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Abstract. In the past decade, satisfiability modulo theories (SMT)
solvers have been extended to support the theory of strings and regu-
lar expressions. This theory has proven to be useful in a wide range of
applications in academia and industry. To accommodate the expressive
nature of string constraints used in those applications, string solvers use a
multi-layered architecture where extended operators are reduced to a set
of core operators. These reductions, however, are often costly to reason
about. In this work, we propose new techniques for eagerly discovering
conflicts based on equality reasoning and lazily avoiding reductions for
certain extended functions based on lightweight reasoning. We present a
strategy for integrating and scheduling these techniques in a CDCL(T )-
based theory solver for strings and regular expressions. We implement
the techniques and the strategy in cvc5, a state-of-the-art SMT solver,
and show that they lead to a significant performance improvement.

1 Introduction

Most software processes strings and, as a result, modern programming lan-
guages integrate rich functionality to represent and manipulate strings. The
semantics of string-manipulating functions are often complex, which makes
reasoning about them challenging. In recent years, researchers have proposed
various approaches to tackle this challenge with dedicated solvers for string
constraints [3,5,11,19,21], often as extensions of satisfiability modulo theories
(SMT) solvers [10]. Dedicated solvers have been successfully used in a wide range
of applications, including: finding or proving the absence of SQL injections and
XSS vulnerabilities in web applications [30,32,35]; reasoning about access poli-
cies in cloud infrastructure [6,7,13]; and generating database tables from SQL
queries for unit testing [34].

SMT solvers are frequently used as back ends for formal tools that reason
about software or hardware. These tools typically produce a mix of easy and hard
proof obligations that must be discharged by the solver. For many applications,
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it is crucial that the SMT solver responds quickly, and modern solvers are finely
tuned to deliver the required performance. String solvers often stratify reason-
ing about constraints by combining different reasoning techniques rather than
relying on a single, monolithic procedure. Specifically, it is common for a string
solver to have a core procedure that processes only a basic language of string
constraints with a minimal set of string operators. Extended constraints, contain-
ing additional operators, are supported by applying transformations that reduce
them to combinations of basic constraints. Optimizations to this design have
been explored in previous work, e.g., by simplifying extended string constraints
based on the current context (i.e., the current set of asserted constraints) [29].
However, existing techniques still sometimes fall short for industrial applications,
which continue to require richer languages of constraints while expecting the
underlying solvers to remain efficient. To meet these needs, string solvers must
have an even greater understanding of extended constraints and be equipped
with fast procedures that leverage this knowledge.

In this work, we focus on CDCL(T )-based SMT solvers [26], where solving
is done through the cooperation of a SAT solver and one or more theory solvers.
The SAT solver is responsible for finding truth assignments M that satisfy the
Boolean abstraction of the input formula, and the theory solvers are responsible
for returning conflict clauses (disjunctions of literals that are valid in the theory
T but are falsified by M) and, optionally, lemmas (selected clauses that are valid
in T ). The conflict clauses and lemmas from theory solvers are then added to
the original input formula, and the process of finding a satisfying assignment M
is repeated until no conflicts are detected, indicating that the input formula is
satisfiable in T , or an unrecoverable conflict is derived, indicating that the input
is unsatisfiable in T . Theory reasoning done while the SAT solver is constructing
the assignment M is characterized as eager. Theory reasoning done after a full
assignment has been computed is called lazy.

Inspired by real-world benchmarks, we propose new techniques for string
solvers that make them more eager, and hence faster, in their discovery of con-
flicts and lazier in reducing constraints that are hard to handle such as, for
instance, negated regular expression membership constraints. For the former,
we extend the congruence closure [24] module at the heart of the string solver
to perform selected theory-specific forms of reasoning including eager evalua-
tion, reasoning based on inferred prefixes and suffixes, and (integer) arithmetic
approximations (Sect. 3). For the latter, we introduce several new techniques for
avoiding reductions involving extended string operators (Sects. 4 and 5). This set
of techniques is particularly useful for satisfiable benchmarks, where it is pos-
sible to determine that a (candidate) model indeed satisfies the input formula
without having to fully process extended constraints. We have designed these
techniques to be compatible with most existing solving techniques for strings. In
Sect. 6, we propose an extended strategy that describes the integration of the
new techniques within an existing string solver.

In summary, our contributions are as follows:

– We describe new techniques for eagerly detecting conflicts based on an
enriched congruence closure procedure for the theory of strings.
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– We describe a strategy for model-based reductions, which can be used to min-
imize the reductions considered during string solving.

– We describe a procedure for efficiently reasoning about inclusion relationships
for a common fragment of regular membership constraints. This procedure
is used both for detecting conflicts and for avoiding unfoldings of regular
expressions.

– We evaluate an implementation of the new techniques in cvc5 [8], an open
source state-of-the-art SMT solver, on a wide range of string benchmarks and
show a significant improvement in overall performance.

1.1 Related Work

As mentioned above, string solvers typically reduce the input constraints to a
basic form. Common basic representations include finite automata [14,17,18,31,
33], bit-vectors [19], arrays [20], variations of word equations and length con-
straints [12,29,32,36], and hybrid approaches that combine word equations and
bit-vector representations [23]. Our techniques for lazier reductions are primar-
ily targeted at reductions to word equations, but our other techniques are more
broadly applicable and could be used with any of the other basic representations.

