®

Check for
updates

A Billion SMT Queries a Day
(Invited Paper)

Neha Rungta ™)

Amazon Web Services, Seattle, USA

rungta@amazon.com

Abstract. Amazon Web Services (AWS) is a cloud computing services
provider that has made significant investments in applying formal meth-
ods to proving correctness of its internal systems and providing assurance
of correctness to their end-users. In this paper, we focus on how we built
abstractions and eliminated specifications to scale a verification engine
for AWS access policies, ZELKOVA, to be usable by all AWS users. We
present milestones from our journey from a thousand SMT invocations
daily to an unprecedented billion SMT calls in a span of five years. In
this paper, we talk about how the cloud is enabling application of formal
methods, key insights into what made this scale of a billion SMT queries
daily possible, and present some open scientific challenges for the formal
methods community.

Keywords: Cloud Computing *+ Formal Verification - SMT Solving

1 Introduction

Amazon Web Services (AWS) has made significant investments in developing and
applying formal tools and techniques to prove the correctness of critical internal
systems and provide services to AWS users to prove correctness of their own sys-
tems [24]. We use and apply a varied set of automated reasoning techniques at
AWS. For example, we use (i) bounded model checking [35] to verify memory safety
properties of boot code running in AWS data centers and of real-time operating
system used in IoT devices [22,25,26], (ii) proof assistants such as EasyCrypt [12]
and domain-specific languages such as Cryptol [38] to verify cryptographic pro-
tocols [3,4,23], (iii) HOL-Lite [33] to verify the BigNum implementation [2], (iv)
P [28] to test key storage components in Amazon S3 [18], and (v) Dafny [37] to
verify key authorization and crypto libraries [1]. Automated reasoning capabili-
ties for external AWS users leverage (i) data-flow analysis [17] to prove correct
usage of cloud APIs [29,40], (ii) monotonic SAT theories [14] to check properties
of network configurations [5,13], and (iii) theories for strings and automaton in
SMT solvers [16,39,46] to provide security for access controls [6,19].

This paper describes key milestones in our journey of generating billion SMT
queries a day in the context of AWS Identity and Access Management (IAM).
IAM is a system for controlling access to resources such as applications, data,
and workload in AWS. Resource owners can configure access by writing policies

© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13371, pp. 3-18, 2022.
https://doi.org/10.1007/978-3-031-13185-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13185-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-13185-1_1

4 N. Rungta

that describe when to allow and deny user requests that access the resource.
These configurations are expressed in the IAM policy language. For example,
Amazon Simple Storage Service (S3) is an object storage service that offers data
durability, availability, security, and performance. S3 is used widely to store and
protect data for a range of applications. A bucket is a fundamental container in S3
where users can upload unlimited amounts of data in the form of objects. Amazon
S3 supports fine-grained access control to the data based on the needs of the user.
Ensuring that only intended users have access to their resource is important
for the security of the resource. While the policy language allows for compact
specifications of expressive policies, reasoning about the interaction between the
semantics of different policy statements can be challenging to manually evaluate,
especially in large policies with multiple operators and conditions.

To help AWS users secure their resources, we built ZELKOVA, a policy anal-
ysis tool designed to reason about the semantics of AWS access control policies.
ZELKOVA translates policies and properties into Satisfiability Modulo Theories
(SMT) formulas and uses SMT solvers to prove a variety of security properties
such as “Does the policy grant broad public access?” [6]. The SMT encoding uses
the theory of strings, regular expressions, bit vectors, and integer comparisons.
The use of the wildcards * (any number of characters) and ? (exactly one char-
acter) in the string constraints makes the decision problem PSPACE-complete.
Zelkova uses a portfolio solver, where it invokes multiple solvers in the backend
and uses the results from the solver that returns first, in a winner takes all strat-
egy. This allows us to leverage the diversity among solvers and quickly solve
queries—a couple hundred milliseconds to tens of seconds. A sample of AWS
services that integrate ZELKOVA includes Amazon S3 (object storage), AWS
Config (change-based resource auditor), Amazon Macie (security service), AWS
Trusted Advisor (compliance to AWS best practices), and Amazon GuardDuty
(intelligent threat detection). ZELKOVA drives preventative control features such
as Amazon S3 Block Public Access and visibility into who outside an account
has access to its resources [19].

ZELKOVA is an automated reasoning tool developed by formal methods
experts and requires some degree of expertise in formal methods to use it. We
cannot expect all AWS users to be experts in formal methods, have the time to
be trained in the use of formal methods tools, or even be experts in the cloud
domain. In this paper, we present the three pillars of our solution that enable
ZELKOVA to be used by all AWS users. Using a combination of techniques such
as eliminating specifications, domain-specific abstractions, and advances in SM'T
solvers we make the power of ZELKOVA available to all AWS users.

