
Neural Network Robustness as a Verification
Property: A Principled Case Study

Marco Casadio1(B), Ekaterina Komendantskaya1, Matthew L. Daggitt1, Wen Kokke2,
Guy Katz3, Guy Amir3, and Idan Refaeli3

1 Heriot-Watt University, Edinburgh, UK
{mc248,ek19,md2006}@hw.ac.uk
2 University of Strathclyde, Glasgow, UK

wen.kokke@strath.ac.uk
3 The Hebrew University of Jerusalem, Jerusalem, Israel
{guykatz,guyam,idan0610}@cs.huji.ac.il

Abstract. Neural networks are very successful at detecting patterns in noisy
data, and have become the technology of choice in many fields. However, their
usefulness is hampered by their susceptibility to adversarial attacks. Recently,
many methods for measuring and improving a network’s robustness to adversar-
ial perturbations have been proposed, and this growing body of research has given
rise to numerous explicit or implicit notions of robustness. Connections between
these notions are often subtle, and a systematic comparison between them is miss-
ing in the literature. In this paper we begin addressing this gap, by setting up gen-
eral principles for the empirical analysis and evaluation of a network’s robustness
as a mathematical property—during the network’s training phase, its verification,
and after its deployment. We then apply these principles and conduct a case study
that showcases the practical benefits of our general approach.

Keywords: Neural Networks · Adversarial Training · Robustness · Verification

1 Introduction

Safety and security are critical for many complex systems that use deep neural networks
(DNNs). Unfortunately, due to the opacity of DNNs, these properties are difficult to
ensure. Perhaps the most famous instance of this problem is guaranteeing the robustness
of DNN-based systems against adversarial attacks [5,17]. Intuitively, a neural network
is ε-ball robust around a particular input if, when you move no more than ε away from
that input in the input space, the output does not change much; or, alternatively, the
classification decision that the network gives does not change. Even highly accurate
DNNs will often display only low robustness, and so measuring and improving the
adversarial robustness of DNNs has received significant attention by both the machine
learning and verification communities [7,8,15].

As a result, neural network verification often follows a continuous verification
cycle [9], which involves retraining neural networks with a given verification prop-
erty in mind, as Fig. 1 shows. More generally, such training can be regarded as a way to
c© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13371, pp. 219–231, 2022.
https://doi.org/10.1007/978-3-031-13185-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13185-1_11&domain=pdf
https://doi.org/10.1007/978-3-031-13185-1_11

220 M. Casadio et al.

impose a formal specification on a DNN; and so, apart from improving its robustness,
it may also contribute to the network’s explainability, and facilitate its verification. Due
to the high level of interest in adversarial robustness, numerous approaches have been
proposed for performing such retraining in recent years, each with its own specific
details. However it is quite unclear what are the benefits that each approach offers, from
a verification point of view.

Fig. 1. Continuous Verification Cycle

The primary goal of this case-
study paper is to introduce a more
holistic methodology, which puts the
verification property in the centre of
the development cycle, and in turn
permits a principled analysis of how
this property influences both training
and verification practices. In particu-
lar, we analyse the verification properties that implicitly or explicitly arise from the
most prominent families of training techniques: data augmentation [14], adversarial
training [5,10], Lipschitz robustness training [1,12], and training with logical con-
straints [4,20]. We study the effect of each of these properties on verifying the DNN in
question.

In Sect. 2, we start with the forward direction of the continuous verification cycle,
and show how the above training methods give rise to logical properties of classifica-
tion robustness (CR), strong classification robustness (SCR), standard robustness (SR)
and Lipschitz robustness (LR). In Sect. 4, we trace the opposite direction of the cycle,
i.e. show how and when the verifier failure in proving these properties can be miti-
gated. However Sect. 3 first gives an auxiliary logical link for making this step. Given
a robustness property as a logical formula, we can use it not just in verification, but
also in attack or property accuracy measurements. We take property-driven attacks as
a valuable tool in our study, both in training and in evaluation. Section 4 makes the
underlying assumption that verification requires retraining: it shows that the verifier’s
success ranges only 0–1.5% for an accurate baseline network. We show how our logical
understanding of robustness properties empowers us in property-driven training and in
verification. We first give abstract arguments why certain properties are stronger than
others or incomparable; and then we use training, attacks and the verifier Marabou to
confirm them empirically. Sections 5 and 6 add other general considerations for setting
up the continuous verification loop and conclude the paper.