In general, the theory of strings is undecidable [12], but modern solvers inte-
grate a wide range of techniques to solve problems that appear in practice. One
line of work has been exploring techniques that avoid reductions or make them
more efficient. Reynolds et al. [29] describe an approach for lazily performing
reductions after simplifying extended functions based on other constraints in the
current context. In later work, Reynolds et al. [27] propose the use of aggressive
rewriting to eliminate or simplify extended string constraints before performing
reductions. In this work, we propose techniques that can be combined with that
earlier work to perform reductions even more lazily. Reynolds et al. [28] also
proposed a technique for improving the efficiency of reductions by introducing
fewer fresh variables. Our approach is orthogonal to this work, because it further
avoids reductions, but cannot avoid them entirely.

Both Reynolds et al. [28] and Backes et al. [7] reduce a fragment of regular
expression constraints to extended string constraints. In contrast, our approach
avoids reductions of certain regular membership constraints.

2 Preliminaries

We work in many-sorted first-order logic with equality and assume the reader is
familiar with the notions of signature, term, literal, (quantified) formula, and free
variable (see, e.g., [16]). We consider many-sorted signatures Σ, each containing
a family of logical symbols ≈ for equality and interpreted as the identity relation,
with input sort σ ˆ σ for all sorts σ in Σ. A Σ-interpretation is a Σ-structure
that additionally assigns a value to each variable. A theory is a pair T = (Σ, I),
in which Σ is a signature and I is a class of Σ-interpretations, the models of
T . A Σ-formula ϕ is satisfiable (resp., unsatisfiable) in T if it is satisfied by
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Fig. 1. Functions in signature of the theory of strings TS.

some (resp., no) interpretation in I. By convention and unless otherwise stated,
we use letters x, y, z to denote variables and s, t to denote terms.

We consider an (extended) theory TS of strings whose signature ΣS is given
in Fig. 1. We fix a totally ordered finite alphabet A of characters. The signature
includes the sorts Str, Lan, Int, and Bool, denoting A∗, regular languages over
A, integers, and Booleans respectively. The core signature is given on the first
two lines. It includes the usual symbols of linear integer arithmetic, interpreted
as expected. We will write t1 �� t2, with �� P {ą, ă, ď}, as syntactic sugar for
the equivalent inequality between t1 and t2 expressed using only ě. The core
string symbols are given on the second line, and include a constant symbol, or
string constant, for each word of A∗ interpreted as that word; a variadic function
symbol · . . . · : Str ˆ . . . ˆ Str → Str, interpreted as word concatenation; and a
function symbol | | : Str → Int, interpreted as the word length function. In our
examples, we will take a A to be the set of ASCII characters and denote string
constants by double-quote-delimited string literals (as in "abc").

The four function symbols in the next two lines of Fig. 1 encode operations
on strings that often occur in applications: a substring operator, a string con-
tainment predicate, an operation to find the position of one string in another,
and one to replace a substring with another. We refer to these function symbols
as extended functions. For details on the semantics of these operators, see for
example [29].

The remainder of the signature covers regular expressions. It includes an
infix binary predicate symbol P : Str ˆ Lan Ñ Bool, which denotes word
membership in a given regular language. The remaining symbols are used to
construct regular expressions. In particular, Σ denotes (the language of) all
strings of length one; re(s) denotes the singleton language containing just the
word denoted by s; rcon(R1, · · · , Rn) denotes all strings that are a concatena-
tion of strings denoted by the arguments; the Kleene star operator R∗ denotes
all strings that are obtained as the concatenation of zero or more repetitions of
the strings denoted by R; inter(R1, · · · , Rn) denotes the intersection of the lan-
guages denoted its arguments; and union(R1, · · · , Rn) denotes the union of the
languages denoted by its arguments. Finally, we include the class of all indexed
regular expression symbols of the form rangec1,c2 where c1 and c2 are string
constants of length one. We call this a regular expression range and interpret it
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as the language containing all strings of length one that are between c1 and c2
(inclusive) in the ordering associated with A.

3 Eager Equality-Based Conflicts for Strings

We consider theory solvers for strings like those described by Liang et al. [21],
which have at their core a congruence closure algorithm that determines whether
a set of string constraints S is satisfiable in the empty theory (i.e., all func-
tion symbols, including string operations, are treated as uninterpreted). In this
section, we describe two enhancements to such congruence closure algorithms,
which can help detect theory-inconsistencies in S. We stress that our extended
congruence closure is computed eagerly and incrementally as the SAT solver
assigns truth values to string equalities. This enables the enhanced congruence
closure algorithm to detect theory inconsistencies early, when the truth assign-
ment is still only partially specified. We elaborate on how this enables eager
backtracking in Sect. 6.

3.1 Enhancing Congruence Closure with Evaluation

The string solver implements a procedure to compute the congruence closure
C(S) over the set S of currently asserted string equalities. Let T (S) be the set of
all terms and subterms in S. Formally, C(S) is the set of all equalities between
terms in T (S) that are entailed by the empty theory:

C(S) = {s ≈ t | s, t P T (S),S |= s ≈ t}

The output of the procedure that computes C(S) can be represented as a set of
equivalence classes, that is, a partition of T (S) where each block of the partition
is a maximal set of equivalent terms. For each equivalence class, we designate
a unique term in it as the representative for that class; if the class contains at
least one constant term, then the representative must be one of them. We will
denote by [t] the equivalence class of a term t induced by C(S). By a slight abuse
of notation we will use [t] also to denote the representative of that class.