2 Eliminate Writing Specifications
End users will not write a specification
ZELKOVA follows a traditional verification approach where it takes as input a

policy and a specification, and produces a yes or no answer. We have devel-
opers and cloud administrators who author policies to govern access to cloud

A Billion SMT Queries a Day (Invited Paper) 5

- Effect: Allow
Condition:
StringEquals:
SrcVpc:
- vpc-a
- vpc-b
- Effect: Allow
Condition:

Stringhauals: [Pa/\T v/ [p;,AT X TAqZJ,/

OrgID:
Pb/\‘h]

- Effect: Deny
Fig. 1. An example AWS policy Fig. 2. Stratified abstraction search tree

Condition:
StringEquals:

SrcVpc: vpc-b
StringNotEquals: PaNG
OrgID: o-1

resources. We have someone else, a security engineer, who writes a specification
of what is considered acceptable. The automated reasoning engine ZELKOVA
does the verification and returns a yes or no answer. This approach is effective
for a limited number of use cases, but it is hard to scale to all AWS users. The
bottleneck to scaling the verification effort is the human effort required to specify
what is acceptable behavior. The SLAM work had similar a observation about
specifications; for use of Static Driver Verifier, they needed to provide the tool
as well as the specification [7]. A person has to put in a lot of work upfront to
define acceptable behavior and only at the end of the process, they get back an
answer—a boolean. It’s a single bit of information for all the work they’ve put
in. They have no information about whether they had the right specification or
whether they wrote the specification correctly.

To scale our approach to all AWS users, we had to fundamentally rethink
our approach and completely remove the bottleneck of having people write a
specification. To achieve that, we flipped the rules of the game and made the
automated reasoning engine responsible for specification. We had the machine
put in the upfront cost. Now it takes as input a policy and returns a detailed
set of findings (declarative statements about what is true of the system). These
findings are presented to a user, the security engineer, who reviews these findings
and makes decisions about whether these findings represent valid risks in the
system that should be fixed or are acceptable behaviors of the system. Users are
now taking the output of the machine and saying “yes” or “no”.

2.1 Generating Possible Specifications (Findings)

To remove the bottleneck of specification, we changed the question from is this
policy correct? to who has access?. The response to the former is a boolean while
the response to the latter is a set of findings. AWS access control policies specify
who has access to a given resource, via a set of Allow and Deny statements that
grant and prohibit access, respectively. Figure 1 shows a simplified policy specify-
ing access to an AWS resource. This policy specifies conditions on the cloud-based
network (known as a VPC) for which the request originated and on the organi-

6 N. Rungta

zational Amazon customer (referred to by an Org ID) who made the request. The
first statement allows access to any request whose SrcVpc is either vpc-a or vpc-b.
The second statement allows access to any request whose OrgId is o-2. However,
the third statement denies access from vpc-b unless the OrgId is o-1.

For each request, access is granted only if: (a) some Allow statement matches
the request, and (b) none of the Deny statements match the request. Conse-
quently, it can be quite tricky to determine what accesses are allowed by a given
policy. First, individual statements can use regular expressions, negation, and
conditionals. Second, to know the effect of an allow statement, one must con-
sider all possible deny statements that can overlap with it, i.e., can refer to
the same request as the allow. Thus, policy verification is not compositional, in
that we cannot determine if a policy is “correct” simply by locally checking that
each statement is “correct.” Instead, we require a global verification mechanism,
that simultaneously considers all the statements and their subtle interactions,
to determine if a policy grants only the intended access.

For the example policy sketch shown in Fig. 1, access can be summarized
through a set of three findings, which say that access is granted to a request iff:

— Its SrcVpc is vpc-a, or,
— Its OrgId is o-2, or,
— Its SrcVpc is vpc-b and its Orgld is o-1.

The findings are sound as no other requests are granted access. The findings are
mostly precise; most of the requests match the conditions that are granted access.
The finding “OrgId is 0-2” also includes some requests that are not allowed, e.g.,
when SrcVpc is vpc-b. To help understandability of the findings, we sacrifice this
precision. Precise findings would need to include negation, and that would add
complexity for the users to make decisions. Finally, the findings compactly summa-
rize the policy in three positive statements declaring who has access. In principle,
the notion of compact findings is similar to abstract counterexamples or minimiz-
ing counterexamples [21,30,32]. Since the findings are produced by the machine
and already verified to be true, we have a person deciding if they should be true.
The human is making a judgment call and expressing intent.