2 Existing Training Techniques and Definitions of Robustness

Data Augmentation is a straightforward method for improving robustness via train-
ing [14]. It is applicable to any transformation of the input (e.g. addition of noise, trans-
lation, rotation, scaling) that leaves the output label unchanged. To make the network
robust against such a transformation, one augments the dataset with instances sampled
via the transformation.

More formally, given a neural network N : Rn → R
m, the goal of data augmenta-

tion is to ensure classification robustness, which is defined as follows. Given a training

Neural Network Robustness as a Verification Property 221

dataset input-output pair (x̂,y) and a distance metric | · − · |, for all inputs x within
the ε-ball distance of x̂, we say that N is classification-robust if class y has the largest
score in output N(x).

Definition 1 (Classification robustness).

CR(ε, x̂) � ∀x : |x − x̂| ≤ ε ⇒ argmaxN(x) = y

In order to apply data augmentation, an engineer needs to specify: c1. the value of ε,
i.e. the admissible range of perturbations; c2. the distance metric, which is determined
according to the admissible geometric perturbations; and c3. the sampling method used
to produce the perturbed inputs (e.g., random sampling, adversarial attacks, generative
algorithm, prior knowledge of images).

Classification robustness is straightforward, but does not account for the possibil-
ity of having “uncertain” images in the dataset, for which a small perturbation ideally
should change the class. For datasets that contain a significant number of such images,
attempting this kind of training could lead to a significant reduction in accuracy.

Adversarial training is a current state-of the-art method to robustify a neural net-
work. Whereas standard training tries to minimise loss between the predicted value,
f(x̂), and the true value, y, for each entry (x̂,y) in the training dataset, adversarial
training minimises the loss with respect to the worst-case perturbation of each sam-
ple in the training dataset. It therefore replaces the standard training objective L(x̂,y)
with: max∀x:|x−x̂|≤ε L(x,y). Algorithmic solutions to the maximisation problem that
find the worst-case perturbation has been the subject of several papers. The earliest
suggestion was the Fast Gradient Sign Method (FGSM) algorithm introduced by [5]:

FGSM(x̂) = x̂+ ε · sign(∇xL(x,y))

However, modern adversarial training methods usual rely on some variant of the Pro-
jected Gradient Descent (PGD) algorithm [11] which iterates FGSM:

PGD0(x̂) = x̂; PGDt+1(x̂) = PGDt(FGSM(x̂))

It has been empirically observed that neural networks trained using this family
of methods exhibit greater robustness at the expense of an increased generalisation
error [10,18,21], which is frequently referred to as the accuracy-robustness trade-off
for neural networks (although this effect has been observed to disappear as the size of
the training dataset grows [13]).

In logical terms what is this procedure trying to train for? Let us assume that there’s
some maximum distance, δ, that it is acceptable for the output to be perturbed given
the size of perturbations in the input. This leads us to the following definition, where
|| · − · || is a suitable distance function over the output space:

Definition 2 (Standard robustness).

SR(ε, δ, x̂) � ∀x : |x − x̂| ≤ ε ⇒ ||f(x) − f(x̂)|| ≤ δ

222 M. Casadio et al.

We note that, just as with data augmentation, choices c1–c3 are still there to be
made, although the sampling methods are usually given by special-purpose FGSM/PGD
heuristics based on computing the loss function gradients.

