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Abstract. Neural networks have achieved state-of-the-art performance in solv-
ing many problems, including many applications in safety/security-critical sys-
tems. Researchers also discovered multiple security issues associated with neu-
ral networks. One of them is backdoor attacks, i.e., a neural network may be
embedded with a backdoor such that a target output is almost always generated
in the presence of a trigger. Existing defense approaches mostly focus on detect-
ing whether a neural network is ‘backdoored’ based on heuristics, e.g., activation
patterns. To the best of our knowledge, the only line of work which certifies
the absence of backdoor is based on randomized smoothing, which is known to
significantly reduce neural network performance. In this work, we propose an
approach to verify whether a given neural network is free of backdoor with a cer-
tain level of success rate. Our approach integrates statistical sampling as well as
abstract interpretation. The experiment results show that our approach effectively
verifies the absence of backdoor or generates backdoor triggers.

1 Introduction

Neural networks gradually become an essential component in many real-life systems,
e.g., face recognition [25], medical diagnosis [16], as well as auto-driving car [3]. Many
of these systems are safety and security-critical. In other words, it is expected that the
neural networks used in these systems should not only operate correctly but also satisfy
security requirements, i.e., they must sustain attacks from malicious adversaries.

Researchers have identified multiple ways of attacking neural networks, including
adversarial attacks [33], backdoor attacks [12], and so on. Adversarial attacks apply a
small perturbation (e.g., modifying few pixels in an image input) to a given input (which
is often unrecognizable under human inspection) and cause the neural network to gen-
erate a wrong output. To mitigate adversarial attacks, many approaches have been pro-
posed, including robust training [7,22], run-time adversarial sample detection [39], and
robustness certification [10]. The most relevant to this work is robustness certification,
which aims to verify that a neural network satisfies local robustness, i.e., perturbation
within a region (e.g., an L∞ norm) around an input does not change the output. The
problem of local robustness certification has been extensively studied in recent years
and many methods and tools have been developed [10,14,15,29–32,40,41].

Backdoor attacks work by embedding a ‘backdoor’ in the neural network so that
the neural network works as expected with normal inputs and outputs a specific target
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output in the presence of a backdoor trigger. For instance, given a ‘backdoored’ image
classification network, any image which contains the backdoor trigger will be (highly
likely) assigned a specific target label chosen by the adversary, regardless of the con-
tent of the image. The backdoor trigger can be embedded either through poisoning the
training set [12] or modifying a trained neural network directly [19]. It is easy to see
that backdoor attacks raise serious security concerns. For instance, the adversaries may
use a trigger-containing (a.k.a. ‘stamped’) image to fool a face recognition system and
pretend to be someone with high authority [6]. Similarly, a stamped image may be used
to trick an auto-driving system to misidentify street signs and act hazardously [12].

There are multiple active lines of research related to backdoor attacks, e.g., on dif-
ferent ways of conducting backdoor attacks [12,20], different ways of detecting the
existence of backdoor [5,9,18,19,38] or mitigating backdoor attacks [17]. Existing
approaches are however not capable of certifying the absence of backdoor. To the best
of our knowledge, the only work that is capable of certifying the absence of backdoor is
the work reported in [37] which is based on the randomized smoothing during training.
Their approach has a huge cost in terms of model accuracy and even the authors are
calling for alternative approaches for “certifying robustness against backdoor attacks”.

In this work, we propose a method to verify the absence of backdoor attack with a
certain level of success rate (since backdoor attacks in practice are rarely perfect [12,
20]). Given a neural network and a constraint on the backdoor trigger (e.g., its size),
our method is a combination of statistical sampling and deterministic neural network
verification techniques (based on abstract interpretation). If we fail to verify the absence
of backdoor (due to over-approximation), an optimization-based method is developed
to generate concrete backdoor triggers.

We conduct experiments on multiple neural networks trained to classify images
in the MNIST dataset. These networks are trained with different types of activation
functions, including ReLU, Sigmoid, and Tanh. We verify the absence of backdoor
with different settings. The experiment results show that we can verify most of the
benign neural networks. Furthermore, we can successfully generate backdoor triggers
for neural networks trained with backdoor attack. A slightly surprising result is that we
successfully generate backdoor triggers for some of the supposedly benign networks
with a reasonably high success rate.

The remaining of the paper is organized as follows. In Sect. 2, we define our prob-
lem. In Sect. 3, we present the details of our approach. We show the experiment results
in Sect. 4. Section 5 reviews related work and finally, Sect. 6 concludes.

2 Problem Definition

In the following, our discussion focuses on the image domain, in particular, on image
classification neural networks. It should be noted that our approach is not limited to the
image domain. In general, an image can be represented as a three-dimensional array
with shape (c, h, w) where c is the number of channels (i.e., 1 for grayscale images and
3 for color images); h is the height (i.e., the number of rows); and w is the width (i.e., the
number of columns) of the image. Each element in the array is a byte value (i.e., from
0 to 255) representing a feature of the image. When an image is used in a classification
task with a neural network, its feature values are typically normalized into floating-point
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Fig. 1. An example of image classification with neural network

numbers (e.g., dividing the original values by 255 to get normalized values from 0 to 1).
Moreover, the image is transformed into a vector with size m = c×h×w. In this work,
we use the three-dimensional form and the vector form of an image interchangeably.
The specific form which we use should be clear from the context.

Given a tuple (ci, hi, wi) representing an index in the three-dimensional form, it
is easy to compute the according index i in the vector form using the formula: i =
ci × h × w + hi × w + wi. Similarly, given an index i in the vector form, we compute
the tuple (ci, wi, hi) representing the index in the three-dimensional form as follows.

ci = i ÷ (h × w)
hi = (i − ci × h × w) ÷ w

wi = i − ci × h × w − hi × w

An image classification task is to label a given image with one of the pre-defined labels
automatically. Such tasks are often solved using neural networks. Figure 1 shows the
typical workflow of an image classification neural network. The task is to assign a label
(i.e., from 0 to 9) to a handwritten digit image. Each input is a grey-scale image with
1 × 28 × 28 = 784 features.