We use stratified predicate abstraction for computing the findings. Enumer-
ating all possible requests is computationally intractable, and even if it were
not, the resulting set of findings is far too large and hence useless. We tackle the
problem of summarizing the super-astronomical request-space by using predicate
abstraction. Specifically, we make a syntactic pass over the policy to extract the
set of constants that are used to constrain access, and we use those constants
to generate a family of predicates whose conjunctions compactly describe parti-
tions of the space of all requests. For example, from the policy in Fig. 1 we would
extract the following predicates

Pq = SrcVpc = vpc-a, p, = SrcVpc = vpe-b, p, = SrcVpc = «,
q1 = Orgld = o-1, g2 = Orgld = 0-2, ¢ = Orgld = *.

The first row has three predicates describing the possible value of the SrcVpc of the
request: that it equals vpc-a or vpe-b or some value other than vpc-a and vpc-b.

A Billion SMT Queries a Day (Invited Paper) 7

’Pa/\q1‘/ ’pa/\qz‘/ ’pa/\Q* v
’Pb/\m ‘/ ’pb/\qz ‘X ’pb/\q* X
peAq X [pAg2 |V [paige]X

Fig. 3. Cubes generated by the predicates pq, pv, Px, q1, g2, ¢« generated from the policy
in Fig. 1 and the result of querying ZELKOVA to check if the the requests corresponding
to each cube are granted access by the policy.

Similarly, the second row has three predicates describing the value of the OrgId of
the request: that it equals o-1 or o-2 or some value other than o-1 and o-2.

We can compute findings by enumerating all the cubes generated by the
above predicates and querying ZELKOVA to determine if the policy allows access
to the requests described by the cube. The enumeration of cubes is common in
SAT solvers and other predicate abstraction based approaches [8,15,36]. The
set of all the cubes are shown in Fig.3. The chief difficulty with enumerating
all the cubes greedily is that we end up eagerly splitting-cases on the values of
fields when that may not be required. For example, in Fig. 3, we split cases on
the possible value of OrgId even though it is irrelevant when SrcVpc is vpc-a.
This observation points the way to a new algorithm where we lazily generate the
cubes as follows. Our algorithm maintains a worklist of minimally refined cubes.
At each step, we (1) ask ZELKOVA if the cube allows an access that is not covered
by any of its refinements; (2) if so, we add it to the set of findings; and (3) if
not, we refine the cube “point-wise” along the values of each field individually
and add the results to the worklist. The above process is illustrated in Fig. 2.

The specifications or findings generated by the machine are presented in the
context of the access control domain. The developers do not have to learn a
new means to specify correctness, think about what they want to be correct
of the system, or check the completeness of their specifications. This is a very
important lesson that we need to apply across many other applications for formal
methods to be successful at scale. The challenge here is the specifics depend on
the domain.

3 Domain-Specific Abstractions
It’s all about the end user

ZELKOVA was developed by formal methods subject matter experts who learnt
domain of AWS access control policies. Once we had the analysis engine, we faced
the same challenges all other formal methods tool developers had before us. How
do we make it accessible to all users? One hard earned lesson was “eliminating
the need for specifications” as discussed in the previous section. But that was
only part of the answer. There was a lot more to do. Many more questions to
answer—How do we get users to use it? How do we present the results to the

8 N. Rungta

Active Archived Resolved Al

Active findings Actions ¥
Account ID 180286015604

Q_ Filter active findings Cois)
Resource: "gacek-bucket-c* X Clear filters

Finding ID Resource External principal Condition Shared through Access level Updated v

d13b5e07- Al Principals. vpc-a Bucket policy Read afew seconds ago
gacek-bucket-c

b6420562- Al Principals 02 Bucket policy Write, Permissions, Tagging afew seconds ago
gacek-bucket-c

o1
74317007-... Al Principals

Bucket policy Read afew seconds ago
gacek-bucket-c vpe-b

Fig. 4. Interface that presents Access Analyzer findings to users.

users? How do the results stay updated? The answer was to design and build
domain-specific abstractions. Do one thing and do it really well.

We created a higher level service on top of ZELKOVA called IAM Access
Analyzer. We provide a one-click way to enable Access Analyzer for an AWS
account or AWS Organization. An account in AWS is a fundamental construct
that serves as a container for the user’s resources, workloads, and data. Users
can create policies to grant access to resources in their account to other users.
In Access Analyzer, we use the account as a zone of trust. This abstraction lets
us say that access to resources by users within their zone of trust is considered
safe. But access to resources outside their zone of trust is potentially unsafe.

Once a user enables Access Analyzer, we use stratified predicate abstraction
to analyze the policies and generate findings showing which users outside the zone
of trust have access to resources. We had to shift from a mode where ZELKOVA
can answer “any access query”’ to ZELKOVA can enumerate “who has access to
what”. This brings to attention the permissions that could lead to unintended
access of data. While this idea seems simple in hindsight, it took us a couple of
years to figure out the right abstraction for the domain. It can be used by all
AWS users. They did not need to be experts in the area of formal methods or
even have deep understanding of how access control in the cloud worked.