Training for Lipschitz Robustness. More recently, a third competing definition of
robustness has been proposed: Lipschitz robustness [2]. Inspired by the well-established
concept of Lipschitz continuity, Lipschitz robustness asserts that the distance between
the original output and the perturbed output is at most a constant L times the change in
the distance between the inputs.

Definition 3 (Lipschitz robustness).

LR(ε, L, x̂) � ∀x : |x − x̂| ≤ ε ⇒ ||f(x) − f(x̂)|| ≤ L|x − x̂|
As will be discussed in Sect. 4, this is a stronger requirement than standard robust-
ness. Techniques for training for Lipschitz robustness include formulating it as a semi-
definite programming optimisation problem [12] or including a projection step that
restricts the weight matrices to those with suitable Lipschitz constants [6].

Training with Logical Constraints. Logically, this discussion leads one to ask whether
a more general approach to constraint formulation may exist, and several attempts in
the literature addressed this research question [4,20], by proposing methods that can
translate a first-order logical formula C into a constraint loss function LC . The loss
function penalises the network when outputs do not satisfy a given Boolean constraint,
and universal quantification is handled by a choice of sampling method. Our standard
loss function L is substituted with:

L∗(x̂,y) = αL(x̂,y) + βLC(x̂,y) (1)

where weights α and β control the balance between the standard and constraint loss.
This method looks deceivingly as a generalisation of previous approaches. However,

even given suitable choices for c1–c3, classification robustness cannot be modelled via
a constraint loss in the DL2 [4] framework, as argmax is not differentiable. Instead,
[4] defines an alternative constraint, which we call strong classification robustness:

Definition 4 (Strong classification robustness).

SCR(ε, η, x̂) � ∀x : |x − x̂| ≤ ε ⇒ f(x) ≥ η

which looks only at the prediction of the true class and checks whether it is greater than
some value η (chosen to be 0.52 in their work).

We note that sometimes, the constraints (and therefore the derived loss functions)
refer to the true label y rather than the current output of the network f(x̂), e.g. ∀x :
|x − x̂| ≤ ε ⇒ |f(x) − y| ≤ δ. This leads to scenarios where a network that is robust
around x̂ but gives the wrong prediction, being penalised by LC which on paper is
designed to maximise robustness. Essentially LC is trying to maximise both accuracy
and constraint adherence concurrently. Instead, we argue that to preserve the intended
semantics of α and β it is important to instead compare against the current output of the
network. Of course, this does not work for SCR because deriving the most popular class
from the output f(x̂) requires the argmax operator—the very function that SCR seeks
to avoid using. This is another argument why (S)CR should be avoided if possible.

Neural Network Robustness as a Verification Property 223

3 Robustness in Evaluation, Attack and Verification

Given a particular definition of robustness, a natural question is how to quantify how
close a given network is to satisfying it. We argue that there are three different measures
that one should be interested in: 1. Does the constraint hold? This is a binary measure,
and the answer is either true or false. 2. If the constraint does not hold, how easy is it
for an attacker to find a violation? 3. If the constraint does not hold, how often does the
average user encounter a violation? Based on these measures, we define three concrete
metrics: constraint satisfaction, constraint security, and constraint accuracy.1

Let X be the training dataset, B(x̂, ε) � {x ∈ R
n | |x − x̂| ≤ ε} be the ε-ball

around x̂ and P be the right-hand side of the implication in each of the definitions
of robustness. Let Iφ be the standard indicator function which is 1 if constraint φ(x)
holds and 0 otherwise. The constraint satisfaction metric measures the proportion of
the (finite) training dataset for which the constraint holds.

Definition 5 (Constraint satisfaction).

CSat(X) =
1

|X |
∑

x̂∈X
I∀x∈B(x̂,ε):P (x)

In contrast, constraint securitymeasures the proportion of inputs in the dataset such that
an attackA is unable to find an adversarial example for constraint P . In our experiments
we use the PGD attack for A, although in general any strong attack can be used.

