, we propose a novel operator called critical move
which works on the literal level.

4.1 Critical Move

Different from the Boolean operator, an integer operator has two parameters —
besides the variable to operate, it also needs to consider the increment (may be
positive or negative) on the value.

Let us first consider a simple operator, which motivates us to propose a literal-
level operator. A simple integer operator is to modify the value of a variable a
by a fixed increment inc, that is, a(a) := «a(a) & inc. The parameter inc needs
fine tuning. If inc is too small, it may take many iterations before making any
falsified literal become true. If inc is too big, the algorithm may even become



Local Search for SMT on Linear Integer Arithmetic 233

problematic that it can never make some literals true and thus essentially unable
to solve some formulae.

Ezample 2. Given a formula F' : (b —a > 3) A (b—a < 5) and the current
assignment is « = {a = 0,b = 0}. If inc = 1, it needs at least 3 operations
to satisfy the formula. If inc = 10, then the formula cannot be satisfied using
operations of this type, as the value of b — a would be always a multiple of 10.

In fact, in order to avoid the case that some literals can never become true
(when the inc is too big), the only acceptable value of inc is 1. The main reason
accounting for such a drawback is that the above operator ignores the literal-
level information. We propose a literal-level operator for integer variables called
critical move, which is defined below.

Definition 2. The critical move operator, denoted as cm(x,f), assigns an inte-
ger variable x to the threshold value making literal £ true, where £ is a falsified
literal containing x. Specifically, for each of the four basic forms of the falsified
literal £, let A =", a;x; — k, an operation is described below:

— Y a;x; < k. there exists a cm operation ecm(x;,£) for each variable x;:

if the coefficient a; > 0, then cm(x;, ¢1) decreases a(x;) by Haé —‘; if a; <0,

2

a; ‘

— (>, iz < k), that is, Y, a;x; > k. there exists a cm operation cm(x;, {)
for each variable x;: if the coefficient a; > 0, then cm(x;, ¢1) increases a(x;)

by [ 1-A 1-A

aj; a;
~ ), a;x; = k. There exists an operation cm(x;,{) for each variable x; with
a; | A, which increases o(x;) by ff.
£ :=(>>, aiz; = k). There exist 2 cm operations for each variable z;, to +1

or -1 on x;.

then cm(x;, ¢1) increases a(x;) by {

-‘; if a; <0, then cm(x;,01) decreases o(x;) by [

Given the above definition of the critical move, an issue with this operator is
that it may stall on equalities, when there is no such variable with a; | A in . To
address this issue, in this situation, we additionally employ a simple strategy—
pick a random variable in that literal and performs +1 or —1 to decrease |A|.

Ezample 3. Assume we are given two falsified literals l; : (2b — a < —3) and
ly: (5¢—d+3a =75), and the current assignment is « = {a = 0,b=0,c=0,d =
0}. Then em(a,ly), em(b,11), em(c,lz), and em(d,l2) refers to assigning a to 3,
assigning b to —2, assigning c to 1 and assigning d to —5 respectively. Note that
there does not exist cm(a,ls), since 31 —5.

An important property of the c¢m operator is that after the execution of a
c¢m operation, the corresponding literal must be true. Therefore, by picking a
falsified literal and performing a cm operation on it, we can make the literal
become true.

The critical move operations are analogous to update operations in other lin-
ear arithmetic model searching procedures. For example, Simplex for DPLL(T)
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[20] also progresses through a sequence of candidate assignments by updating
the assignment to a variable to satisfy its bound. The significant distinction
of critical moves is only updating input variables and always updating by an
integral amount, as we can see from Definition 2.

4.2 A Two-Level Heuristic

In this subsection, we propose a two-level heuristic for selecting a decreasing
cm operation. We distinguish a special type of decreasing c¢m operations from
others, and give a priority to such operations.

From the viewpoint of algorithm design, there is a major difference between
cm and flip operations. A flip operation is decreasing only if the flipping variable
appears in at least one falsified clause. For a em(z, ) operation to be decreasing,
the literal ¢ does not necessarily appear in any falsified clause. This is because
integer variables are multi-valued, and a cm(z,¢) operation that modifies the
value of x would have impact on other literals with the same variable x.