Each finding includes details about the resource, the external entity with
access to it, and the permissions granted so that the user can take appropri-
ate action. We present example findings in Fig.4. Note these findings are not
presented as SMT-lib formulas but rather in the domain that the user expects—
AWS access control constructs. These map to the findings presented in the pre-
vious section for Fig.1. Users can view the details included in the finding to
determine whether the access is intentional or a potential risk that the user
should resolve.

Most automated reasoning tools are run as a one-off: prove something, and
then move on to the next challenge. In the cloud environment this was not
the case. Doing the analysis once was not sufficient in our domain. We had
to design a means to continuously monitor the environment and changes to

A Billion SMT Queries a Day (Invited Paper) 9

access control policies within the zone of trust and update the findings based
on that. To that end, Access Analyzer analyzes these policies if a user adds a
new policy, or changes an existing policy, and either generates new findings, or
removes findings, or updates the existing findings. Access Analyzer also analyzes
all policies periodically, to ensure that in a rare case, if a change event to the
policy is missed by the system, it is still able to keep the findings updated. The
ease of enablement, just-in-time analysis on updates, and periodic analysis across
all policies are the key factors in getting us to a billion queries daily.

4 SMT Solving at Cloud Scale

Every query matters

The use of SMT solving in AWS features and services means that millions of
users are relying on the correctness and timeliness of the underlying solvers for
the security of their cloud infrastructure. The challenges around correctness and
timeliness in solver queries have been well studied in the automated reasoning
community, but they have been treated as independent features. Today, we are
generating a billion SMT queries every day to support various use cases across
a wide variety of AWS services. We have discovered an intricate dependency
between correctness and timeliness that manifests at this scale.

4.1 Monotonicity in Runtimes Across Solver Versions

Zelkova uses a portfolio solver to discharge its queries. When given a query,
Zelkova invokes multiple solvers in the backend and uses the results from the
solver that returns first, in a winner takes all strategy [6]. The portfolio app-
roach allows us to leverage the diversity amongst solvers. One of our goals is
to leverage the latest advancements in the SMT solver community. SMT solver
researchers and developers are fixing issues, making improvements to existing
features, adding new theories, adding features such as generation of proofs, and
making other performance improvements. Before deploying a new version of the
solver within the production environment, we perform extensive offline testing
and benchmarking to gain confidence in the correctness of the answers, perfor-
mance of the queries, and ensure there are no regressions.

While striving for correctness and timeliness, one of the challenges we face
is that new solver versions are not monotonically better in their performance
than their previous version. A solution that works well in the cloud setting is a
massive portfolio, sometimes even containing older versions of the same solver.
This presents two issues. One, when we discover a bug in an older version of
the solver, we need to patch this old version. This creates an operational bur-
den of maintaining many different versions of the different solvers. Two, when
the number of solvers increases, we need to ensure that each solver provides a
correct result. Checking the correctness of queries that result in SAT is straight-
forward, but SMT solvers need to provide proof for the UNSAT queries. The
proof generation and checking needs to be timely as well.

10 N. Rungta

300 . Query 30.0
y=2x
10.0 y=1x 10.0
5.0 y=05x S 5.0
20 = : 20
) .o)
3 10 Py] ~ 10
< N . <
S 05 . S 05
wn ’ wn
i i
4 ‘ 4
0.1 0.1
o n oo oo o o n oo o o o
S S AN 1B 3 o S S &4 & 1B oS o
2 ® 2 ®
30.0 30.0
10.0 10.0
5.0 5.0
G 20 G 20
T 10 T 10
2 L
£ 05 £ 05
5 5
2 2
0.1 0.1
= " oo oo o = m oo oo o
5 S A4 & W o = S S 4 N w oS S
2 @ 2 @
portfolio-cvc5-0.0.4 (s) portfolio-cvc5-0.0.7 (s)
30.0 A
10.0 4
5.0
o o 2.0 1
o o 1.0
< <
— ~ 0.5
ry I
o i
> >
[[
0.14
: y =2x
; — = y=1x
,'.,/.,. y = 0.5x
T T T
— n oo o9 o
o S AN o =)
— m
cvc5-0.0.7 (s) cvc5-0.0.4 (s)

(e) ()

Fig. 5. Comparing the runtime for solving SMT queries generated by ZELKOVA by
CVC4 and the different cvch versions (a) CVC4 vs. cveb version 0.0.4, (b) CVC4 vs.
cveh version 0.0.7. Comparing the runtimes of winner take all in the portfolio solver
of ZELKOVA with: (¢) a portfolio solver consisting of Z3 sequence string solver, Z3
automata solver, and cvcb version 0.0.4 (d) a portfolio solver consisting of Z3 sequence
string solver, Z3 automata solver, and cvch version 0.0.7. Evaluating the performance

of the latest cvch version 1.0.0 with its older versions (e) cveb version 0.0.4 and (f) cveb
version 0.0.7