In this work, we focus on fully connected neural networks and convolutional neural
networks, which are composed of multiple layers of neurons. The layers include an
input layer, a set of hidden layers, and an output layer. The number of neurons in the
input layer equals the number of features in the input image. The number of neurons in
the output layer equals the number of labels in the classification problem. The number of
hidden layers as well as the number of neurons in these layers are flexible. For instance,
the network in Fig. 1 has three hidden layers, each of which contains 10 neurons.

The input layer simply applies an identity transformation on the vector of the input
image. Each hidden layer transforms its input vector (i.e., the output vector of the pre-
vious layer) and produces an output vector for the next layer. Each hidden layer applies
two different types of transformations, i.e., the first is an affine transformation and the
second is an activation function transformation. Formally, the two transformations of
a hidden layer can be defined as: �y = σ(A ∗ �x + B) where �x is the input vector, A
is the weight matrix, B is the bias vector of the affine transformation, ∗ is the matrix
multiplication, σ is the activation function, and �y is the output vector of the layer. The
most popular activation functions include ReLU, Sigmoid, and Tanh. The output layer
applies a final affine transformation to its input vector and produces the output vector
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Fig. 2. Some examples of original images and stamped images

of the network. A labelling function L(�y) = argmaxi �y is then applied on the output
vector to return the index of the label with the highest value in �y.

The weights and biases used in the affine transformations are parameters of the
neural network. In this work, we focus on pre-trained networks, i.e., the weights and
biases of the networks are already fixed. Formally, a neural network is a function
N : Rm → Rn = fk ◦ · · · fi · · · ◦ f0 where m is the number of input features; n
is the number of labels; each fi where 0 < i < k is a composition of the affine function
and the activation function of the i-th hidden layer; f0 is the identity transformation of
the input layer; and fk is the last affine transformation of the output layer.

Backdoor Attacks. In [12], Gu et al. show that neural networks are subject to backdoor
attacks. Intuitively, the idea is that an adversary may introduce a backdoor into the
network, for instance, by poisoning the training set. To do that, the adversary starts
with choosing a pattern, i.e., a backdoor trigger, and stamps the trigger on a set of
samples in the training set (e.g., 20%). Figure 2b shows some stamped images, which
are obtained by stamping a trigger to the original images in Fig. 2a. Note that the trigger
is a small white square at the top-left corner of the image. A pre-defined target label is
the ground truth label for the stamped images. The poisoned training set is then used
to train the neural network. The result is a backdoored network that performs normally
on clean images (i.e., images without the trigger) but likely assigns the target label
to any image which is stamped with the trigger. Besides poisoning the training set,
a backdoor can also be introduced by modifying the parameters of a trained neural
network directly [19].

Definition 1 (Backdoor trigger). Given a neural network for classifying images with
shape (c, h, w), a backdoor trigger is any image S with shape (cs, hs, ws) such that
cs = c, hs ≤ h, and ws ≤ w.

Formally, a backdoor trigger is any stamp that has the same number of channels. Obvi-
ously, replacing an input image entirely with a backdoor image with the same size is
hardly interesting in practice. Thus, we often limit the size of the trigger. Note that the
trigger can be stamped anywhere on the image. In this work, we assume the same trigger
is used to attack all images, i.e., the same stamp is stamped at the same position given
any input. In other words, we do not consider input-specific triggers, i.e., the triggers
that are different for different images. While some forms of input-specific triggers (e.g.,
adding a specific image filter or stamping the trigger at selective positions of a given
image [6,20]) can be supported by modeling the trigger as a function of the original
image, we do not regard general input-specific triggers to be within the scope of this
work. Given that adversarial attacks can be regarded as a (restricted) form of generating



Verifying Neural Networks Against Backdoor Attacks 175

input-specific triggers, the problem of verifying the absence of input-specific backdoor
triggers subsumes the problem of verifying local robustness, and thus the problem is
expected to be much more complicated.

Given a trigger with shape (cs, hs, ws), let (hp, wp) be the position of the top-left
corner of the trigger s.t. hp + hs ≤ h and wp + ws ≤ w. Given an image I with shape
(c, h, w), a backdoor trigger S with shape (cs, hs, ws), and a trigger position (hp, wp),
a stamped image, denoted as Is, is defined as follows.

Is[ci, hi, wi] =

{
S[ci, hi − hp, wi − wp] if hp ≤ hi < hp + hs ∧ wp ≤ wi < wp + ws

I[ci, wi, hi] otherwise

Intuitively, in the stamped image, the pixels of the stamp replace those corresponding
pixels in the original image.

Given a backdoored network, an adversary can perform an attack by feeding an
image stamped with the backdoor trigger to the network and expecting the network to
classify the stamped image with the target label. Ideally, given any stamped image, an
attack on a backdoored network should result in the target label. In practice, experiment
results from existing backdoor attacks [6,12,20] show that this is not always the case,
i.e., some stamped images may not be classified with the target label. Thus, given a
neural network N , a backdoor trigger S, a target label ts, we say that S has a success
rate of θ if and only if there exists a position (hp, wp) such that the probability of having
L(N(Is)) = ts for any I in a chosen test set is θ.

We are now ready to define the problem. Given a neural network N , a probability of
θ and a trigger shape (cs, hs, ws), the problem of verifying the absence of a backdoor
attack with a success rate of θ against N is to show that there does not exist a backdoor
attack on N which has a success rate of at least θ.

3 Verifying Backdoor Absence

3.1 Overall Algorithm

The overall approach is shown in Algorithm 1. The inputs include the network N , the
required success rate θ, a parameter K representing the sampling size, the trigger shape
(cs, hs, ws), the target label ts, as well as multiple parameters for hypothesis testing
(i.e., a type I error α, a type II error β, and a half-width of the indifference region δ).
The idea is to apply hypothesis testing, i.e., the SPRT algorithm [1], with the following
two mutually exclusive hypotheses.

– H0: The probability of not having an attack on a set of K randomly selected images
is more than 1 − θK .

– H1: The probability of not having an attack on a set of K randomly selected images
is no more than 1 − θK .