Definition 6 (Constraint security).

CSec(X) =
1

|X |
∑

x̂∈X
IP (A(x̂))

Finally, constraint accuracy estimates the probability of a random user coming
across a counter-example to the constraint, usually referred as 1 - success rate in the
robustness literature. Let S(x̂, n) be a set of n elements randomly uniformly sampled
from B(x̂, ε). Then constraint accuracy is defined as:

Definition 7 (Constraint accuracy).

CAcc(X) =
1

|X |
∑

x̂∈X

⎛

⎝ 1
n

∑

x∈S(x̂,n)

IP (x)

⎞

⎠

Note that there is no relationship between constraint accuracy and constraint security:
an attacker may succeed in finding an adversarial example where random sampling
fails and vice-versa. Also note the role of sampling in this discussion and compare it
to the discussion of the choice c3 in Sect. 2. Firstly, sampling procedures affect both
training and evaluation of networks. But at the same time, their choice is orthogonal

1 Our naming scheme differs from [4] who use the term constraint accuracy to refer to what we
term constraint security. In our opinion, the term constraint accuracy is less appropriate here
than the name constraint security given the use of an adversarial attack.

224 M. Casadio et al.

to choosing the verification constraint for which we optimise or evaluate. For example,
we measure constraint security with respect to the PGD attack, and this determines the
way we sample; but having made that choice still leaves us to decide which constraint,
SCR, SR, LR, or other we will be measuring as we sample. Constraint satisfaction is
different from constraint security and accuracy, in that it must evaluate constraints over
infinite domains rather than merely sampling from them.

Choosing an Evaluation Metric. It is important to note that for all three evaluation
metrics, one still has to make a choice for constraint P , namely SR, SCR or LR, as
defined in Sect. 2. As constraint security always uses PGD to find input perturbations,
the choice of SR, SCR and LR effectively amounts to us making a judgement of what
an adversarial perturbation consists of: is it a class change as defined by SCR, or is
it a violation of the more nuanced metrics defined by SR and LR? Therefore we will
evaluate constraint security on the SR/SCR/LR constraints using a PGD attack.

For large search spaces in n dimensions, random sampling deployed in constraint
accuracy fails to find the trickier adversarial examples, and usually has deceivingly
high performance: we found 100% and >98% constraint accuracy for SR and SCR,
respectively. We will therefore not discuss these experiments in detail.

4 Relative Comparison of Definitions of Robustness

We now compare the strength of the given definitions of robustness using the intro-
duced metrics. For empirical evaluation, we train networks on FASHION MNIST (or
just FASHION) [19] and a modified version of the GTSRB [16] datasets consisting,
respectively, by 28× 28 and 48× 48 images belonging to 10 classes. The networks
consist of two fully connected layers: the first one having 100 neurons and ReLU as
activation function, and the last one having 10 neurons on which we apply a clamp
function [−100, 100], because the traditional softmax function is not compatible with
constraint verification tools such as Marabou. Taking four different robustness proper-
ties for which we optimise while training (Baseline, LR, SR, SCR), gives us 8 different
networks to train, evaluate and attack. Generally, all trends we observed for the two data
sets were the same, and we put matching graphs in [3] whenever we report a result for
one of the data sets. Marabou [8] was used for evaluating constraint satisfaction.

4.1 Standard and Lipschitz Robustness

Lipschitz robustness is a strictly stronger constraint than standard robustness, in the
sense that when a network satisfies LR(ε, L) then it also satisfies SR(ε, εL). However,
the converse does not hold, as standard robustness does not relate the distances between
the inputs and the outputs. Consequently, there are SR(ε, δ) robust models that are not
LR(ε, L) robust for any L, as for any fixed L one can always make the distance |x− x̂|
arbitrarily small in order to violate the Lipschitz inequality.