Ezample 4. Given a formula F' = ¢y Acg = (a—b < 0Vb—e < —2)A(b—d < —1),
suppose the current assignment is @ = {a = 0,b = 0,d = 0,e = 0}, then ¢ is
satisfied and co is falsified. The operation opl = em(b,b — e < —2) refers to
assigning b to —2, and op2 = cm(b,b — d < —1) refers to assigning b to —1.
The literal of opl does not appear in any falsified clause while the literal of op2
appears in a falsified clause co. Both operations are decreasing, as either of them
would make clause ¢y become satisfied without breaking any satisfied clause.

In order to find a decreasing c¢m operation whenever one exists, we need to
scan all ¢m operations on false literals. That is, the candidate set of decreasing
operations is D = {cm(x,£)|¢ is a false literal and = appears in £}. If D = 0,
there is no decreasing c¢m operation. We propose to distinguish a special subset
S C D from the rest of D, which is S = {cm(x,£)|¢ appears in at least one
falsified clause and x appears in ¢}. Note that any c¢m operation in S would
make at least one falsified clause become satisfied. Based on this distinction, we
propose a two-level selection heuristic as follows:

— The heuristic prefers to search for a decreasing c¢m operation from S.
— If it fails to find any decreasing operation from S, then it searches for a
decreasing ¢m operation from D\S.

Besides improving the efficiency of picking a decreasing cm operation, there
is an important intuition underlying this two-level heuristic. We prefer to pick
a decreasing cm operation from S, because such operations are conflict driven,
as any cm € S would force a falsified clause become satisfied. This idea can be
seen as a LIA version of focused local search for SAT, which has been the core
idea of WalkSAT-family SAT solvers [1,4,42].
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5 Scoring Functions

Local search algorithms employ scoring functions to guide the search. We intro-
duce two scoring functions, which are used to compare different operations and
guide the local search algorithm to pick an operation to execute in each step.

A perhaps most commonly used scoring function for SAT, denoted as score,
measures the change on the cost of the assignment by flipping a variable. This
scoring function indeed can be used to evaluate all types of operations as it only
concerns the clauses state (satisfied or falsified). We also employ score in our
algorithm, for both flip and cm operations. Formally, the score of an operation
is defined as

score(op) = cost(a) — cost(a’),

where o’ is obtained from a by applying op. Note that, our algorithm employs
a clause weighting scheme which associates a positive integer weight to each
clause, and thus the cost of an assignment is the total weight of falsified clauses.
Tt is easy to see that an operation op is decreasing if and only if score(op) > 0.
Our algorithm prefers to choose the operation with greater score in the greedy
mode, for both Boolean and integer operations.

For integer operations, we propose a more fine-grained scoring function, mea-
suring the potential benefit about pushing a falsified literal towards the direction
of becoming true. Firstly, we propose a property for literals to measure this merit.

Definition 3. Given an assignment «, for an arithmetic literal £ : Y. a;x; < k,
its distance to truth is dtt(¢, o) = maz{)_, a;a(x;) — k,0}. For a Boolean literal
¢ and an arithmetic literal £ : Y, a;x; = k, dtt(¢,a) = 0 if € is true under o and
dtt(¢, ) = 1 otherwise.

Suppose the current assignment is «, for an arithmetic literal £ : ). a;z; <
k, if >, a;a(x;) > k, then the literal is falsified, and its dtt is defined to be
>, aia(x;) — k. In this case, if we decrease the value of z; with a; > 0, or increase
the value of z; with a; < 0, the dtt of ¢ would decrease. When ", a;a(z;) <k,
the literal /¢ is true, and thus its dtt is defined to be 0.

The definition of dtt for arithmetic literals somehow resembles the violation
function for constraint satisfaction problems [27], and the violation operator in
the simplex with sum of infeasibilities for SMT [32]. In this work, we extend it
to the clause level to measure the distance of a clause away from satisfaction in
a fine-grained manner. Based on the concept of distance to truth of literals, we
define a function to measure the distance of a clause away from satisfaction.