Computing the congruence closure C(S) allows the string solver to detect
theory conflicts in the current context which occur when the context contains a
disequality s �≈ t, where [s] = [t]. It also allows the string solver to propagate to
the SAT solver entailed equalities that occur in the input formula but have not
been explicitly asserted yet.

By default, congruence closure procedures effectively treat theory symbols
as uninterpreted functions. Here, we propose a lightweight approach for inject-
ing some theory-specific reasoning by evaluating string terms whenever possible.
Specifically, for every term that is a function application f(t1, . . . , tn), where f
is a string theory symbol, if the representatives [t1], . . . , [tn] are all constants,
the enhanced congruence closure procedure adds the equality f(t1, . . . , tn) ≈
f([t1], . . . , [tn])↓ to C(S), where f([t1], . . . , [tn])↓ is the constant resulting from
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the evaluation of f([t1], . . . , [tn]). Adding these equalities improves the ability of
the congruence closure layer to detect more theory conflicts and propagations,
as illustrated in the following example.

Example 1. Consider the constraints {y ≈ "b", z ≈ replace(x, y, "d"), x ≈ z, x ≈
"abc"}, where the term replace(x, y, "d") denotes the result of replacing the first
occurrence of y in x by "d" if one exists. The congruence closure for this set
of constraints determines the following equivalence classes, each with a constant
representative:

{"b", y}, {"d"}, {"abc", x, z, replace(x, y, "d")} .

This means that the term replace(x, y, "d") is equivalent to the con-
crete term replace("abc", "b", "d"). Evaluating the latter results in the con-
stant "adc". Hence, the congruence closure procedure will add the equality
replace(x, y, "d") ≈ "adc" to its input set of equalities and recompute the con-
gruence closure. This will cause the third equivalence class in the list above
to contain the (distinct) string constants "abc" and "adc", thus resulting in a
conflict.

In our implementation, we must track explanations for inferred equalities for
the purposes of reporting conflict clauses. In the above example, the equality
replace(x, y, "d") ≈ "adc" is added to the congruence with the explanation x ≈
"abc" ^ y ≈ "b", which is then used in the standard technique for constructing
explanations for congruence-closure-based reasoning [25].

We remark that enhancing congruence closure with evaluation is not specific
to the theory of strings, and can be leveraged by other theory solvers based on
congruence closure. Further exploration of this technique and its impact on other
theories is left as future work.

3.2 Tracking Properties of Equivalence Classes

In addition to the use of evaluation, we enhance our congruence closure procedure
with further information that can be used to discover conflicts eagerly based on
string-specific reasoning. We describe two examples of this mechanism below.

First, we maintain a mapping Z from integer equivalence classes e to intervals
of the form [�, u], indicating concrete lower and upper bounds on the value that
the terms in e can have. Open intervals are achieved by letting � and u be ´8
and 8 respectively. The interval can be inferred using string-specific reasoning
over the terms in e.

Second, we maintain a mapping S from string equivalence classes e to a pair
of string constants (l1, l2) denoting the maximal known prefix l1 and suffix l2
of the value that the terms in e can have. For example, if e contains the term
"abc" · x then l1 for e is, at least, "abc". When no prefix is known, l1 is the
empty string. The suffix l2 is handled similarly.

Figure 2 shows how the maps Z and S are updated when new equiva-
lence classes are created (newEqc) and when equivalence classes are merged
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Fig. 2. Methods for tracking intervals, prefixes, and suffixes for equivalence classes.

(mergeEqc), the two basic methods that are used when computing congruence clo-
sures. For the second method, a helper method (mergeEntry) is used to combine
the contents of the entries in two maps. We assume without loss of generality
that when mergeEqc is called on equivalence classes ([t1], [t2]), [t1] becomes the
new representative for the merged class.

We now look at these methods in more detail. When a new equivalence class
for term t is created, we look at the type of t. If t has integer type, there are
three cases. If t is a numeral n, it is mapped to the interval [n, n]. If t is a length
term of the form |s|, then we compute an interval [�|s|, u|s|] where �|s| (resp.,
u|s|) is a sound under-approximation (resp., over-approximation) of the length
of s. We use the procedure described by Reynolds et al. [27] to compute these
approximations. We use it because it is available, well-tested, and designed to be
fast, but any sound approximation could be used. Otherwise, t is mapped to the
open interval [´8, 8]. If t has string type, we consider two cases. If t is a string
constant, its prefix and suffix are both set to t. If t can be normalized using a
simple set of rewrite rules to a concatenation term of the form l1 · t′ · l2, where
l1 and l2 are string constants of maximal length and t′ is a non-constant term,
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then t is mapped to the pair (l1, l2). Note that the notation l1 · t′ · l2 is meant to
include the case where either l1 or l2 (or both) is the empty string.1

When two equivalence classes [t1] and [t2] are merged, first, if [t1] is � and
[t2] is a regular expression membership predicate x P R, then we may infer
information about x, because x P R is now known to be true in the current
context. We compute upper and lower bounds [�|R|, u|R|] on the length of all
strings that occur in R. We use fast approximate techniques for computing these
bounds (e.g., sum the length of constant components of concatenations to infer
lower bounds). Note that these techniques are context-independent and are solely
based on the structure of R. We update the entry Z [x] based on this information.
Similarly, we update the entry S [x] with information about the constant prefix
and suffix of the regular expression R. On the other hand, when [t1] and [t2] are
integer or string equivalence classes, we merge the entries for the appropriate
mapping. We stress that the entry for [t1] is updated with the information from
the entry for [t2] and not vice versa. This is because [t1] is the new representative
of the merged equivalence class, and further merges may refer to it, while [t2] is
subsequently unused.