In the algorithm, variable n and z record the number of times a set of K random
images is sampled and is shown to be free of a backdoor with a 100% success rate
respectively. Note that function verifyX returns SAFE only if there is no backdoor
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Algorithm 1: verifyPr(N, θ,K, (cs, hs, ws), ts, α, β, δ)
1 let n ← 0 be the number of times verifyX is called;
2 let z ← 0 be the number of times verifyX returns SAFE;
3 let p0 ← (1 − θK) + δ, p1 ← (1 − θk) − δ;
4 while true do
5 n ← n + 1;
6 randomly select a set of images X with size K;
7 if verifyX(N, X, (cs, hs, ws), ts) returns SAFE then
8 z ← z + 1;

9 else if verifyX(N, X, (cs, hs, ws), ts) returns UNSAFE then
10 if the generated trigger satisfies the success rate then
11 return UNSAFE;

12 if pz
1

pz
0

× (1−p1)
n−z

(1−p0)n−z ≤ β
1−α

then

13 return SAFE; // Accept H0

14 else if pz
1

pz
0

× (1−p1)
n−z

(1−p0)n−z ≥ 1−β
α

then

15 return UNKNOWN; // Accept H1

attack on a set of given images X with 100% success rate, i.e., L(N(Is)) = ts for all
I ∈ X . It may also return a concrete trigger which successfully attacks every image in
X . The details of algorithm verifyX is presented in Sect. 3.2.

The loop from lines 4 to 15 in Algorithm 1 keeps randomly selecting and verifying
a set of K images using algorithm verifyX until one of the two hypotheses is accepted
according to the criteria set by the parameters α and β based on the SPRT algorithm.
Furthermore, whenever a trigger is returned by algorithm verifyX at line 9, we check
whether the trigger reaches the required success rate on the test set, and return UNSAFE
if it does. Note that when H0 is accepted, we return SAFE, i.e., we successfully verify
the absence of a backdoor attack with a success rate of at least θ. When H1 is accepted,
we return UNKNOWN.

Apart from the success rate θ and parameters for hypothesis testing, Algorithm 1
has a particularly interesting parameter K, i.e., the number of images to draw at random
each time. On the one hand, if K is set to be small, such as 1, it is very likely algorithm
verifyX invoked at line 9 will return UNSAFE since it is often possible to attack a
small set of images as demonstrated by many adversarial attack methods [4,11,24],
i.e., changing a few pixels of an image changes the output of a neural network. As a
result, hypothesis H1 is accepted and nothing can be concluded. On the other hand, if
K is set to be large, such as 10000, due to the complexity of algorithm verifyX (see
Sect. 3.2), it is likely that it will timeout and thus return UNKNOWN, which leads to
inclusion as well. Furthermore, when K is large, 1 − θK will be close to 1 and, as a
result, many rounds are needed to accept H0 even if algorithm verifyX returns SAFE.
It is thus important to find an effective K value to balance the two aspects. We identify
the value of K empirically in Sect. 4 and aim to study the problem in the future.

Take as an example the network shown in Fig. 1 which is a feed-forward neural
network built with the ReLU activation function and three hidden layers. We aim to
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verify the absence of a backdoor attack with a success rate of 0.9. We take 10000 images
of the MNIST test set to evaluate the success rate of a trigger. We set the parameters in
Algorithm 1 as follows: K = 5 and α = β = δ = 0.01. For the target label 0, after 95
rounds, we have enough evidence to accept the hypothesis H0, which means we have
evidence that there is no backdoor attack on the network with the target label 0 and
a success rate of at least 0.9. We have similar results for other target labels, although
more rounds of tests are required for labels 2, 3, 5, and 8 (i.e., 98 rounds for label 8,
100 rounds for label 3, 117 rounds for label 5, and 188 rounds for label 2).

3.2 Verifying Backdoor Absence Against a Set of Images

Next, we present the details of algorithm verifyX . The inputs include the neural net-
work N , a set of images X with shape (c, h, w), a trigger shape (cs, hs, ws) and a
target label ts. The goal is to check whether exists a trigger which successfully attacks
every image in X . Algorithm verifyX may have three outcomes. One is SAFE, i.e.,
there is no trigger such that backdoor attack succeeds on all the images in X . Another
is UNSAFE, i.e., a trigger that can be used to successfully attack all images in X is
generated. The last one is UNKNOWN, i.e., we fail to establish either of the above
results.

In the following, we describe one concrete realization of the algorithm based on
abstract interpretation, as shown in Algorithm 2. At line 1, variable hasUnknown is
declared as a flag which is true if and only if we cannot conclude whether there is a
successful attack at a certain position. The loop from lines 2 to 15 tries every position
for the trigger one by one. Intuitively, variable φ is the constraint that must be satisfied
by a trigger to successfully attack every image in X . At line 3, we initialize φ to be
φpre, which is defined as follows: φpre ≡ ∧

j∈P (hp,wp)
lwj ≤ xj ≤ upj where j ∈

P (hp, wp) denotes that j is an index (of an image pixel) in the trigger, xj is a variable
denoting the value of the j-th pixel, lwj and upj are the (normalized) minimum (e.g.,
0) and maximum (e.g., 1) value of feature j in the image according to the input domain
specified by the network N . Intuitively, φpre requires that the pixels in the trigger must
be within its domain.

Given a position, the loop from lines 4 to 10 constructs one constraint φI for each
image I , which is the constraint that must be satisfied by the trigger to attack I . In
particular, at line 5, function attackCondition is called to construct the constraint.
We present the details of this function in Sect. 3.3. If φI is UNSAT (line 6), attacking
image I at position (hp, wp) is impossible and we set φ to be false and break the loop.
Otherwise, we conjunct φ with φI .