Definition 4. Given an assignment «, the distance to satisfaction of a clause
¢ is dts(e, ) = minge {dtt(L, a)}.

According to the definition, the dts is 0 for satisfied clause, since there is at
least one satisfied literal with dtt = 0, while dts is positive for falsified clauses. It
is desirable to lead the algorithm to decrease the dts of clauses. To this end, we
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propose a scoring function to measure the benefit of decreasing the sum of dts
of all clauses. Additionally, the function takes into account the clause weights as
the score function.

Definition 5. Given an LIA formula F, the distance score of an operation op
1s defined as

dscore(op) = Z(dts(c, a) —dts(c,a’)) - w(e),
ceF

where o and o' denotes the assignment before and after performing op.

For Boolean flip operations, dscore is equal to score. For integer operations,
however, compared to the score function which only concerns the state (satisfied
or falsified) transformations of clauses, dscore is more fine-grained, as it considers
the dts of clauses, which are different among falsified clauses.

Ezample 5. Given a formula F' = ¢; AcsAcg = (a—b < —1)A(a—ec < =5Va—d <
—10)A(b—c < =5Vb—d < —10). Suppose w(cy) = 1, w(cz) = 2,w(c3) = 3, and
the current assignment is « = {a = 0,b = 0,c¢ = 0,d = 0}, and thus all clauses
are falsified. Consider two ¢m operations opl = em(a,a — b < —1) and op2 =
em(b,a—b < —1), which assign a(a) := —1 and a(b) := 1 respectively, leading to
o’ and o respectively. Then score(opl) = score(op2) = 1, as they both make ¢;
satisfied. Also, dts(ca, ) — dts(cz, o) =1, and dts(c3, ) — dts(cs, ) = =1, so
dscore(opl) = (dts(c1, ) —dts(cy,a’))-w(er) + (dts(ca, o) —dis(co, )) - w(ce) =
1x1+1x2=3and dscore(op2) = —2 by similar calculation. Therefore, opl is
a better operation.

Since the computation of dscore has considerable overhead, this function is
only used when there is no decreasing operation, as the number of candidate
operations is limited here, and it is affordable to calculate their dscore.

6 LS-LIA Algorithm

Based on the ideas in previous sections, we develop a local search solver for SMT
(LIA) called LS-LIA. As described in Sect. 3, after the initialization, the local
search works in either Boolean or Integer mode to iteratively modify a until a
given time limit is reached or « satisfies the formula F'. This section is dedicated
to the details of the initialization and the two modes of local search, as well as
other optimization techniques.

Initialization: LS-LIA generates a complete assignment «, by assigning the
variables one by one until all variables are assigned. All Boolean variables are
assigned with True. As for integer variables z;, if it has upper bound ub and lower
bound /b, that is, there exist unit clauses x; < ub and z; > [b, it is assigned with
a random value in [Ib, ub]. If x; only has upper(lower) bound, z; is assigned with
ub(lb). Otherwise, if the variable is unbounded, it is assigned with 0.
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Algorithm 2: Local Search of Boolean Mode

while non_impr_steps < L x P, do

if a satisfies F' then return o

if 3 decreasing flip operation then

L op := such an operation with the greatest score

update clause weights according to the PAWS scheme;
¢ := a random falsified clause with Boolean variables;

1
2
3
4
5 else
6
7
8 op := a flip operation in ¢ with the greatest score;
9

« := «a with op performed;

Algorithm 3: Local Search of Integer Mode

1 while non_impr_steps < L x P; do

2 if « satisfies F' then return «

3 if 3 decreasing cm operation in falsified clauses then
4 L op := such an operation with the greatest score

5 else if 3 decreasing cm operation in satisfied clauses then

6 L op := such an operation with greatest score

7 else

8 update clause weights according to the PAWS scheme;

9 ¢ := a random falsified clause with integer variables;
10 op := a c¢m operation in ¢ with the greatest dscore;

11 « := «a with op performed;

Boolean Mode (Algorithm 2): If there exist decreasing flip operations, the
algorithm selects such an operation with highest score.