When merging entries, we may determine that the constraints represented
by the two entries are inconsistent, in which case we have found a conflict. For
example, when merging integer equivalence classes, if the lower bound for one
equivalence class is greater than the upper bound for the other, we raise a conflict.
For string equivalence classes, a conflict is raised if the prefixes for the two
equivalence classes are incompatible (i.e., neither is a prefix of the other) and
similarly for suffixes. We write p1 �∼pre p2 (resp., s1 �∼suf s2) to denote that p1
is not a prefix of p2 or vice versa (resp., s1 is not a suffix of s2 or vice versa),
and max| | to denote the function returning the string constant having maximum
length. If no conflict is raised, then the new entry E1 is updated to contain the
merged information: for integers, we take the maximal lower bound and minimal
upper bound; and for strings, we take the prefix or suffix of maximal length.

In the context of CDCL(T ), when the procedure raises a conflict, it is required
to return a conflict clause, which in turn will cause the solver to backtrack. To
make it possible to compute conflict clauses in the methods described above,
each component of the entries for an equivalence class e in the two maps Z
and S is additionally annotated with an explanation pair (t, ϕ), where t is a
term in e and ϕ entails that t has the property represented by the component.
This is maintained independently for each lower bound, upper bound, prefix
and suffix. In most cases, this pair is of the form (t,�), where t is the source
of the annotation. When inferring annotations from an asserted membership
constraint x P R during mergeEqc above, their explanations are the pair (x, x P
R). Explanations are updated when entries E1 and E2 are merged, where, e.g.,
the explanation for the lower bound is taken from E2 when �2 ą �1. When

1 It is possible to produce tighter prefixes and suffixes recursively—for instance for
terms t1 · t′ · t2 where the equivalence class of t1 (resp., t2) is assigned a constant
prefix (resp., suffix). However, in our experiments, this did not turn out to be worth
the extra effort.
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two entries are in conflict, the explanations are used to generate the conflict.
For example, assuming two entries have explanations (t1, ϕ1) and (t2, ϕ2), we
send the conflict clause ¬(t1 ≈ t2 ^ ϕ1 ^ ϕ2). The equality t1 ≈ t2 may be
further expanded using standard methods for explanations during congruence
closure [25].

Example 2. Consider the constraints {x P rcon(re("a"),Σ∗, re("b")), z ≈ "bcd" ·
w, x ≈ z}. The state of the map S after processing each assertion is as follows:

# Assertion S Conflict?

1 x P rcon(re("a"),Σ∗, re("b")) [x] �Ñ ("a", "b")
2 z ≈ "bcd" · w S1 ∪ [z] �Ñ ("bcd", ε)
3 x ≈ z S2 S2([x]),S2([z]))

When the first constraint x P rcon(re("a"),Σ∗, re("b")) is asserted, we con-
struct the (Boolean) equivalence class for this constraint and merge it with [�].
Based on the mergeEqc method, we infer that the prefix and suffix for the string
equivalence class [x] are "a" and "b" respectively, which are added to S to obtain
S1 When the second constraint is asserted, we infer the prefix "bcd" for [z] and
add it to S1 to get S2; no suffix is inferred since we do not know the value of w.
When the third constraint is asserted, the equivalence classes [x] and [z] merge.
Since we have inferred that "a" is a prefix of [x] and "bcd" is a prefix of [z], we
have a conflict, as these two strings do not have a common prefix. Our procedure
will thus report a conflict containing the three constraints.

Example 3. Consider the constraints {|s| �≈ 0, |"abc" ·w| �≈ 0, x ≈ s, x ≈ "abc" ·
w}, where s is the term substr(y, 0, 2), which takes the substring of y at position
0 of length (at most) 2. The state of the map Z after processing each assertion
is as follows:

# Assertion Z Conflict?

1 |s| �≈ 0 [0] �Ñ [0, 0], [|s|] �Ñ [0, 2]
2 |"abc" · w| �≈ 0 Z1 ∪ [|"abc" · w|] �Ñ [3, 8]
3 x ≈ s Z2

4 x ≈ "abc" · w Z3 Z([|s|]),Z([|"abc" · w|])

When the first constraint |s| �≈ 0 is asserted, we construct the equivalence
classes [0] and [|s|]. The former trivially has bounds [0, 0]. For the latter, we
use the methods from [27] to infer lower and upper bounds for |s|. Note that
every string has a lower length bound of 0. The upper bound for the length of
substr(y, 0, 2) can easily be inferred to be 2. Similarly, when |"abc" · w| �≈ 0 is
asserted, the equivalence class [|"abc" · w|] is created, whose length has a lower
bound of 3 and no upper bound. After the latter two constraints are asserted,
note that s becomes equal to "abc" ·w by transitivity, and hence |s| is equal to
|"abc" ·w| by congruence. When these two equivalence classes merge, we obtain
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a conflict from their respective entries in Z, since the former has an upper bound
of 2 and the latter has a lower bound of 3. Thus, our procedure returns the latter
two constraints as a conflict.