After collecting one constraint from each image, we solve φ using a constraint
solver. If it is not UNSAT (i.e., SAT or UNKNOWN), function opTrigger is called
to generate a trigger which is successful on all images in X (if possible). Note that
due to over-approximation, the model returned by the solver might be spurious. The
details of function opTrigger is presented in Sect. 3.4. If a trigger is successfully gen-
erated, we return UNSAFE (at line 13, together with the trigger); otherwise, we set
hasUnknown to be true and continue with the next trigger position. Note that we can
return UNKNOWN at line 15 without missing any opportunity for verifying the back-
door absence. We instead continue with the next trigger location hoping a trigger may
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Algorithm 2: verifyX (N ,X , (cs , hs ,ws), ts)
1 let hasUnknown ← false;
2 foreach trigger position (hp, wp) do
3 let φ ← φpre;
4 foreach image I ∈ X do
5 let φI ← attackCondition(N, I, φpre, (cs, hs, ws), (hp, wp), ts);
6 if φI is UNSAT then
7 φ ← false;
8 break;

9 else
10 φ ← φ ∧ φI ;

11 if solving φ results in SAT or UNKNOWN then
12 if opTrigger(N, X, φ, (cs, hs, ws), (hp, wp), ts) returns a trigger then
13 return UNSAFE;

14 else
15 hasUnknown ← true;

16 return hasUnknown ? UNKNOWN : SAFE;

be generated successfully. After analyzing all trigger positions (and not finding a suc-
cessful trigger), if hasUnknown is true, we return UNKNOWN or otherwise SAFE.

3.3 Abstract Interpretation

Function attackCondition returns a constraint that must be satisfied such that the trig-
ger with shape (cs, hs, ws) is successful on the image I at position (hp, wp). In this
work, for efficiency reasons, it is built based on abstract interpretation techniques [32].
Multiple abstract domains have been proposed to analyze neural networks, such as
interval [41], Zonotope [30], and DeepPoly [32]. In this work, we adopt the DeepPoly
abstract domain [32], which is shown to balance between precision and efficiency.

In the following, we assume each hidden layer in the network is expanded into two
separable layers, one for the affine transformation and the other for the activation func-
tion transformation. We use l to denote the number of layers in the expanded network,
ni to denote the number of neurons in layer i, and xI

i,j to denote the variable repre-
senting the j-th neuron in layer i for the image I . The constraint φI to be returned by
function attack(N, I, φpre, (cs, hs, ws), (hp, wp), ts) is a conjunction of three parts.

φI ≡ preI ∧ AI ∧ postI

where preI is the constraint on the input features according to the image I , i.e., preI ≡
φpre ∧

(∧
j∈P (hp,wp)

xI
0,j = xj

)
∧

(∧
j �∈P (hp,wp)

xI
0,j = I[j]

)
where j 	∈ P (hp, wp)

means that j is not an index (of a pixel) of the trigger; xI
0,j is the variable that represents

the input feature j (a.k.a. neuron j at the input layer) of the image I and I[j] is the
(normalized) pixel value in the image at index j. Intuitively, the constraint preI “erases”
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Fig. 3. An example of abstract interpretation

the pixels in the trigger, i.e., they can now take any value with their range, while the
remaining pixels must have those value from the image. postI represents the condition
for a successful attack. That is, the value of the target label (i.e., xI

l−1,ts
) must be greater

than the values of any other label, i.e., postI ≡ ∧
0≤j<nl−1∧j �=ts

xI
l−1,ts

> xI
l−1,j .

More interestingly, AI is a constraint that over-approximates the behavior of the
neural network N according to the DeepPoly abstract domain. That is, given the con-
straint on the input layer preI , a set of abstract transformers are applied to compute a
linear over-approximation of every neuron in the next layer, every neuron in the layer
after that, and so on until the output layer. The constraint computed on each neuron xI

i,j

is of the form geIi,j ≤ xI
i,j ≤ leIi,j ∧ lwI

i,j ≤ xI
i,j ≤ upIi,j where geIi,j and leIi,j are two

linear expressions constituted by variables representing neurons from the previous layer
(i.e., layer i − 1); and lwI

i,j and upIi,j are the concrete lower bound and upper bound of
the neuron. Note that the abstract transformers are different for the activation function
layer and affine layer. As the DeepPoly abstract transformers are not our contribution,
we skip the details and refer the reader to [32] for details on the abstract transformers,
including their soundness (i.e., they always over-approximate).

Example 1. Since it is too complicated to show the details of applying abstract inter-
pretation to the neural network shown in Fig. 1, we instead construct a simple example
as shown in Fig. 3 to illustrate how it works. There are two features in this artificial
image I , i.e., xI

0,1 has a constant value of 0.5 and xI
0,0 is the trigger whose value ranges

from 0 to 1. That is, preI ≡ 0 ≤ xI
0,0 ≤ 1 ∧ xI

0,1 = 0.5. After expanding the hidden
layers, the network has 6 layers, each of which has 2 neurons. Applying the DeepPoly
abstract transformers from the input layer all the way to the output layer, we obtain the
abstract states for the last layer. Further, assume that the target label is 0. The constraint
postI is thus as follows: postI ≡ xI

5,0 > xI
5,1. Solving the constraints returns SAT with

xI
0,0 = 0. Indeed, with the stamped image Is = [0, 0.5], the output vector is [1, 0]. We

thus identified a successful attack on the target label 0.

Optimization. Note that at line 6 of Algorithm 2, for each constraint φI , we perform a
quick check to see if the constraint is satisfiable or not. If φI is UNSAT, we can ignore
the remaining images and analyze the next trigger position, which allows us to speed up
the process. One naive approach is to call a solver on φI , which would incur significant
overhead since it could happen many times. To reduce the overhead, we propose a
simple procedure to quickly check whether φI is UNSAT based solely on its abstract
states at the output layer. That is, we check the satisfiability of the following constraint
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instead:
∧

0≤j<nl−1∧j �=ts
upIl−1,ts

> lwI
l−1,j . Recall that upIl−1,ts

is the concrete upper

bound of the neuron ts and lwI
l−1,j is the concrete lower bound of the neuron j at the

output layer. Thus, intuitively, we check whether the concrete upper bound of the target
label ts is larger than the concrete lower bound of every other label. If it is UNSAT,
it is impossible to have the target label as the result and thus the attack would fail on
the image I . We then only call the solver on φI if the above procedure does not return
UNSAT. Furthermore, the loop in Algorithm 2 can be parallelized straightforwardly,
i.e., by using a separate process to verify against a different trigger position. Whenever
a trigger is found by any of the processes, the whole algorithm is then interrupted.