If the algorithm fails to find any decreasing operation, it first updates clause
weights according to the weighting scheme described in Sect. 3. Then, it picks a
random falsified clause with Boolean literals and chooses a flip operation with
greatest score.

Integer Mode (Algorithm 3): If there exist decreasing cm operations, the algo-
rithm chooses a cm operation using the two-level heuristic: it first traverses falsified
clauses to find a decreasing cm operation with greatest score (line 9); if no such
operation exists, it searches for a decreasing ¢m operation via BMS heuristic (line
10) [10]. Specifically, it samples t ¢m operations (¢ is a parameter) from the false
literals in satisfied clauses, and selects the decreasing one with greatest score.

If the algorithm fails to find any decreasing operation, it first updates clause
weights similarly to the Boolean mode. Then, it picks a random falsified clause
with Integer literals and chooses a ¢m operation with greatest dscore.

Restart Mechanism: The search is restarted when the number of fal-
sified clauses has not decreased for MaxNolmprove iterations, where
MaxNolmprove is a parameter.



238 S. Cai et al.

Forbidding Strategies. Local search methods tend to be stuck in suboptimal
regions. To address the cycle phenomenon (i.e. revisiting some search regions),
we employ a popular forbidding strategies, called the tabu strategy [25]. After
an operation is executed, the tabu strategy forbids the reverse operations in
the following tt iterations, where tt is a parameter usually called tabu tenure.
The tabu strategy can be directly applied in LS-LIA. (1) If a flip operation is
performed to flip a Boolean variable, then the variable is forbidden to flip in
the following ¢t iterations. (2) If a ¢m operation that increases (decreases, resp.)
the value of an integer variable x is performed, then it is forbidden to decrease
(increase, resp.) the value of z in the following ¢t iterations.

7 Experiments

We carried out experiments to evaluate LS-LIA on 4 benchmarks, and compare it
with state-of-the-art SMT solvers. Also, we combine LS-LIA with Z3 to obtain
a sequential portfolio solver, which shows further improvement. Additionally,
experiments are conducted to analyze the effectiveness of the proposed ideas.

7.1 Experiment Preliminaries

Implementation: LS-LIA is implemented in C++ and compiled by g++ with
‘—03’ option. There are 5 parameters in LS-LIA: L for switching phases, tt for
the tabu scheme, MaxNoImprove for restart, ¢ (the number of samples) for
the BMS heuristic and sp (the smoothing probability) for the PAWS scheme.
The parameters are tuned according to suggestions from the literature and our
preliminary experiments on 20% sampled instances, and are set as follows: L =
20, t = 45, tt = 3 4+ rand(10), MaxNolImprove = 500000 and sp = 0.0003 for
all benchmarks.

Competitors: We compare LS-LIA with 4 state-of-the-art SMT solvers accord-
ing to SMT-COMP 2021,% namely MathSAT5 (version 5.6.6), CVC5 (version
0.0.4), Yices2 (version 2.6.2), and Z3 (version 4.8.14), which are the union of the
top 3 solvers (excluding portfolio solvers) of QF_LIA and QF_IDL tracks. The
binaries of all competitors are downloaded from their websites.

Benchmarks: Our experiments are carried out with 4 benchmarks.

— SMTLIB-LIA: This benchmark consists of SMT (LIA) instances from SMT-
LIB.* As LS-LIA is an incomplete solver, UNSAT instances are excluded,
resulting in a benchmark consisting of 2942 unknown and satisfiable instances.

— SMTLIB-IDL: This benchmark consists of SMT (IDL) instances from SMT-
LIB.? UNSAT instances are also excluded, resulting in a benchmark consisting
of 1377 unknown and satisfiable instances.

3 https://smt-comp.github.io/2021.

* https://clc-gitlab.cs.uiowa.edu:2443 /SMT-LIB-benchmarks/QF _LIA.
5 https://clc-gitlab.cs.uiowa.edu:2443 /SMT-LIB-benchmarks/QF _IDL.
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— JSP: This benchmark consists of 120 instances encoded from job shop schedul-
ing problem resembling [31]. Note that there exists a mistake in the encoding
method of original instances from [31], and we fixed it in new instances.