4 Model-Based Reductions for Strings

The bottleneck for string solving often lies in reasoning about the reductions of
extended string functions. Context-dependent simplification can greatly improve
the scalability of string solvers for extended string constraints [29]. At a high
level, this approach attempts to simplify extended terms based on information
that holds in the current context, which can preempt the need for potentially
expensive reasoning. In this work, we extend this strategy by additionally rea-
soning about candidate models.

First, we briefly review how extended string terms are reduced to more basic
constructs. A reduction formula for term t is a formula ϕ ^ t ≈ k, where k is a
fresh variable and ϕ is a formula over terms k, t1, . . . , tn that characterizes the
meaning of t in the sense that a theory interpretation satisfies ϕ if and only if
it satisfies t ≈ k. As a result, the formula ∃ k. (ϕ ^ t ≈ k) is valid in the theory,
and hence its Skolemized version can be given to the SAT solver as a lemma.
This effectively reduces the satisfiability of constraints of the form c[t] to the
satisfiability of c[k] ∧ ϕ, where t has been replaced by k.

Example 4. Let t be the regular expression membership constraint x P re("a")∗.
The formula (k ≈ (x ≈ ε _ x P re("a") _ ψ)) ^ t ≈ k where ψ is

∃k1k2k3. x ≈ k1 · k2 · k3 ^ k1 P re("a") ^ k2 P re("a")∗ ^ k3 P re("a")

is a reduction for t.

Reductions like the one above can be expensive to reason about, since they may
introduce fresh (possibly universally) quantified variables. Context-dependent
simplifications can avoid these reductions in some cases.

Given a string term t of the form f(t1, . . . , tn), where f is an extended
function, a context-dependent simplification is a formula of the form (t1 ≈
s1 ^ . . . ^ tn ≈ sn) ñ t ≈ l where l is the constant value obtained by evalu-
ating or rewriting f(s1, . . . , sn). Whenever possible, we use context-dependent
simplifications for extended string terms, where t1 ≈ s1, . . . , tn ≈ sn are equal-
ities that hold in the current context. The same approach can be applied to
regular expression memberships as well, where a membership constraint of the
form x P R can be simplified to � or ⊥ whenever x is inferred to be equal to a
concrete string literal.
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Example 5. Let t be as in the previous example. The formula x ≈ "b" ñ t ≈ ⊥
is a context-dependent simplification for t.2

While context-dependent simplification eliminates some reductions, in this
paper we propose making certain reductions even lazier by taking into account
candidate models. If a candidate model can be built that already satisfies a
constraint with extended terms, it is not necessary to reduce it.

To elaborate, existing procedures for strings [21] are able to construct candi-
date models M (or, more precisely, interpretations) for satisfiable sets of string
constraints before reductions are considered by treating all (sub)terms headed
by an extended function as fresh variables, and by ignoring regular expression
membership constraints. A strategy for model-based reduction only considers
reductions for t if the candidate model M is inconsistent with the semantics of
t—something that can be easily checked by evaluating t in the model and veri-
fying that the computed value coincides with the value that M assigns to t as a
variable. This allows us to avoid reductions for cases where a candidate model is
correctly guessed in the presence of extended functions and regular expression
membership constraints. A concrete instantiation of this strategy is described in
Sect. 6.

Example 6. Consider the constraints {x ≈ y · "c",¬x P rcon(Σ∗,
re("j"),Σ∗)}. A model-based reduction strategy would first construct a candi-
date model that satisfies the first constraint, e.g., M = {x �Ñ "abc", y �Ñ "ab"}.
It would then check whether the membership constraint x P rcon(Σ∗, re("j"),Σ∗)
evaluates to false in M. This is indeed the case, since xM = "abc", making M
a model for the full set of constraints. Hence, the reduction for the regular mem-
bership constraint in this example can be avoided altogether.

5 Fast Techniques for Regular Expression Inclusion

As mentioned in Sect. 4, regular expression memberships are handled by a lazy
reduction, which can be seen as a single-step unfolding. While model-based reduc-
tions can avoid some reductions, the remaining ones may still be expensive. In
this section, we show another technique to avoid reductions, based on the obser-
vation that most regular expressions in real programs are relatively simple. We
focus on those of the form rcon(R1, . . . , Rn), where each Ri corresponds to a
fixed or arbitrary number of range or constant regular expressions. Such regular
expressions are frequently used to match a string that is made up of multiple seg-
ments, each with a different alphabet. For this fragment of regular expressions,
our procedure allows us to detect conflicts before unfolding and may additionally
tell us which regular expression memberships are entailed by others, and hence
can be discarded.

We use the notation L(R1) ⊆ L(R2) to denote that R1 matches a subset of the
strings matched by R2. The derivation rules in Fig. 3 can be used to implement a

2 We omit from the implication the trivial antecedent re("a")∗ ≈ re("a")∗.
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Fig. 3. Rules for deriving L(R1) ⊆ L(R2).

fast, incomplete procedure to prove L(R1) ⊆ L(R2). The procedure applies the
rules bottom-up to build a derivation tree with L(R1) ⊆ L(R2) as the root. The
statement is proven if a derivation tree is found where all leaves have no precon-
ditions. For any given pair of regular expressions, the number of possible rule
applications is finite, and whether a rule applies can be checked in polynomial
time w.r.t. the number of elements in the regular expression concatenations.