Neural Network Robustness as a Verification Property 225

Table 1. Constraint satisfaction results for the Classification, Standard and Lipschitz constraints.
These values are calculated over the test set and represented as %.

FASHION net trained with: GTSRB net trained with:
Baseline SCR SR LR Baseline SCR SR LR

CR satisfaction 1.5 2.0 2.0 34.0 0.5 1.0 3.0 4.5

SR satisfaction 0.5 1.0 65.8 100.0 0.0 0.0 24.0 97.0

LR satisfaction 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 2. Experiments that show how the two networks
trained with LR and SR constraints perform when evalu-
ated against different definitions of robustness underlying
the attack; ε measures the attack strength.

Empirical Significance of the
Conclusions for Constraint
Security. Figure 2 shows an
empirical evaluation of this gen-
eral result. If we train two neu-
ral networks, one with the SR,
and the other with the LR con-
straint, then the latter always
has higher constraint security
against both SR and LR attacks
than the former. It also con-
firms that generally, stronger
constraints are harder to obtain:
whether a network is trained
with SR or LR constraints, it is
less robust against an LR attack
than against any other attack.

Empirical Significance of the
Conclusions for Constraint Sat-
isfaction. Table 1 shows that LR
is very difficult to guarantee as
a verification property, indeed
none of our networks satisfied
this constraint for any image in
the data set. At the same time,
networks trained with LR satisfy
the weaker property SR, for 100% and 97% of images – a huge improvement on the
negligible percentage of robust images for the baseline network! Therefore, knowing
a verification property or mode of attack, one can tailor the training accordingly, and
training with stronger constraint gives better results.

4.2 (Strong) Classification Robustness

Strong classification robustness is designed to over-approximate classification robust-
ness whilst providing a logical loss function with a meaningful gradient. We work under
the assumption that the last layer of the classification network is a softmax layer, and

226 M. Casadio et al.

therefore the output forms a probability distribution. When η > 0.5 then any network
that satisfies SCR(ε, η) also satisfies CR(ε). For η ≤ 0.5 this relationship breaks down
as the true class may be assigned a probability greater than η but may still not be the
class with the highest probability. We therefore recommended that one only uses value
of η > 0.5 when using strong classification robustness (for example η = 0.52 in [4]).

Fig. 3. Experiments that show how adversarial train-
ing, training with data augmentation, and training
with constraint loss affect standard and classifica-
tion robustness of networks; ε measures the attack
strength.

Empirical Significance of the Con-
clusions for Constraint Security.
Because the CR constraint cannot be
used within a loss function, we use
data augmentation when training to
emulate its effect. First, we confirm
our assumptions about the relative
inefficiency of using data augmen-
tation compared to adversarial train-
ing or training with constraints, see
Fig. 3. Surprisingly, neural networks
trained with data augmentation give
worse results than even the baseline
network.

As previously discussed, random
uniform sampling struggles to find
adversarial inputs in large search-
ing spaces. It is logical to expect
that using random uniform sampling
when training will be less successful
than training with sampling that uses
FGSM or PGD as heuristics. Indeed,
Fig. 3 shows this effect for data aug-
mentation.

One may ask whether the trends
just described would be replicated
for more complex architectures of neural networks. In particular, data augmentation
is known to require larger networks. By replicating the results with a large, 18-layer
convolutional network from [4] (second graph of Fig. 3), we confirm that larger net-
works handle data augmentation better, and that data augmentation affords improved
robustness compared to the baseline. Nevertheless, data augmentation still lags behind
all other modes of constraint-driven training, and thus this major trend remains stable
across network architectures. The same figure also illustrates our point about the relative
strength of SCR compared to CR: a network trained with data augmentation (equivalent
to CR) is more prone to SCR attacks than a network trained with the SCR constraint.