A Billion SMT Queries a Day (Invited Paper) 11

In the Zelkova portfolio solver [6], we use CVC4, and our original goal was to
replace CVC4 with the then latest version of cve5 (version 0.0.4)'. We wanted
to leverage the proof checking capabilities of cved to ensure the correctness of
UNSAT queries [11]. To check the timeliness requirements, we ran experiments
across our benchmarks, comparing the results of CVC4 to those of cved (version
0.0.4). The results across a representative set of queries are shown in Fig. 5(a).
In the graph we have approximately 15,000 SMT queries that are generated by
Zelkova; we select a distribution of queries that are solved between 1s and 30s,
after which the solver process is killed and a timeout is reported. Some queries
that are not solved by CVC4 within the time bound of 30 s are now being solved
by cveh (version 0.0.4), as seen by the points in the graph along the y-axis on
the extreme right. However, cve5 (version 0.0.4) times out on some queries that
are solved by CVC4, as seen by the points on the top of the graph.

The results presented in Fig. 5(b) are not surprising given that the problem
space is computationally hard, and there is an inherent randomness in search
heuristics within SMT solvers. In an evaluation of cveb, the authors discuss
examples where CVC4 outperforms cveb [10]. But this poses a challenge for us
when we are using the result of these solvers in security controls and services that
millions of users rely on. The changes did not meet the timeliness requirement
of continuing to solve the queries within 30s. When a query times out, to be
sound, the analysis marks the bucket as public. The impact of a query timing
out, that was previously being solved, will lead to the user not being able to
access the resource. This is unexpected for the user because there was no change
in their configuration.

For example, consider the security checks in the Amazon S3 Block Public
Access that block requests based on the results of the analysis. In this context,
suppose that there was a bucket marked as “not public” based on the results
of a query, and now that same query times out; the bucket will be marked as
“public”. This will lock down access to the bucket and the intended users will
not be able to access it. Even a single regression that leads to loss of access for
the user is not an acceptable change. As another example, these security checks
are also used by IoT devices. In the case of a smart lock, a time out in the query
that was previously being solved could lead to a loss of access to the user’s home.
The criticality of these use cases combined with the end user expectation is a
key challenge in our domain.

We debugged and fixed the issue in cveh that was causing certain queries
to time out. But even with this fix, CVC4 was 2x faster than cvch for many
easier problems that took 1s to solve originally. This slowdown was significant
for us because ZELKOVA is called in the request path of security controls such as
Amazon S3 Block Public Access. When a user attempts to attach a new access
control policy or update an existing one, a synchronous call is made to Zelkova
and the corresponding portfolio solvers to determine if the access control policy

! Note that while this section talks in detail about the CVC solver, the observations are
common across all solvers. We select the results of the CVC solver as a representative
because it is a mature solver with an active community.

12 N. Rungta

being attached grants unrestricted public access or not. The bulk of the analysis
time is spent in the SMT solvers, so doubling the analysis time for queries can
lead to a degraded user experience. Where and how the analysis results are used
plays an important role in how we track changes to the timeliness of the solver
queries.

Our solution was to add a new solver to the portfolio rather then replace an
existing solver. We added cvcb (version 0.0.7) to the existing portfolio of solvers
consisting of CVC4, Z3 with the sequence string solver, and a custom Z3-based
automata solver. When we started the evaluation of cvceh, we did not plan to add
a new version of the CVC solver to the portfolio. We had expected to the latest
version of cveh to be comparable in timeliness to CVC4. We worked closely with
the CVC developers and cvcb was better on many queries, but it did not meet
our timeliness requirements on all queries. This led to our decision to add cvch
(version 0.0.7) to the Zelkova portfolio solver.

The results of comparing the portfolio solvers of two Z3 solvers, CVC4 and
cveb (version 0.0.4) with a winner take all and portfolio solver without cveb (ver-
sion 0.0.4) is shown in Fig. 5(c). The same configuration now with cveb (version
0.0.7) is shown in Fig. 5(d). The results show that the portfolio solving approach
that Zelkova takes in the cloud is an effective one.

The cycle now repeats with cveb (version 1.0.0), and the same question comes
up again. The question we are evaluating yet again is, “do we upgrade the
existing cveb version with the latest or add yet another version of CVC to the
portfolio solver”. Some early experiments show that there is no clear answer
yet. The results so far comparing the different version of cvch shown in Fig. 5(e)
and (f) indicate that the latest version of cvch is not monotically better in
performance than either of its previous versions. We do want to leverage the
better proof generating capabilities of cvcb (version 1.0.0) in order to gain more
assurance in the correctness of the UNSAT queries.