The first four rules in Fig. 3 have no preconditions. A regular expression R
matches zero or more occurrences of R and the rules Emp and Star use that
fact to conclude that (the language generated by) R∗ includes the empty string,
corresponding to zero occurrences of R, and (the language generated by) R, cor-
responding to a single occurrence of R. The third rule, All, concludes that every R
is included in Σ∗, which matches all strings. Finally, Refl captures the reflexivity
of the regular expression inclusion relation. Regular expression inclusion is tran-
sitive, which is captured by Trans. Additionally, CongStar captures that applying
the Kleene star to regular expressions preserves the inclusion relation. The next
two rules are related to regular expressions that match single characters: Char

concludes that if a regular expression matches only single characters then it is
included in Σ, which matches all characters; Range compares the bounds of two
ranges to determine if one is included in the other. Finally, the rule Concat splits
regular expression concatenations into two parts and ensures that the parts on
the right-hand side include the parts on the left-hand side. Note that the splits
themselves can be concatenations, so there is a choice regarding how those con-
catenations are split into two parts. In the context of this rule, we treat regular
expressions that match a single word as a concatenation of the individual letters
of that word. For example, for L("abc") ⊆ L(rcon("ab", Σ)), we could choose
the subgoal L("c") ⊆ L(Σ) after applying Concat.
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Given a regular expression inclusion L(R1) ⊆ L(R2), the above procedure
may potentially derive conflicts or propagate regular membership constraints,
avoiding reducing them. A conflict can be derived from membership constraints
x P R1 and ¬y P R2 if x ≈ y is entailed by the current context. Similarly, from
x ≈ y being entailed and y P R1 being asserted, we can propagate the regular
membership constraint x P R2; and from x ≈ y and ¬y P R2 we can propagate
¬x P R1.

Example 7. Consider the following theory literals:

x P rcon((range0,9)
∗, Σ∗, "b", Σ∗) (1)

¬x P rcon((range0,9)
∗, Σ∗) (2)

We can apply Concat, Refl, and All to the two regular expressions:

Concat

ReflL((range0,9)
∗) ⊆ L((range0,9)

∗)
AllL(rcon(Σ∗, re("b"), Σ∗)) ⊆ L(Σ∗)

L(rcon((range0,9)
∗, Σ∗, re("b"), Σ∗)) ⊆ L(rcon((range0,9)

∗, Σ∗))

This allows us to derive a conflict, since the regular expression of the negative
membership constraint in Eq. (2) includes the regular expression in the positive
regular membership constraint in Eq. (1).

6 An Extended Strategy for Strings in CDCL(T )

In this section, we summarize our overall strategy for solving string constraints
that leverages the aforementioned techniques. This strategy integrates the tech-
niques presented in this paper with existing techniques used in modern string
solvers. In general, the techniques presented in this work are applicable to a
wide range of solvers. The techniques from Sect. 3 can be combined with any
string solver that computes the congruence closure of the constraints. Model-
based reductions are applicable to string solvers that can compute models and
have the infrastructure to selectively refine/ignore certain constraints. Regular
expression inclusion can be used in all string solvers.

Recall that in a CDCL(T )-based SMT solver, the theory solvers produce
conflict clauses or lemmas based on the content of the current context, the truth
assignment incrementally constructed by the SAT solver. In the following, we
split the discussion between checks that are performed on partial assignments
and checks that are performed on full assignments from the SAT solver.

Checking Partial Assignments. Recall that M is the assignment to literals chosen
by the SAT solver. In our implementation, whenever the SAT solver adds a literal
(¬)t ≈ s to M , that literal is immediately added to the congruence closure data
structure of the appropriate theory.3 This means that in a typical configuration,
3 In our implementation, each theory locally maintains its own congruence closure

data structure.
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Fig. 4. Strings theory solver using context-dependent simplification, regular expression
inclusion, and model-based reductions.

conflicts that are based purely on equality reasoning may be raised the moment
M becomes unsatisfiable in the theory. This behavior makes the SMT solver
faster, as it may backtrack without having to generate any further extension to
M . The techniques in Sects. 3.1 and 3.2 increase the likelihood that such conflicts
may be discovered eagerly based on evaluation, arithmetic approximations, and
tracking prefixes and suffixes for string terms. Given that those techniques are
executed every time the SAT solver assigns a value, it is imperative that they
are inexpensive.

Checking Full Assignments. When a full assignment is generated by the SAT
solver, each theory solver is called upon to do a full effort consistency check on
the assignment M . We describe the strategy used for strings that incorporates
reasoning about context-dependent simplification, regular expression inclusion,
and model-based reductions.

Our approach checkFull is sketched in Fig. 4, which summarizes the behavior
of our (extended) theory solver for strings to be used in the CDCL(T ) loop.
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The method takes as input a set of string constraints S, which is the subset of
the literals assigned by the SAT solver that belongs to the theory of strings. We
assume the method is called when S is satisfiable in the empty theory, and is such
that the techniques from Sect. 3 did not raise a conflict. It calls the subprocedure
getRefineExt, which returns a set of formulas F . This set may contain a conflict
clause, that is, a disjunction of literals that are false in S. If F is non-empty,
these formulas are returned to the SAT solver. Otherwise, if F is empty, then
the method returns SAT, indicating that S is satisfiable.