— RVPredict: these instances are generated by a runtime predictive analysis
system called RVPredict [29], which formulates data race detection in con-
current software as a constraint problem by encoding the control flow and a
minimal set of feasibility constraints as a group of IDL logic formulae. The
author of RVPredict kindly provides us with 15 satisfiable instances by run-
ning RVPredict on Dacapo benchmark suite [5].

Instances from SMTLIB-LIA and SMTLIB-IDL benchmarks are divided into
two categories depending on whether it contains Boolean variables. From the
viewpoint of algorithm design, there is a major difference between the operations
on Boolean and integer variables. We observe that instances containing only
integer variables takes up a large proportion, amount to 81.1% and 44.1%, in
these two benchmarks.

Experiment Setup: All experiments are carried out on a server with Intel Xeon
Platinum 8153 2.00 GHz and 2048G RAM under the system CentOS 7.9.2009.
Each solver is executed one run with a cutoff time of 1200s (as in the SMT-
COMP) for each instance in SMTLIB-LIA, SMTLIB-IDL and JSP benchmarks,
as they contain sufficient instances. For the RVPredict benchmark (15 instances),
the competitors are also executed one run for each instance as they are exact
solvers, while LS-LIA is performed 10 runs for each instance. “#inst” denotes the
number of instances in each family. We compare the number of instances where
an algorithm finds a model (“#solved”), as well as the run time. The bold value
in table emphasizes the solver with greatest “#solved”. For RVPredict, LS-LIA
solves all instances with 100% success rate and we report the median, minimum
and maximum run time among the 10 runs for each instance.

We uploaded our solver as well as JSP and RVPredict benchmarks (along
with related information) in the anonymous Github repository.®

7.2 Results on SMTLIB-LIA and SMTLIB-IDL Benchmarks

Results on SMTLIB-LIA (Table 1 and Fig. 2). We organize the results
into two categories: instances Without Boolean variables, and instances With
Boolean variables. LS-LIA outperforms its competitors on the Without Boolean
category, solving 2294 out of the 2385 instances. We also present the run time
comparisons between LS-LIA and each competitor on the Without Boolean cat-
egory of SMTLIB-LIA benchmark in Fig.2. As for the With Boolean category,

5 https://anonymous.4open.science/r /slsdlia,/.
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Table 1. Results on instances from SMTLIB-LIA.

Family Type #inst MathSAT5 CVC5 Yices2 Z3  LS-LIA

Without Boolean 20180326-Bromberger 631 538 425 358 532 581
bofill-scheduling 407 407 402 407 405 391
CAV _2009_benchmarks 506 506 498 396 506 506
check 1 1 1 1 1 1
convert 280 273 205 186 184 279
dillig 230 230 230 200 230 230
miplib2003 16 10 9 11 8 13
pb2010 41 14 5 21 33 28
prime-cone 19 19 19 19 19 19
RWS 20 11 13 11 14 12
slacks 231 230 231 161 230 231
wisa 3 3 3 3 3 3
Total 2385 2242 2041 1774 2165 2294

With Boolean 2019-cmodelsdiff 144 94 95 95 95 51
2019-ezsmt 108 84 79 81 81 54
20210219-Dartagnan 47 22 22 23 23 2
arctic-matrix 100 43 26 59 47 s
Averest 9 9 9 9 9 7
calypto 24 24 24 24 24 21
CIRC 18 18 18 18 18 3
fft 5 3 3 3 3 3
mathsat 21 21 21 21 21 13
nec-smt 1256 1244 425 1256 1242 581
RTCL 2 2 2 2 2 2
tropical-matrix 108 55 42 71 52 98
Total 1842 1619 766 1662 1617 912

the performance of LS-LIA is overall worse than its competitors, but still com-
parable. A possible explanation is that as local search SAT solvers, LS-LIA is
not good at exploiting the relations among Boolean variables. Nevertheless, LS-
LIA has obvious advantage in “tropical-matrix” and “arctic-matrix” instances,
which are industrial instances from automated program termination analysis
[16], showing its complementary performance compared to CDCL(T) solvers.
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Fig. 2. Run time comparison on Without Boolean category of SMTLIB-LIA

Results on SMTLIB-IDL Benchmark (Table 2 and Fig. 3). Similar to
the case for SMTLIB-LIA, our local search solver shows the best performance on
IDL instances Without Boolean variables (solving 597 out of the 707 instances),
which can be seen from Table 2 and Fig. 3. However, LS-LIA performs worse than
its competitors on those With Boolean variables. Overall, LS-LIA cannot rival
its competitors on this benchmark, but works particularly well on the instances
without Boolean variables.