4.2 Stability of the Solvers

We have spent quite a bit of time defining and implementing the encoding of the
AWS access control policies into SMT. We update the encoding as we expand
to more use cases or when we support new features in AWS. This is a slow and
careful process that requires expertise in understanding AWS and how SMT
solvers work. There is a lot of trial and error to figure out what encoding is
correct and performant.

To illustrate the importance of the encoding, we present an experiment on
solver runtimes with different ordering of clauses for our encoding (Fig.6). For
the same set of problem instances used in Fig. 5, we now use the standard SMT
competition shuffler? to reorder assertions, terms, and rename variables to study
the effect of ordering clauses for our default encoding. In Fig.6, each point on
the x axis corresponds to a single problem instance. For the problem instance,
we run it in its original form (default encoding) which is the “base time”, and

2 https://github.com /SMT-COMP /scrambler.

https://github.com/SMT-COMP/scrambler

A Billion SMT Queries a Day (Invited Paper)

cvc4 on sat and unsat instances

60+ v min H
© mean o 5
50! max } | | | L }3 |
base time 0 R
40/ o - -]"!
—_ N '»‘ 4 !
™ %
30 3
: : !

«

N ——

.

<

01 —
0 1000 2000 3000 4000 5000 6000 7000 8000
instance
(a) CVC4
cvc5 on sat and unsat instances
60+ v min
’ mean
50! max. | i | N N
base time
401 - o
5 v—
» o2
© 30 e R
£ | 3 .4
LR S S O SR Y .
20} o T e : T
e whah it FR AN »
N v s e ——— B i
101 A - SRR 4
et L E e
0_ W v v v w v
0 4000 6000 8000
instance

(b) cveb version 0.0.7

z3seq on sat and unsat instances

601 v min
+ mean
501 max .
base time
401
o)
30
£
20
107
ol gL st
0 500 1000 1500 2000 2500

instance

(¢) Z3 sequence string solver

Fig. 6. Variance in runtimes after shuffling terms in the problem instances.

14 N. Rungta

five shuffled versions. This gives us a total of six versions of the problem; we
record the min, max, and mean times. So for each problem instance, = we have:

1. (x, base time): time on the original problem;

2. (%, min time): minimal time on the original and 5 shuffled problems;

3. (x, max time): maximal time on the original and 5 shuffled problems; and
4. (x, mean time): mean time on the original and 5 shuffled problems.

The instances are sorted by ‘base time’ so the line looks smooth in base time, and
the other points look more scattered. The comparison between CVC4 in Fig. 6(a)
and Fig.6(b) cvch shows that cveh can solve more problems with the default
encoding shown by the smooth base line. However, when we shuffle the asser-
tions, terms and other constructs in the problem instance, the performance of
cvch varies more dramatically compared to that of CVC4. The points for the
maximal time are spread wider across the graph and there are now several time-
outs in Fig. 6(b).

4.3 Concluding Remarks

Based on our experience from generating a billion SMT queries a day, we pro-
pose some general areas of research for the community. We believe these are
key to enabling the use of solvers to evaluate security controls, and to enable
applications in emerging technologies such as quantum computing, blockchains,
and bio-engineering.

Monotonicity and Stability in Runtimes. One of the main challenges we
encountered is the lack of monotonicity and stability in runtimes within a given
solver version and across different versions. Providing this stability is a funda-
mentally hard problem due to the inherent randomness in SMT solver heuristics,
search strategies, and configuration flags. One approach would be to incorporate
the algorithm portfolio approach [31,34,42] within mainstream SMT solvers. A
way enable algorithm portfolio is to leverage serverless and cloud computing
environment, and develop parallel SMT solving and distributed search strate-
gies. At AWS, this is an area that we are investing in as well. There has been
some work in parallel and distributed SMT solving [41,45] but we need more.
Another aspect of research would be to develop specialized solvers that focus on
a specific class of problems. The SMT-comp could devise categories that allow
room for specific types of problem instances as an incentive for developing these
solvers.

Reduce the Barrier to Entry. Generating a billion SMT queries day is a
result of the exceptional work and innovation of the entire SMT community
over the past 20 years. A question we are thinking about is how to replicate
the success described here for other domains in Amazon and elsewhere. There
is a natural tendency in the formal methods community to target tools for the
expert user. This limits their broader use and applicability. If we can find ways
to lower the barrier to adoption, we can gain greater traction and improve the
security, correctness, availability, and robustness of more systems.