In the subprocedure getRefineExt, we first classify the extended terms t from
S by adding them to (at most) one of three sets: the set of terms C to simplify
based on the context, the set of terms E to reduce, and the set of terms Em to
reduce if necessary based on a candidate model. This is done as follows. We first
check if term t can be simplified based on the context, that is, if we can infer
that its arguments are equivalent to terms s1, . . . , sn such that f(s1, . . . , sn) can
be simplified to a constant c. In this case, t is added to C if it is not already
entailed in S to be equal to c. Otherwise, if t is a regular expression membership
x P R, then we check whether t is otherwise directly in conflict with another
membership or can be discarded. The former holds when it is the case that
x P R holds with negative polarity, there exists a term x′ that is entailed to
be equal to x such that x′ P R′ is entailed to hold with positive polarity, and
our regular expression inclusion test can prove that the language of R includes
that of R′. In this case, we know that we are in conflict since x cannot be both
in R′ and not in R, and a conflict clause is returned. Otherwise, we may avoid
reducing t if it is entailed by another membership x′ P R′ with the same polarity
again where x′ is entailed equal to x. This may occur if the language of R
includes R′ and the polarity of both memberships are positive, or if R′ includes
R and the polarity of both memberships are negative. If none of these cases
hold, then we add t to E if it is a positive membership, and Em otherwise. Here,
the intuition is that negative memberships are both more expensive to reason
about via reductions, and more likely to be satisfied by candidate models. All
other extended terms are added to E, marking them to be reduced. Although
not shown in the figure, if t is an application of string containment, then it is
handled analogously to regular expression membership, noting that ctn(x, y) is
equivalent to x P rcon(Σ∗, re(y),Σ∗).

Assuming the above classification, we run four steps in decreasing order of
priority. First, if C is non-empty, we add the simplification formula for each
t P C, where we write cd simplify(S, t) to denote the formula corresponding to
the context-dependent simplification of t in S. Second, we run the core theory
solver for strings, denoted by method getRefine, which we assume runs the rule-
based procedure from [21]. For our purposes, we assume this method returns a
(possibly empty) set of refinement lemmas or conflict clauses, which we denote F
and return this set if it is non-empty. Otherwise, if our set E of terms to reduce
is non-empty, we return the set of reduction formulas reduce(t) for all t P E.
If none of these cases generated lemmas, then we construct a candidate model
M for the abstraction of S, denoted α(S), which denotes a formula where all
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Table 1. Number of solved problems per benchmark set for different configurations.
Best results are in bold. All benchmarks ran with a timeout of 1200 s.

Set cvc5 cvc5-v cvc5-e cvc5-m cvc5-r cvc5-vemr z3

Industry (62) 58 57 58 56 57 55 31

Slog (17) 17 17 17 17 17 17 10

QGen (159) 158 158 159 159 158 153 159

Norn (175) 85 84 81 98 85 88 47

Kepler (436) 89 89 89 89 89 89 85

Kaluza (225) 225 225 225 225 225 225 65

PyEx (6,948) 6,927 6,902 6,931 6,767 6,926 6,716 5,949

Slent (105) 93 82 69 93 93 41 39

Leetcode (13) 13 13 13 13 13 13 11

FullStrInt (2,718) 2,630 2,608 2,630 2,629 2,628 2,611 2,461

SmallRw (73) 52 52 52 51 52 51 6

Total (10,931) 10,347 10,287 10,324 10,197 10,343 10,059 8,863

extended terms in S are replaced by fresh variables. Then, for each t P Em we
check whether the constraint for t holds in the candidate model M. In particular,
this is the case if S � t ≈ tM. We return reduce(t) only for terms t for which this
does not hold.

Notice that the model M serves only as a way of filtering our reductions. We
do not apply context-dependent simplification based on the model, e.g., adding
the lemma (t1 ≈ tM1 ^ . . . ^ tn ≈ tMn ) ñ t ≈ f(tM1 , . . . , tMn )↓, as this would
introduce an unbounded number of new literals ti ≈ tMi to the search.

7 Evaluation

We have implemented the strategy from Sect. 6 by extending cvc5, a CDCL(T )-
based state-of-the-art SMT solver that implements context-dependent simplifica-
tions [29], aggressive rewriting [27], and efficient reductions [28]. To evaluate our
extension, we measure its performance on the 69,907 SMT-LIB benchmarks [9]
that include the theory of strings4 and on a set of 74 benchmarks which we have
obtained from an industrial partner but are not allowed to make public. In this
section, we present and discuss the results of that evaluation.

We test the performance impact of the four techniques presented in this paper:
enhanced congruence closure (v), eager conflicts based on properties of equiva-
lence classes (e), model-based reductions (m), and regular expression inclusion
(r). We compare a configuration with all techniques enabled (cvc5) with config-
urations that disable individual techniques (prefixed with cvc5-*). To measure
the combined impact, we additionally include a configuration that disables all

4 We excluded one benchmark with a quantifier in the quantifier-free logic QF SLIA.
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Fig. 5. Cactus plot of the number of solved benchmarks. All benchmarks ran with a
timeout of 1200 s.

techniques presented in this paper, but otherwise uses all of cvc5’s advanced
techniques for strings (cvc5-vmre). Finally, as an additional reference point, we
compare with another state-of-the-art solver, z3 Version 4.8.14 [15]. In our expe-
rience, z3 is the most stable, feature-complete competitor to cvc5’s string solver.
We omit a comparison with z3str4 [23] because it returned wrong answers at
SMT-COMP 2021 [2] and there has not been a new release. Similarly, we omit a
comparison with z3-Trau 1.1 [1] (the successor of Trau [4]), because we found
it to be unsound in earlier work [28]. Finally, Ostrich 1.1 [14] requires inputs
to be in the straight-line fragment [22], which is not the case for some of the
benchmarks.