3.4 Generating Backdoor Triggers

In the following, we present the details of function opTrigger, which intuitively aims
to generate a trigger S with shape (cs, hs, ws) at position (hp, wp) for attacking every
image I in X successfully. If the solver applied to solve φ at line 11 of Algorithm 2
returns a model that satisfies φ, we first check whether the model is indeed a trigger that
successfully attacks every image in X . Due to over-approximation of abstract interpre-
tation, the model might be a spurious trigger. If it is a real trigger, we return the model.
Otherwise, we employ an optimization-based approach to generate a trigger.

Given a network N , one image I , a target label ts, and a position (hp, wp), let Is
is the stamped image generated from I by stamping I with the trigger at the position
(hp, wp). We generate a backdoor trigger S by minimizing the following loss function.

loss(N, I, S, (hp, wp), ts) =
{
0 if ns > no

(no − ns + ε) otherwise

where ns = N(Is)[ts] is the output value of the target label; no = maxj �=ts N(Is)[j]
is the maximum value of any label other than the target label; and ε is a small constant
(e.g., 10−9). Note that the trigger S is the only variable in the loss function. Intuitively,
the loss function returns 0 if the attack on I by the trigger is successful. Otherwise, it
returns a quantitative measure on how far the attack is from being successful on attack-
ing I . Given a set of images X , the loss function is defined as the sum of the loss for
each image I in X: loss(N,X, S, (hp, wp), ts) =

∑
I∈X loss(N, I, S, (hp, wp), ts).

The following optimization problem is then solved to find an attack which successfully
attacks all images in X: argminS loss(N,X, S, (hp, wp), ts).

3.5 Correctness and Complexity

Lemma 1. Given a neural network N , a set of images X , a trigger shape (cs, hs, ws),
and a target label ts, Algorithm 2 (1) returns SAFE only if there is no backdoor attack
which is successful on all images in X with the provided trigger shape and target label;
and (2) returns UNSAFE only if there exists a backdoor attack which is successful on
all images in X with the provided trigger shape and target label.

Proof. By [32], function attackCondition always returns a constraint which is an
over-approximation of the constraint that must be satisfied such that the trigger is suc-
cessful on image I . Furthermore, Algorithm 2 returns SAFE only at line 16, i.e., only
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if constraints that must be satisfied to attack all images in X at each certain position
are UNSAT. Thus, (1) is established. (2) is trivially established since we only return
UNSAFE when a trigger that is successful on every provided image is generated. 
�

The following establishes the soundness of our approach.

Theorem 1. Given a neural network N , a success rate θ, a target label ts, a trigger
shape (cs, hs, ws), a type I error α, a type II error β, and a half-width of the indifference
region δ, Algorithm 1 returns SAFE only if there is sufficient evidence (subject to type I
error α and type II error β) that there is no backdoor attack with a success rate at least
θ with the provided trigger shape and target label at the specified significance level.

Proof. If there is a backdoor attack with a success rate no less than θ, given a set of
randomly K selected images, the probability of having an attack is no less than θK

(since there is at least one backdoor attack with a success rate no less than θ and maybe
more). Thus, the probability of not having an attack is no more than 1 − θK . By the
correctness of the SPRT algorithm, Algorithm 1 returns SAFE only if there is sufficient
evidence that H0 is true, i.e., the probability of not having an attack on a set of K
randomly selected images is more than 1 − θK , implying it is sufficient evidence that
there is no backdoor attack with success rate no less than θ. The theorem holds. 
�

Furthermore, it is trivial to show that Algorithm 1 returns UNSAFE only if there
exists a backdoor attack which has a success rate at least θ with the provided trigger
shape and target label.

In the following, we briefly discuss the complexity of our approach. It is straightfor-
ward to see that Algorithm 2 always terminates if a timeout is imposed on solving the
constraints and the optimization problems. Since we can always set a tight time limit on
solving the constraints and the optimization problems, the complexity of the algorithm
is determined mainly by the complexity of function attackCondition, which in turn
is determined by the complexity of abstract interpretation. The complexity of applying
abstract interpretation with the DeepPoly abstract domain is O(l2 × n3

max) where l is
the number of layers, and nmax is the maximum number of neurons in any of the lay-
ers. Let K be the number of images in X . Note that the number of trigger positions
is O(h × w), i.e., the size of an image. The best case complexity of Algorithm 2 is
O(l2 × n3

max × h × w) and the worst case complexity is O(l2 × n3
max × K × h × w).

We remark that in practice, l typically ranges from 1 to 20; nmax is often advised to be
no more than the input size (e.g., from dozens to thousands usually); K ranges from a
few to hundreds; and h × w depends on the image resolution (e.g., from hundreds to
millions). Thus, in general, Algorithm 2 could be time-consuming in practice and we
anticipate further optimization in future work.

The complexity of Algorithm 1 is the complexity of Algorithm 2 times the complex-
ity of the SPRT algorithm. The complexity of the SPRT algorithm is in general hard to
quantify and we refer the readers to [1] for a detailed discussion.

3.6 Discussion

Our approaches are designed to verify the absence of input-agnostic (i.e., not input-
specific) backdoor attacks as presented in Sect. 2. In the following, we briefly review
other backdoor attacks and discuss how to extend our approach to support them.
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In [12], Gu et al. described a backdoor attack which, instead of forcing the network
to classify any stamped image with the target label, only alters the label if the original
image has a specific ground truth label ti (e.g., Bob with the trigger will activate the
backdoor and be classified as Alice the manager). Our verification approach can be
easily adapted to verify the absence of this attack by focusing on images with label ti
in Algorithm 1 and Algorithm 2.