A Billion SMT Queries a Day (Invited Paper) 15

More Abstractions. SMT solvers are powerful engines. One potential research
direction for the broader community is to provide one or more higher level lan-
guages that allows people to specify their problems. We could create different
languages based on the domain and take into account the expectations of devel-
opers. This would make interacting with a solver a more black-box exercise. The
success we have had with SMT in Amazon, can be recreated in other domains
if we provide developers the ability to easily encode their problems in a higher
level language and use SMT solvers to solve them. It will more easily scale by not
requiring a formal methods expert as an intermediary. Developing new abstrac-
tions or intermediate representations could be one approach to unlock billions
of other SMT queries.

Proof Generation. All SMT solvers should be generating proofs to help the
end-user gain confidence in the results. There has been some initial work in this
area [9,20,27,43,44],but SMT has a long way to catch up with SAT solvers,
and for good reason. The proof production is important for us gain greater
confidence in the correctness of our answers, though it creates a tension with the
timeliness. We need the proof production to be performant and the tools that
check the generated proofs to be correct themselves. Continued push on different
testing approaches, including fuzzing and property-based testing of SMT solvers,
should continue with the same rigor and enthusiasm. Using these fuzz testing
and mutation testing based techniques in the development workflow of SMT
solvers is something that should become mainstream.

We are working to provide a set of benchmarks that can be leveraged by
SMT developers to help further their work, are funding research grants in these
areas, and are willing to evaluate new solvers.

References

1. Encryption SDK Dafny model. https://github.com/aws/aws-encryption-sdk-dafny

s2n bignum verification. https://github.com/awslabs/s2n-bignum

3. Almeida, J.B., et al.: A machine-checked proof of security for AWS key manage-
ment service. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pp. 63-78 (2019)

4. Athanasiou, K., Cook, B., Emmi, M., MacCarthaigh, C., Schwartz-Narbonne, D.,
Tasiran, S.: SideTrail: verifying time-balancing of cryptosystems. In: Piskac, R.,
Rimmer, P. (eds.) VSTTE 2018. LNCS, vol. 11294, pp. 215-228. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03592-1_12

5. Backes, J., et al.: Reachability analysis for AWS-based networks. In: Dillig, 1.,
Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 231-241. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5_14

6. Backes, J., et al.: Semantic-based automated reasoning for AWS access policies
using SMT. In: 2018 Formal Methods in Computer Aided Design (FMCAD), pp.
1-9. IEEE (2018)

7. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with
slam. Commun. ACM 54(7), 68-76 (2011)

o

https://github.com/aws/aws-encryption-sdk-dafny
https://github.com/awslabs/s2n-bignum
https://doi.org/10.1007/978-3-030-03592-1_12
https://doi.org/10.1007/978-3-030-25543-5_14

16

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

N. Rungta

Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate
abstraction of ¢ programs. In: Proceedings of the ACM SIGPLAN 2001 Conference
on Programming Language Design and Implementation, pp. 203-213 (2001)
Barbosa, H.: New techniques for instantiation and proof production in SMT solv-
ing. Ph.D. thesis, Université de Lorraine (2017)

Barbosa, H., et al.: cvch: Versatile and industrial-strength SMT solver. In: Fisman,
D., Rosu, G. (eds) Tools and Algorithms for the Construction and Analysis of
Systems. TACAS 2022. Lecture Notes in Computer Science, vol. 13243. LNCS, pp.
415-442. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_24
Barrett, C., et al.: cveb at the SMT competition 2021

Barthe, G., et al.: EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F.
(eds.) FOSAD 2012-2013. LNCS, vol. 8604, pp. 146-166. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10082-1_6

Bayless, S., et al.: Debugging network reachability with blocked paths. In: Silva, A.,
Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 851-862. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-81688-9_39

Bayless, S., Bayless, N., Hoos, H., Hu, A.: Sat modulo monotonic theories. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)
Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. TOS
press (2009)

Bjgrner, N., Ganesh, V., Michel, R., Veanes, M.: An SMT-LIB format for sequences
and regular expressions. SMT 12, 76-86 (2012)

Bodden, E.: Inter-procedural data-flow analysis with IFDS/IDE and soot. In: Pro-
ceedings of the ACM SIGPLAN International Workshop on State of the Art in
Java Program Analysis, pp. 3-8 (2012)

Bornholt, J., et al.: Using lightweight formal methods to validate a key-value stor-
age node in Amazon s3. In: Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pp. 836-850 (2021)

Bouchet, M., et al.: Block public access: trust safety verification of access control
policies. In: Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, pp. 281-291 (2020)

Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS
(LNAI), vol. 5663, pp. 151-156. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02959-2_12

Chaki, S., Groce, A., Strichman, O.: Explaining abstract counterexamples. In: Pro-
ceedings of the 12th ACM SIGSOFT twelfth International Symposium on Foun-
dations of Software Engineering, pp. 73—-82 (2004)

Chong, N., et al.: Code-level model checking in the software development work-
flow. In: 2020 IEEE/ACM 42nd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pp. 11-20. IEEE (2020)
Chudnov, A.; et al.: Continuous formal verification of Amazon s2n. In: Chockler,
H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 430-446. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96142-2_26

Cook, B.: Formal reasoning about the security of Amazon web services. In: Chock-
ler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 38-47. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_3

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-030-81688-9_39
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-319-96142-2_26
https://doi.org/10.1007/978-3-319-96145-3_3

25.