Empirical Significance of the Conclusions for Constraint Satisfaction. Although
Table 1 confirms that training with a stronger property (SCR) does improve the con-
straint satisfaction of a weaker property (CR), the effect is an order of magnitude smaller
than what we observed for LR and SR. Indeed, the table suggests that training with the

Neural Network Robustness as a Verification Property 227

LR constraint gives better results for CR constraint satisfaction. This does not contra-
dict, but does not follow from our theoretical analysis.

4.3 Standard vs Classification Robustness

Given that LR is stronger than SR and SCR is stronger than CR, the obvious question
is whether there is a relationship between these two groups. In short, the answer to this
question is no. In particular, although the two sets of definitions agree on whether a
network is robust around images with high-confidence, they disagree over whether a
network is robust around images with low confidence. We illustrate this with an exam-
ple, comparing SR against CR. We note that a similar analysis holds for any pairing
from the two groups.

Fig. 4. Images from the MNIST
set

The key insight is that standard robustness bounds
the drop in confidence that a neural network can exhibit
after a perturbation, whereas classification robustness
does not. Figure 4a shows two hypothetical images from
the MNIST dataset. Our network predicts that Fig. 4a
has an 85% chance of being a 7. Now consider adding
a small perturbation to the image and consider two dif-
ferent scenarios. In the first scenario the output of the
network for class 7 decreases from 85% to 83% and
therefore the classification stays the same. In the second
scenario the output of the network for class 7 decreases from 85% to 45%, and results
in the classification changing from 7 to 9. When considering the two definitions, a small
change in the output leads to no change in the classification and a large change in the
output leads to a change in classification and so robustness and classification robustness
both agree with each other.

However, now consider Fig. 4b with relatively high uncertainty. In this case the
network is (correctly) less sure about the image, only narrowly deciding that it’s a 7.
Again consider adding a small perturbation. In the first scenario the prediction of the
network changes dramatically with the probability of it being a 7 increasing from 51%
to 91% but leaves the classification unchanged as 7. In the second scenario the output
of the network only changes very slightly, decreasing from 51% to 49% flipping the
classification from 7 to 9. Now, the definitions of SR and CR disagree. In the first
case, adding a small amount of noise has erroneously massively increased the network’s
confidence and therefore the SR definition correctly identifies that this is a problem. In
contrast CR has no problem with this massive increase in confidence as the chosen
output class remains unchanged. Thus, SR and CR agree on low-uncertainty examples,
but CR breaks down and gives what we argue are both false positives and false negatives
when considering examples with high-uncertainty.

Empirical Significance of the Conclusions for Constraint Security. Our empirical
study confirms these general conclusions. Figure 2 shows that depending on the prop-
erties of the dataset, SR may not guarantee SCR. The results in Fig. 5 tell us that using
the SCR constraint for training does not help to increase defences against SR attacks.
A similar picture, but in reverse, can be seen when we optimize for SR but attack with
SCR. Table 1 confirms these trends for constraint satisfaction.

228 M. Casadio et al.

5 Other Properties of Robustness Definitions

Table 2. A comparison of the different types of robustness studied in this paper. Top half: general
properties. Bottom half: relation to existing machine-learning literature

Definition Standard
robustness

Lipschitz
robustness

Classification
robustness

Strong class.
robustness

Problem domain General General Classification Classification
Interpretability Medium Low High Medium
Globally desirable ✓ ✓ ✗ ✗

Has loss functions ✓ ✓ ✗ ✓

Adversarial training ✓ ✗ ✗ ✗

Data augmentation ✗ ✗ ✓ ✗

Logical-constraint training [4] ✓ ✓ ✗ ✓

Fig. 5. Experiments that show how different choices of a constraint
loss affect standard robustness of neural networks.

We finish with a sum-
mary of further inter-
esting properties of the
four robustness defini-
tions. Table 2 shows a
summary of all compari-
son measures considered
in the paper.