Another attack proposed in [12] works by reducing the performance (e.g., accuracy)
of the neural network on the images with a specific ground truth label ti, i.e., given an
image with ground truth label ti, the network will classify the stamped image with some
label ts 	= ti. The attack can be similarly handled by focusing on images with ground
truth label ti, although due to the disjunction introduced by ts 	= ti, the constraints are
likely to be harder to solve. That is, we can focus on images with ground truth label ti
in Algorithm 2, and define an attack to be successful if L(N(Is)) 	= ti is satisfied.

In [19], Liu et al. proposed to use backdoor triggers with different shapes (i.e., not
just in the form of a square or a rectangle). If the user is aware of the shape of the back-
door trigger, a different trigger can be used as input for Algorithm 1 and Algorithm 2
and the algorithms would work to verify the absence of such backdoor. Alternatively,
the users can choose a square-shaped backdoor trigger that is larger enough to cover
the actual backdoor trigger, in which case our algorithms would remain to be sound,
although it might be inconclusive if the trigger is too big.

Multiple groups [2,20,28,35] proposed the idea of poisoning only those samples in
the training data which have the same ground truth label as the target label to improve
the stealthiness of the backdoor attack. This type of attack is designed to trick the human
inspection on the training data, and so does not affect our verification algorithms.

In this work, we consider a specific type of stamping, i.e., the backdoor trigger
replaces the part of the original clean image. Multiple groups [6,19] proposed the use
of the blending operation as a way of ‘stamping’, i.e., the features of the backdoor
trigger are blended with the features of the original images with some coefficients α.
This is a form of input-specific backdoor, the trigger is different for different images.
To handle such kind of backdoor attacks, one way is to modify the constraint preI
according to the blending operation (assuming that α is known). Since the blending
operation proposed in [6,19] is linear, we expect this would not introduce additional
complexity to our algorithms.

Input-specific triggers, in general, may pose a threat to our approach. First, some
input-specific triggers [19,20] cover the whole image, which is likely to make our app-
roach inclusive due to false alarms resulted from over-approximation. Second, it may
not be easy to model some of the input-specific triggers in our framework. For instance,
Liu et al. [20] recently proposed to use reflection to create stamped images that look nat-
ural. Modeling the ‘stamping’ operation for this kind of attack would require us to know
where the reflection is in the image, which is highly non-trivial. However, it should also
be noted that input-specific triggers are often not as effective as input-agnostic triggers,
e.g., the reflection-based attack reported in [20] are hard to reproduce. Furthermore, as
discussed in Sect. 2, backdoor attack with input-specific triggers is an attacking method
that is more powerful than adversarial attacks, and the problem of verifying the absence
of backdoor attack with input-specific triggers is not yet clearly defined.
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4 Implementation and Evaluation

We have implemented our approach as a self-contained analysis engine in the Socrates
framework [26]. We use Gurobi [13] to solve the constraints and use scipy [36] to solve
the optimization problems.

We collect a set of 51 neural networks. 45 of them are fully connected ones and
are trained on the MNIST training set (i.e., a standard dataset which contains black and
white images of digits). These networks have the number of hidden layers ranging from
3 to 5. For each network, the number of neurons in each of its hidden layers ranges from
10 to 50, i.e., 10, 20, 30, 40, or 50. To evaluate our approach on neural networks built
with different activation functions, each activation function (i.e., ReLU, Sigmoid, and
Tanh) is used in 15 of the neural networks. Among the remaining six networks, three
of them are bigger fully connected networks adopted from the benchmarks reported
in [32]. They are all built with the ReLU activation function. For convenience, we name
the networks in the form of f k n where f is the name of the activation function, k
is the number of hidden layers, and n is the number of neurons in each hidden layer.
The remaining three networks are convolutional networks (which are often used in face
recognition systems) adopted from [32]. Although they have the same structure, i.e.,
each of them has two convolutional hidden layers and one fully connected hidden layer,
they are trained differently. One is trained in the normal way; one is trained using Dif-
fAI [22], and the last one is trained using projected gradient descent [7]. These training
methods are developed to improve the robustness of neural networks against adversarial
attacks. Our aim is thus to evaluate whether they help to prevent backdoor attacks as
well. We name these networks conv, conv diffai, and conv pgd.

We verify the networks against the backdoor trigger with shape (1, 3, 3). All the net-
works are trained using clean data since we focus on verifying the absence of backdoor
attacks. They all have precision of at least 90%, except Sigmoid 4 10 and Sigmoid 5 10,
which have precision of 81% and 89% respectively. In the following, we answer multi-
ple research questions. All the experiments are conducted using a machine with 3.1Ghz
16-core CPU and 64GB RAM. All models and experiment details are at [27].

RQ1: Is our realization of verifyX effective? This question is meaningful as our app-
roach relies on Algorithm verifyX . To answer this question, for each network, we
select the first 100 images in the test set (i.e., a K of 100 for Algorithm 1, which is
more than sufficient) and then apply Algorithm verifyX with these images and each
of the labels, i.e., 0 to 9. In total, we have 510 verification tasks. For each network, we
run 10 processes in parallel, each of which verifies a separate target. The only exception
is the network ReLU 3 1024, due to its complexity, we only run five parallel processes
(since each process consumes a lot of resources). In each verification process, we filter
out those images which are classified wrongly by the network as well as the images
which are already classified as the target label.

Figure 4 shows the results. The x-axis show the groups of the networks, e.g., ReLU 3
means five fully connected networks using the ReLU activation function with three hid-
den layers; 3 Full and 3 Conv mean the three fully connected and the three convolutional
networks adapted from [32] respectively. The y-axis shows the number of (network,
target) pairs. Note that each group may contain a different number of pairs, i.e., the
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Fig. 4. The results of verifyX

maximum values for the small network groups are 50, and the maximum values for the
last two groups are 30. First, we successfully verify 455 out of 510 verification tasks
(i.e., 89%) of them, i.e., the neural network is safe with respect to the selected images.
It is encouraging to notice that the verified tasks include all models adopted from [32],
which are considerably larger (e.g., with 1024 neurons at each layer) and more complex
(i.e., convolutional networks). Second, some networks are not proved to be safe with
some target labels. It could be either there is indeed a backdoor trigger that we fail to
identify (through optimization), or we fail to verify due to the over-approximation intro-
duced by abstract interpretation. Lastly, with the same structure (i.e., the same number
of hidden layers and the same number of neurons in each hidden layer), the networks
using the ReLU and Sigmoid activation functions are more often verified to be safe than
those using the Tanh activation function. This is most likely due to the difference in the
precision of the abstract transformers for these functions.