26.

27.

28.

29.

30.

31.
32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

A Billion SMT Queries a Day (Invited Paper) 17

Cook, B., Khazem, K., Kroening, D., Tasiran, S., Tautschnig, M., Tuttle, M.R.:
Model checking boot code from AWS data centers. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 467-486. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96142-2_28

Cook, B., Khazem, K., Kroening, D., Tasiran, S., Tautschnig, M., Tuttle, M.R.:
Model checking boot code from AWS data centers. Formal Methods Syst. Des.
57(1), 34-52 (2021)

Deharbe, D., Fontaine, P., Paleo, B.W.: Quantifier inference rules for SMT proofs.
In: First International Workshop on Proof eXchange for Theorem Proving-PxTP
2011 (2011)

Desai, A., Gupta, V., Jackson, E., Qadeer, S., Rajamani, S., Zufferey, D.P.: Safe
asynchronous event-driven programming. ACM SIGPLAN Notices 48(6), 321-332
2013

](Emmi), M., et al.: Rapid: checking API usage for the cloud in the cloud. In: Proceed-
ings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 1416-1426 (2021)
Gastin, P., Moro, P., Zeitoun, M.: Minimization of counterexamples in SPIN. In:
Graf, S., Mounier, L. (eds.) SPIN 2004. Minimization of counterexamples in spin,
vol. 2989, pp. 92-108. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24732-6_7

Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1-2), 43-62 (2001)
Groce, A., Kroening, D.: Making the most of BMC counterexamples. Electron.
Notes Theoret. Comput. Sci. 119(2), 67-81 (2005)

Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60—66. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03359-9_4

Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard com-
putational problems. Science 275(5296), 51-54 (1997) .
Kroening, D., Tautschnig, M.: CBMC — C bounded model checker. In: Abraham,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389-391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_26

Lahiri, S.K., Bryant, R.E., Cook, B.: A symbolic approach to predicate abstraction.
In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 141-153.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_15
Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348-370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
420

Lewis, J.R., Martin, B.: Cryptol: High assurance, retargetable crypto development
and validation. In: IEEE Military Communications Conference, 2003. MILCOM
2003. vol. 2, pp. 820-825. IEEE (2003)

Liang, T., et al.: An efficient SMT solver for string constraints. Formal Methods
Syst. Des. 48(3), 206—234 (2016)

Luo, L., Schaf, M., Sanchez, D., Bodden, E.: Ide support for cloud-based static
analyses. In: Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, pp. 1178-1189 (2021)

Marescotti, M., Hyvérinen, A.E.J., Sharygina, N.: Clause sharing and partitioning
for cloud-based SMT solving. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA
2016. LNCS, vol. 9938, pp. 428-443. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46520-3_27

https://doi.org/10.1007/978-3-319-96142-2_28
https://doi.org/10.1007/978-3-540-24732-6_7
https://doi.org/10.1007/978-3-540-24732-6_7
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-540-45069-6_15
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-319-46520-3_27
https://doi.org/10.1007/978-3-319-46520-3_27

18

42.

43.

44.

45.

46.

N. Rungta

Rice, J.R.: The algorithm selection problem. In: Advances in Computers, vol. 15,
pp. 65-118. Elsevier (1976)

Stump, A., Oe, D.: Towards an SMT proof format. In: Proceedings of the Joint
Workshops of the 6th International Workshop on Satisfiability Modulo Theories
and 1st International Workshop on Bit-Precise Reasoning, pp. 27-32 (2008)
Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof checking
using a logical framework. Formal Methods Syst. Des. 42(1), 91-118 (2013)
Wintersteiger, C.M., Hamadi, Y., de Moura, L.: A concurrent portfolio approach to
SMT solving. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
715-720. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
4.60

Zheng, Y., Zhang, X., Ganesh, V.: Z3-STR: a z3-based string solver for web appli-
cation analysis. In: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pp. 114-124 (2013)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-02658-4_60
https://doi.org/10.1007/978-3-642-02658-4_60
http://creativecommons.org/licenses/by/4.0/

	A Billion SMT Queries a Day (Invited Paper)
	1 Introduction
	2 Eliminate Writing Specifications
	2.1 Generating Possible Specifications (Findings)

	3 Domain-Specific Abstractions
	4 SMT Solving at Cloud Scale
	4.1 Monotonicity in Runtimes Across Solver Versions
	4.2 Stability of the Solvers
	4.3 Concluding Remarks

	References