Combination with Z3 and Summary on SMTLIB benchmarks (Table
3). To confirm the complementarity of our local search solver with state of the art
SMT solvers, we combine LS-LIA with Z3, by running 7Z3 with a time limit 600s,
and then LS-LIA from scratch with the remaining 600s if Z3 fails to solve the
instance. This wrapped solver can be regarded as a sequential portfolio solver,
denoted as “Z3+LS”.

We summarize the results of all solvers, including Z3+LS, on SMTLIB-LIA
and SMTLIB-IDL benchmarks in Table 3. Among all single-engine solvers, Math-
SATS5 solves the most instances of SMTLIB-LIA benchmark, while Z3 solves the
most instances of SMTLIB-IDL benchmark. LS-LIA outperforms its competi-
tors on instances Without Boolean variables, indicating that local search is an
effective approach for solving SMT (LIA) instances with only integer variables.

7Z3+LS solves more instances than any other solver on both benchmarks,
confirming that LS-LIA and Z3 have complementary performance and their
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Table 2. Results on instance from SMTLIB-IDL.

Family Type #inst MathSAT CVC5 Yices2 Z3 LS-LIA

Without Boolean 20210312-Bouvier 100 4 44 21 42 40
job_shop 108 39 59 74 7377
n_queen 97 57 86 97 92 97
toroidal_bench 32 11 10 12 12 13
super-_queen 91 57 86 91 91 91
DTP 32 32 32 32 32 32
schedulingI DL 247 100 125 247 247 247
Total 707 300 442 574 589 597

With Boolean asp 379 147 212 284 291 27
Averest 157 157 157 157 157 120
bcnscheduling 6 3 4 4 4 4
fuzzy-matrix 15 0 0 0 0 1
mathsat 16 16 16 16 16 11
parity 136 130 136 136 136 136
planning 2 2 2 2 2 0
qlock 36 36 36 36 36 0
RTCL 4 4 4 4 4 4
sal 10 10 10 10 10 8
sep 9 9 9 9 9 8
Total 770 514 586 658 665 319
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Table 3. Summary results on SMTLIB-LIA and SMTLIB-IDL. Instances without and
with Boolean variables are denoted by “no_bool” and “with_bool” respectively.

#inst MathSAT5 CVC5 Yices2 Z3 LS-LIA Z3+LS

LIA _no_bool 2385 2242 2041 1774 2165 2294 2316
LIA _with_bool 1842 1619 766 1662 1617 912 1625
Total 4227 3861 2807 3436 3782 3206 3941
IDL_no_bool 707 300 442 574 589 597 597
IDL_with_bool 770 514 586 658 665 319 661
Total 1477 814 1028 1232 1254 916 1258
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Fig. 4. Run time comparison on job shop scheduling instances.

combination pushes the state of the art in solving satisfiable instances of SMT
(LIA). We also combined LS-LIA with Yices in the same manner, resulting in
a wrapped solver called YicesLS [11], which won the Single-Query and Model-
Validation Track on QF_IDL in SMT-COMP 2021.

7.3 Results on Job Shop Scheduling Benchmark

LS-LIA significantly outperforms the competitors on the JSP benchmark. LS-
LIA solves 74 instances, while MathSAT5, CVC5, Yices2, Z3 can only solve 27,
29, 49, 44 instances respectively. The run time comparison on the JSP benchmark
are presented in Fig. 4, where the instances that both the competitors and LS-
LIA cannot solve are excluded. LS-LIA shows dominating advantage over it
competitors on these JSP instances.