RQ2: can we verify the absence of backdoor attacks with a certain level of success
rate? To answer this question, we evaluate our approach on six networks used in RQ1,
i.e., ReLU 3 10, ReLU 5 50, Sigmoid 3 10, Sigmoid 5 50, Tanh 3 10, and Tanh 5 50.
These networks are chosen to cover a wide range of the number of hidden layers and
the number of neurons in each layer, as well as different activation functions. Note
that due to the high complexity of Algorithm 1 (which potentially applies Algorithm 2
hundreds of times), running Algorithm 1 on all the networks evaluated in RQ1 requires
an overwhelming amount of resources. Furthermore, since there is no existing work on
backdoor verification, we do not have any baseline to compare with.

Recall that Algorithm 1 has two important parameters K and θ, both of which poten-
tially have a significant impact on the verification result. We thus run each network with
four different settings, in which the number of images K is set to be either 5 or 10, and
the success rate θ is either 0.8 or 0.9. In total, with 10 target labels, we have a total of
240 verification tasks for this experiment. Note that some preliminary experiments are
conducted before we select these two K values.
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Fig. 5. Verification results

We use all the 10000 images in the test set as the image population and randomly
choose K images in each round of test. When a trigger is generated, the success rate of
the trigger is validated on the images in the test set (after the above-mentioned filtering).
Like in RQ1, we run each network with 10 parallel processes, each of which verifies a
separate target. As the SPRT algorithm may take a very long time to terminate, we set a
timeout for each verification task, i.e., 2 h for those networks with three hidden layers,
and 10 h for those networks with five hidden layers.

The results are shown in Fig. 5. The x-axis shows the networks, the y-axis shows
the number of verified pairs of network and target label. We have multiple observations
based on the experiment results. First, a quick glance shows that with the same struc-
ture and hypothesis testing parameters, more networks built with the ReLU activation
function are verified than those built with the Sigmoid and Tanh functions. Second, we
notice that the best result is achieved with K = 5 and θ = 0.9. With these parameter
values, we can verify that three networks ReLU 3 10, ReLU 5 50, and Sigmoid 3 10
are safe with respect to all the target labels and the network Sigmoid 5 50 is safe with
respect to nine over 10 target labels. If we keep the same success rate as 0.9 and increase
the number of images K from 5 to 10, we can see that the number of verified cases in
the network Sigmoid 5 50 decreases. This is because when we increase the number of
images that must be attacked successfully together, the probability that we do not have
the attack increases, which means we need more rounds of test to confirm the hypoth-
esis H0 and so the verification process for the network Sigmoid 5 50 times out before
reaching the conclusion. We have a similar observation when we keep the number of
images K at 5 but decrease the success rate from 0.9 to 0.8. When the success rate
decreases, the probability of not having the attack increases, which requires more tests
to confirm the hypothesis H0. As a result, for all these four networks, there are multiple
verification tasks that time out before reaching the conclusion. However, we notice that
there is an exception when we keep the success rate as 0.8 and increase the number of
images from 5 to 10. While the number of verified cases for the network ReLU 5 50
decreases (which can be explained in the same way as above), the number of veri-
fied cases for the network Sigmoid 3 10 increases (and the results for the other two
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Fig. 6. The running time of the experiments in RQ1 with benchmark networks

networks do not change). Our explanation is that when we increase the number of
images K to 10, it is easier for the Algorithm 2 to conclude that there is no attack,
and so the Algorithm 1 still collects enough evidence to conclude H0. On the other
hand, with the number of images is 5, Algorithm 2 may return a lot of UNKNOWN
(due to spurious triggers), and so the hypothesis testing in the Algorithm 1 goes back
and forth between the two hypotheses H0 and H1 and eventually times out.

A slightly surprising result is obtained for the network Tanh 3 10, i.e., our trigger
generation process generates two triggers for the target labels 2 and 5 when the success
rate is set to be 0.8. This is surprising as these networks are not generated with back-
door attack. This result can be potentially explained by the combination of the relatively
low success rate (i.e., 0.8) and the phenomenon known as universal adversarial pertur-
bations [23]. With the returned triggers, the users may want to investigate the network
further and potentially improve it with techniques such as robust training [7,22].

RQ3: Is our approach efficient time-wise? To answer this question, we collect the wall-
clock time to run the experiments in RQ1 and RQ2. For each network, we record the
average running time for 10 different target labels. The results for 45 small networks
are shown in Fig. 6. The x-axis shows the groups of 15 networks categorized based
on their activation functions and the y-axis shows the logarithmic scale of the running
time in the form of boxplots (where the box shows the result of 25 percentile to 75
percentile, the bottom and top lines are the minimum and maximum, and the orange
line is median). The execution time ranges from 14 s to less than 6 h for these networks.
Furthermore, we can see that there is not much difference between the running time
of the networks using the ReLU and Sigmoid activation functions. However, the run-
ning time of the networks using the Tanh function is one order of magnitude larger than
those of the ReLU and Sigmoid networks. The reason is that the Tanh networks have
many non-safe cases (as shown in Fig. 4) and, as a result, the verification process needs
to check more images at more trigger positions. The running time of those networks
adopted from [32] ranges from more than 5 min to less than 4 h, as shown in Table 1.
Finally, the running time for each network in RQ2 (i.e., the time required to verify the
networks against backdoor attacks) according to different settings is shown in Table 2.
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Table 1. The running time of the experiments in RQ1 with networks adapted from [32]