Dataset assumptions con-
cern the distribution of
the training data with
respect to the data man-
ifold of the true distribu-
tion of inputs, and influ-
ence evaluation of robustness. For SR and LR it is, at minimum, desirable for the net-
work to be robust over the entire data manifold. In the most domains the shape of the
manifold is unknown and therefore it is necessary to approximate it by taking the union
of the balls around the inputs in the training dataset. We are not particularly interested
about whether the network is robust in regions of the input space that lie off the data
manifold, but there is no problem if the network is robust in these regions. Therefore
these definitions make no assumptions about the distribution of the training dataset.

This is in contrast to CR and SCR. Rather than requiring that there is only a small
change in the output, they require that there is no change to the classification. This is
only a desirable constraint when the region being considered does not contain a decision
boundary. Consequently when one is training for some form of classification robustness,
one is implicitly making the assumption that the training data points lie away from any
decision boundaries within the manifold. In practice, most datasets for classification
problems assign a single label instead of an entire probability distribution to each input
point, and so this assumption is usually valid. However, for datasets that contain input

Neural Network Robustness as a Verification Property 229

points that may lie close to the decision boundaries, CR and SCR may result in a logi-
cally inconsistent specification.

Interpretability. One of the key selling points of training with logical constraints is
that, by ensuring that the network obeys understandable constraints, it improves the
explainability of the neural network. Each of the robustness constraints encode that
“small changes to the input only result in small changes to the output”, but the inter-
pretability of each definition is also important.

All of the definitions share the relatively interpretable ε parameter, which measures
how large a perturbation from the input is acceptable. Despite the other drawbacks
discussed so far, CR is inherently the most interpretable as it has no second parameter. In
contrast, SR and SCR require extra parameters, δ and η respectively, which measure the
allowable deviation in the output. Their addition makes these models less interpretable.

Finally we argue that, although LR is the most desirable constraint, it is also the
least interpretable. Its second parameter L measures the allowable change in the out-
put as a proportion of the allowable change in the input. It therefore requires one to
not only have an interpretation of distance for both the input and output spaces, but to
be able to relate them. In most domains, this relationship simply does not exist. Con-
sider the MNIST dataset, both the commonly used notion of pixel-wise distance used
in the input set, although crude, and the distance between the output distributions are
both interpretable. However, the relationship between them is not. For example, what
does allowing the distance between the output probability distributions being no more
than twice the distance between the images actually mean? This therefore highlights a
common trade-off between complexity of the constraint and its interpretability.

6 Conclusions

These case studies have demonstrated the importance of emancipating the study of
desirable properties of neural networks from a concrete training method, and study-
ing these properties in an abstract mathematical way. For example, we have discovered
that some robustness properties can be ordered by logical strength and some are incom-
parable. Where ordering is possible, training for a stronger property helps in verifying
a weaker property. Some of the stronger properties, such as Lipschitz robustness, are
not yet feasible for the modern DNN solvers, such as Marabou [8]. Moreover, we show
that the logical strength of the property may not guarantee other desirable properties,
such as interpretability. Some of these findings lead to very concrete recommendations,
e.g.: it is best to avoid CR and SCR as they may lead to inconsistencies; when using LR
and SR, one should use stronger property (LR) for training in order to be successful in
verifying a weaker one (SR). In other cases, the distinctions that we make do not give
direct prescriptions, but merely discuss the design choices and trade-offs.

This paper also shows that constraint security, a measure intermediate between con-
straint accuracy and constraint satisfaction, is a useful tool in the context of tuning the
continuous verification loop. It is more efficient to measure and can show more nuanced
trends than constraint satisfaction. It can be used to tune training parameters and build
hypotheses which we ultimately confirm with constraint satisfaction.

230 M. Casadio et al.

We hope that this study will contribute towards establishing a solid methodology
for continuous verification, by setting up some common principles to unite verification
and machine learning approaches to DNN robustness.

Acknowledgement. Authors acknowledge support of EPSRC grant AISEC EP/T026952/1 and
NCSC grant Neural Network Verification: in search of the missing spec.