7.4 Results on RVPredict Benchmark

Table 4 presents the results on satisfiable instances generated by running RVPre-
dict [29] on Dacapo benchmark suite [5]. LS-LIA solves all the instances
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Table 4. The results on RVPredict instances, “#var” and “#clause” denotes the
number of variables and clauses respectively. If a solver finds an satisfying assignment,
the run time to find the assignment is reported, otherwise ‘NA’ is reported. For LS-LIA,
we report the median (minimum, maximum) run time.

#var clause MathSAT5 CVC5 Yices2 Z3 LS-LIA

RVPredict_1 19782 38262 344.8 410.2 6.3 NA 67.6(56.7,139.4)
RVPredict 2 19782 38262 427.0 429.7 3.3 NA 77.3 (54.2, 107.2)
RVPredict_3 19782 38258 329.5 378.2 9.9 NA 57.8 (56.5, 116.7)
RVPredict_4 19782 38263 333.3 403.5 3.9 NA 80.7 (58.1, 130.5)
RVPredict_5 19782 38262 346.3 412.7 5.8 NA 78.2 (52.3, 124.4)
RVPredict_6 19782 38258 457.2 332.7 2.5 NA 61.1 (43.4, 151.4)
RVPredict_7 19782 38262 541.0 382.7 11.1 NA 68.3 (44.7, 100.6)
RVPredict_-8 19782 38259 357.0 405.0 6.9 NA 72.8 (54.5, 131.2)
RVPredict.9 19782 38262 431.3 443.7 128 NA 73.2 (41.8, 122.5)
RVPredict_-10 19782 38246 460.4 280.7 4.6 NA 56.7 (43.6, 137.3)
RVPredict_11 139 174 0.1 0.1 0.1 0.1 0.1(0.1,0.1)
RVPredict_12 460 6309 4.7 5.6 0.1 0.3 1.3 (0.4, 4.5)
RVPredict_13 460 6503 4.1 6.1 0.1 0.3 0.1 (0.1,0.1)
RVPredict_14 460 6313 4.3 5.8 0.1 0.3 0.7 (0.1, 1.5)
RVPredict_15 460 6313 5.5 5.8 0.1 0.3 0.8 (0.5, 1.7)

consistently, and ranks second on this benchmark, only slower than Yices2. Par-
ticularly, on the 10 large instances RVPredict_1-10, LS-LIA is much faster than
competitors except Yices2.

7.5 Effectiveness of Proposed Strategies

To analyze the effectiveness of the strategies in LS-LIA, we modify LS-LIA to
obtain 5 alternative versions as follows.

— To analyze the effectiveness of the ¢m operator, we modify LS-LIA by replac-
ing the ¢m operator with the operator that directly modifies an integer vari-
able by a fixed increment inc, leading to two versions v_fix_1 and v_fix_5,
where inc is set as 1 and 5 respectively.

— To analyze the effectiveness of the two level heuristic for picking a decreasing
c¢m operation, we modify LS-LIA by choosing a decreasing ¢m operation only
from falsified clauses or directly from all false literals, leading to two versions,
namely v_focused and v_extend.

— To analyze the effectiveness of dscore, we modify LS-LIA to choose a c¢m
operation with the highest score from the selected clause at local optima,
leading to the version v_score.

We compare LS-LIA with these modified version on the SMTLIB-LIA and
SMTLIB-IDL benchmarks. The runtime distribution of LS-LIA and its modified
versions on the two benchmarks are presented in Fig. 5, confirming the effective-
ness of the strategies.
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Fig. 5. Run time distribution comparison

8 Conclusion and Future Work

We developed the first local search solver for SMT (LIA) and SMT (IDL), open-
ing the local search direction for SMT on integer theories. Main features of our
solver include a framework switching between Boolean and Integer modes, the
critical move operator and a scoring function based on distance to satisfaction.
Experiments show that our solver is competitive and complementary to state-
of-the-art SMT solvers.

We would like to enhance our solver by improving the performance on
instances with Boolean variables. Also, it is interesting to explore deep coop-
eration with DPLL(T) solvers.
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