We ran all experiments on a cluster equipped with Intel Xeon E5-2620 v4
CPUs. We allocated one physical CPU core and 8 GB of RAM for each solver-
benchmark pair and used a time limit of 1200 s, which is the same time limit
used at SMT-COMP 2021. In the following presentation of the results, we omit
the 59,050 benchmarks that are solved in less than a second by all solvers to
emphasize non-trivial benchmarks. Table 1 lists the number of solved benchmarks
for each benchmark family and configuration. Figure 5 shows a cactus plot of
the number of solved instances for each configuration. The scatter plots in Fig. 6
compare the performance of cvc5 with the other cvc5 configurations and z3.
Each scatter plot shows the solving times of the two solvers for each benchmark
and differentiates between satisfiable and unsatisfiable inputs.

Overall, all configurations of cvc5 significantly outperform z3, which is
reflected in Fig. 5. The scatter plot Fig. 6f shows that while cvc5 outperforms
z3, they also complement each other to a certain extent, which is not surpris-
ing given the complexity of the problem and the fact that the two code bases
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Fig. 6. Scatter plots that compare the performance of cvc5 with the other configura-
tions. The scatter plots differentiate between satisfiable and unsatisfiable benchmarks.

differ significantly. Overall, z3 solves 270 benchmarks that cvc5-vmre does not
solve and 171 benchmarks that cvc5 does not solve. Conversely, cvc5 solves
1645 benchmarks that z3 does not solve. Between cvc5 and cvc5-vmre, cvc5
uniquely solves 309 benchmarks and cvc5-vmre 15 benchmarks. This suggests
that our techniques help cvc5 solve some of the benchmarks that previously
only z3 could solve, but that they also have a significant impact on benchmarks
that z3 could not solve. Thus, adapting those techniques in z3 may be beneficial.

The PyEx benchmarks show the biggest difference in number of solved bench-
marks across the techniques, with model-based reductions (m) solving 160 more
benchmarks, significantly increasing the success rate for cvc5. Figure 6c indi-
cates that primarily satisfiable benchmarks benefit from m. This is expected
because the technique allows the solver to skip reductions if it guesses a correct
model. Nevertheless, some unsatisfiable benchmarks are also solved noticeably
faster due to m. This is possibly due to the technique resulting in a search that
prioritizes reducing operators that are more likely to participate in conflicts.

Both the enhanced congruence closure (v) and the more eager conflicts (e)
have a relatively low impact on the number of solved benchmarks. However,
Figs. 6a and 6b show they significantly improve solving times on several bench-
marks. This is expected because they allow the solver to detect conflicts more
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eagerly, but the same or similar conflicts would have been found (later on) with
existing techniques. Since the solving procedure does not fundamentally change,
roughly the same benchmarks should be solved when adding these techniques,
but potentially much faster.

Finally, the regular expression inclusion technique (r) has a low impact over-
all, since it is restricted to a specific fragment, but Fig. 6d shows it significantly
improves solving time for a few benchmarks. The benchmarks come from the set
of industrial problems and from the QGen set of benchmarks. While the tech-
nique does not always apply, we have found it to be very important for certain
industrial problems. Moreover, the scatter plot shows that having the technique
available has no negative effect, which allows such a specialized procedure to be
always active in a modular solver.

8 Conclusion

We have presented new techniques that make conflict detection more eager and
reductions lazier in CDCL(T )-based string solvers. Our evaluation shows that
both classes of techniques significantly improve performance in the state-of-the-
art SMT solver cvc5 on SMT-LIB and industrial problems. As future work,
we plan to generalize our eager equality-based conflict detection to leverage
more sophisticated properties. We also plan to apply similar techniques to other
congruence-closure-based theory solvers, such as those for the theory of finite sets
and relations. The set of rules for proving regular expression inclusion was driven
by empirical work on industrial benchmarks, but it could be expanded. We also
plan to investigate further strategies for lazy reductions of other extended string
terms that lead to bottlenecks in real-world applications.
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224 A. Nötzli et al.

8. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: Fisman,
D., Rosu, G. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems. TACAS 2022. LNCS, vol. 13243. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99524-9 24

9. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016). https://www.smt-lib.org/

10. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
10575-8 11

11. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware
heuristics. In: FMCAD, pp. 55–59. IEEE (2017)

12. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00768-2 27

13. Bouchet, M., et al.: Block public access: trust safety verification of access control
policies. In: ESEC/SIGSOFT FSE, pp. 281–291. ACM (2020)
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226 A. Nötzli et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Even Faster Conflicts and Lazier Reductions for String Solvers
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Eager Equality-Based Conflicts for Strings
	3.1 Enhancing Congruence Closure with Evaluation
	3.2 Tracking Properties of Equivalence Classes

	4 Model-Based Reductions for Strings
	5 Fast Techniques for Regular Expression Inclusion
	6 An Extended Strategy for Strings in CDCL(T)
	7 Evaluation
	8 Conclusion
	References