Network Time Network Time

ReLU 3 1024 237 m 24s conv 194 m 30 s

ReLU 5 100 5 m 38 s conv diffai 111 m 12 s

ReLU 8 200 48 m 34s conv pgd 190 m 19 s

Table 2. The running time of the experiments in RQ2

Network K = 5 K = 10 K = 5 K = 10

θ = 0.9 θ = 0.9 θ = 0.8 θ = 0.8

ReLU 3 10 31 m 31 s 46 m 39 s 55 m 44 s 68 m 54 s

ReLU 5 50 341 m 36 s 493 m 30 s 551 m 40 s 600 m 0 s

Sigmoid 3 10 46 m 43 s 59 m 28 s 92 m 34s 93 m 21 s

Sigmoid 5 50 476 m 38 s 588 m 25 s 600 m 0s 600 m 0 s

Tanh 3 10 114 m 2 s 105 m 18 s 50 m 58 s 26 m 4 s

Tanh 5 50 600 m 0s 600 m 0 s 600 m 0 s 600 m 0 s

RQ4: can our approach generate backdoor triggers? Being able to generate counterex-
amples is a part of a useful verification method. We conduct another experiment to
evaluate the effectiveness of our backdoor trigger generation approach. We train a new
set of 45 networks that have the same structure as those used for answering RQ1. The
difference is that this time each network is trained to contain backdoor through data
poisoning. In particular, for each network, we randomly extract 20% of the training
data, stamp a white square with shape (1, 3, 3) in one corner of the images, assign a
random target label, and then train the neural network from scratch with the poisoned
training data. While such an attack is shown to be effective [12], it is not guaranteed
to be always successful on a randomly selected set of images. Thus, we do the follow-
ing to make sure that there exists a trigger for a set of selected images. From 10000
images in the test set, we first filter out those images which are classified wrongly or
already classified with the target label. The remaining images are collected into a set
X0. Next, to make sure that the selected images have a high chance of being attacked
successfully, we apply another filter on X0. This time, we stamp each image in X0 with
a white square at the same trigger position as we poison the training data. We then keep
the image if its stamped version is classified by the network with the target label. The
remaining images after the second filter are collected into another set X . We apply our
approach, in particular, the backdoor trigger generation on X , if |X| ÷ |X0| ≥ 0.8, i.e.,
the backdoor attack has a success rate of 80%.

The results are shown in Fig. 7 in which the y-axis shows the number of networks.
The timeout is set to be 120 s. Among the 45 networks, we can see that a trigger is
successfully generated for 33 (i.e., 73%) of the networks. A close investigation of these
networks shows that the generated trigger is the exact white square that is used to stamp
the training data. There are 12 networks for which the trigger is not generated. We
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Fig. 7. The results of backdoor trigger generation

investigate these networks and see that they are either too biased (i.e., classifying every
image with the target label and thus |X0| = 0) or the attack on these networks does
not perform well (i.e., |X| ÷ |X0| < 0.8). In other words, the backdoor attack on
these networks failed and, as a result, the generation process does not even begin with
these networks. In a nutshell, we successfully generate the trigger for every successful
backdoor attack. Finally, note that the running time of the backdoor generation process
is reasonable (i.e., on average, 50 s to generate a backdoor trigger for one network) and
thus it does not affect the overall performance of our verification algorithm.

5 Related Work

The work which is closest to ours is [37] in which Wang et al. aim to certify neural
networks’ robustness against backdoor attack using randomized smoothing. However,
there are many noticeable differences between their approach and ours. First, while our
work focuses on verifying the absence of backdoor, their work aims to certify the robust-
ness of individual images based on the provided training data and learning algorithm
(which can be used to implicitly derive the network). Second, by using random noises
to estimate the networks’ behaviors, their approach can only obtain very loose results.
As shown in their experiments, they can only certify the robustness against backdoor
attack with triggers contains two pixels and on a “toy” network with only two layers
and two labels, after simplifying the input features by rounding them into 0 or 1. Com-
pare to their approach, our approach can apply to networks used to solve real image
classification problems as shown in our experiments.

Our work is closely related to a line of work on verifying neural networks. Existing
approaches mostly focus on local robustness property and can be roughly classified into
two categories: exact methods and approximation methods. The exact methods aim to
model the networks precisely and solve the verification problem using techniques such
as mixed-integer linear programming [34] or SMT solving [8,15]. On the one hand,
these approaches can guarantee sound and complete results in verifying neural net-
works. On the other hand, they often have limited scalability and thus are limited to
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small neural networks. Moreover, these approaches have difficulty in handling activa-
tion functions except the ReLU function.

In comparison, the approximation approaches over-approximate neural network
behavior to gain better scalability. AI2 [10] is the first work pursuing this direction using
the classic abstract interpretation technique. After that, more researchers try to explore
different abstract domains for better precision without sacrificing too much scalabil-
ity [29,30,32]. In general, the approximation approaches are more scalable than the
exact methods, and they are capable of handling activation functions such as Sigmoid
and Tanh. However, due to the over-approximation, these methods may fail to verify a
valid property.

We also notice that it is possible to incorporate abstraction refinement to the approx-
imation methods and gain better precision, for instance, by splitting an abstraction into
multiple parts to reduce the imprecision due to over-approximation. There are many
works [21,40,41] which fall into this category. We remark that our approach is orthog-
onal to the development of sophisticated verification techniques for neural networks.

Finally, our approach, especially the part on backdoor trigger generation, is related
to many approaches on generating adversarial samples for neural networks. Some repre-
sentative approaches in this category are FGSM [11], JSMA [24], and C&W [4] which
aim to generate adversarial samples to violate the local robustness property, and [42]
which aims to violate fairness property.

6 Conclusion

In this work, we propose the first approach to formally verify that a neural network is
safe from backdoor attacks. We address the problem on how to verify the absence of a
backdoor that reaches a certain level of success rate. Our approach is based on abstract
interpretation and we provide an implementation based on DeepPoly abstract domain.
The experiment results show the potential of our approach. In the future, we intend to
extend our approach with more abstract domains as well as improve the performance
to verify more real-life networks. Besides that, we also intend to apply our approach to
verify the networks designed for other tasks, such as sound or text classification.
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give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.
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Commons license, unless indicated otherwise in a credit line to the material. If material is not
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