References

1. Anil, C., Lucas, J., Grosse, R.: Sorting out Lipschitz function approximation. In: Interna-
tional Conference on Machine Learning, pp. 291–301. PMLR (2019)

2. Balan, R., Singh, M., Zou, D.: Lipschitz properties for deep convolutional networks. Con-
temp. Math. 706, 129–151 (2018)

3. Casadio, M., et al.: Neural network robustness as a mathematical property: a principled case
study (2021). https://github.com/aisec-private/training-with-constraints

4. Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C., Vechev, M.T.: DL2:
training and querying neural networks with logic. In: Proceedings of the 36th International
Conference Machine Learning, ICML 2019, vol. 97, pp. 1931–1941. PMLR (2019)

5. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

6. Gouk, H., Frank, E., Pfahringer, B., Cree, M.J.: Regularisation of neural networks by enforc-
ing Lipschitz continuity. Mach. Learn. 110(2), 393–416 (2020). https://doi.org/10.1007/
s10994-020-05929-w

7. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9 1

8. Katz, G., et al.: The Marabou framework for verification and analysis of deep neural net-
works. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 443–452. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

9. Komendantskaya, E., Kokke, W., Kienitz, D.: Continuous verification of machine learning:
a declarative programming approach. In: PPDP 2020: 22nd International Symposium on
Principles and Practice of Declarative Programming, Bologna, Italy, 9–10 September 2020,
pp. 1:1–1:3. ACM (2020)

10. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models
resistant to adversarial attacks. In: International Conference on Learning Representations
(2018)

11. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models
resistant to adversarial attacks (2019)

12. Pauli, P., Koch, A., Berberich, J., Kohler, P., Allgower, F.: Training robust neural networks
using Lipschitz bounds. IEEE Control Syst. Lett. (2021)

13. Raghunathan, A., Xie, S.M., Yang, F., Duchi, J.C., Liang, P.: Adversarial training can hurt
generalization. arXiv preprint arXiv:1906.06032 (2019)

14. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J.
Big Data 6, 60 (2019)

15. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying neural
networks. PACMPL 3(POPL), 41:1–41:30 (2019). https://doi.org/10.1145/3290354

16. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German traffic sign recognition bench-
mark: a multi-class classification competition. In: IEEE International Joint Conference on
Neural Networks, pp. 1453–1460 (2011)

https://github.com/aisec-private/training-with-constraints
https://doi.org/10.1007/s10994-020-05929-w
https://doi.org/10.1007/s10994-020-05929-w
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-030-25540-4_26
http://arxiv.org/abs/1906.06032
https://doi.org/10.1145/3290354

Neural Network Robustness as a Verification Property 231

17. Szegedy, C., et al.: Intriguing properties of neural networks. In: 2nd International Conference
on Learning Representations, ICLR 2014 (2014)

18. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be at odds
with accuracy. In: International Conference on Learning Representations (2018)

19. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms (2017)

20. Xu, J., Zhang, Z., Friedman, T., Liang, Y., den Broeck, G.V.: A semantic loss function for
deep learning with symbolic knowledge. In: Dy, J.G., Krause, A. (eds.) Proceedings of
the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, 10–15 July 2018. Proceedings of Machine Learning Research, vol. 80,
pp. 5498–5507. PMLR (2018)

21. Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., Jordan, M.: Theoretically principled trade-
off between robustness and accuracy. In: International Conference on Machine Learning, pp.
7472–7482. PMLR (2019)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Neural Network Robustness as a Verification Property: A Principled Case Study
	1 Introduction
	2 Existing Training Techniques and Definitions of Robustness
	3 Robustness in Evaluation, Attack and Verification
	4 Relative Comparison of Definitions of Robustness
	4.1 Standard and Lipschitz Robustness
	4.2 (Strong) Classification Robustness
	4.3 Standard vs Classification Robustness

	5 Other Properties of Robustness Definitions
	6 Conclusions
	References

