Skip to main content

Diabetes and Percutaneous Interventional Therapy

  • Chapter
  • First Online:
Diabetes and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 745 Accesses

Abstract

The increased morbidity and mortality associated with diabetes are strongly driven by atherosclerosis; a process more advanced within the diabetic population. Furthermore, atherosclerosis can occur anywhere within the arterial system and frequently, in diabetic patients, affects not only the coronary arteries but also the peripheral arteries. The treatment of atherosclerosis can be divided into both medical and procedural therapies. The medical therapy for atherosclerosis, and namely coronary artery disease, is fairly well established and protocolized. Unfortunately, the decision tree to proceed with interventional therapy, and what type of intervention, is more complex both within the coronary and peripheral systems. Management of diabetic coronary artery disease will always include guideline-directed medical therapy. Beyond that, the decision to intervene with a percutaneous coronary intervention (PCI) versus proceeding with coronary artery bypass grafting (CABG) is strongly determined by the severity/complexity of coronary artery disease. Based on the anatomy of the coronary arteries (left main involvement, SYNTAX score), diabetic patients frequently derive a mortality benefit from CABG, whereas the nondiabetic patient would not receive that same benefit.

Diabetic patients historically have more advanced and severe peripheral arterial disease (PAD) than their nondiabetic cohort. Historically, it was thought that diabetic patients had higher rates of 1-year major amputation or mortality post-endovascular treatment of PAD but more recent studies show no significant difference. That said the long-term success of endovascular or open surgical treatment of advanced PAD is disappointing. In recent years, the development of drug-coated or drug-eluting balloons and stents treated with an anti-proliferative medication has proven to extend the benefits of interventional therapy. Lastly, over the past two decades, endovascular atherectomy device technologies have advanced greatly and are now shown to extend the benefit of and have become a major component of endovascular PAD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO. World health statistics 2018: monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization; 2018. License: CC BY-NC-SA 3.0 IGO.

    Google Scholar 

  2. National Research Council (US) Committee on Population, Gribble JN, Preston SH. The epidemiological transition: policy and planning implications for developing countries. Washington, DC: National Academies Press; 1993.

    Google Scholar 

  3. Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet JP, Falk V, Head SJ, Jüni P, Kastrati A, Koller A, Kristensen SD, Niebauer J, Richter DJ, Seferovic PM, Sibbing D, Stefanini GG, Windecker S, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87–165. https://doi.org/10.1093/eurheartj/ehy394.

    Article  PubMed  Google Scholar 

  4. Hadi HA, Suwaidi JA. Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag. 2007;3(6):853–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Korshunov VA, Schwartz SM, Berk BC. Vascular remodeling: hemodynamic and biochemical mechanisms underlying Glagov’s phenomenon. Arterioscler Thromb Vasc Biol. 2007;27(8):1722–8. https://doi.org/10.1161/ATVBAHA.106.129254.

    Article  CAS  PubMed  Google Scholar 

  6. Cersosimo E, Xu X, Upala S, Triplitt C, Musi N. Acute insulin resistance stimulates and insulin sensitization attenuates vascular smooth muscle cell migration and proliferation. Physiol Rep. 2014;2(8):e12123. https://doi.org/10.14814/phy2.12123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cersosimo E, DeFronzo RA. Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes Metab Res Rev. 2006;22(6):423–36. https://doi.org/10.1002/dmrr.634.

    Article  CAS  PubMed  Google Scholar 

  8. Cersosimo E, Xu X, Musi N. Potential role of insulin signaling on vascular smooth muscle cell migration, proliferation, and inflammation pathways. Am J Physiol Cell Physiol. 2012;302(4):C652–7. https://doi.org/10.1152/ajpcell.00022.2011.

    Article  CAS  PubMed  Google Scholar 

  9. Tabit CE, Shenouda SM, Holbrook M, Fetterman JL, Kiani S, Frame AA, Kluge MA, Held A, Dohadwala MM, Gokce N, Farb MG, Rosenzweig J, Ruderman N, Vita JA, Hamburg NM. Protein kinase C-β contributes to impaired endothelial insulin signaling in humans with diabetes mellitus. Circulation. 2013;127(1):86–95. https://doi.org/10.1161/CIRCULATIONAHA.112.127514.

    Article  CAS  PubMed  Google Scholar 

  10. Wajcberg E, Thoppil N, Patel S, Fernandez M, Hale D, DeFronzo R, Cersosimo E. Comprehensive assessment of postischemic vascular reactivity in Hispanic children and adults with and without diabetes mellitus. Pediatr Diabetes. 2006;7:329–35. https://doi.org/10.1111/j.1399-5448.2006.00209.x.

    Article  PubMed  Google Scholar 

  11. Wajcberg E, Sriwijitkamol A, Musi N, DeFronzo RA, Cersosimo E. Relationship between vascular reactivity and lipids in Mexican-Americans with type 2 diabetes treated with pioglitazone. J Clin Endocrinol Metab. 2007;92(4):1256–62. https://doi.org/10.1210/jc.2006-1910.

    Article  CAS  PubMed  Google Scholar 

  12. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996;97(11):2601–10. https://doi.org/10.1172/JCI118709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mazzone T, Meyer PM, Feinstein SB, Davidson MH, Kondos GT, D’Agostino RB Sr, Perez A, Provost JC, Haffner SM. Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA. 2006;296(21):2572–81. https://doi.org/10.1001/jama.296.21.joc60158.

    Article  CAS  PubMed  Google Scholar 

  14. Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham study. Circulation. 1979;59(1):8–13. https://doi.org/10.1161/01.cir.59.1.8.

    Article  CAS  PubMed  Google Scholar 

  15. Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16(2):434–44. https://doi.org/10.2337/diacare.16.2.434.

    Article  CAS  PubMed  Google Scholar 

  16. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L, INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52. https://doi.org/10.1016/S0140-6736(04)17018-9.

    Article  PubMed  Google Scholar 

  17. Lee CD, Folsom AR, Pankow JS, Brancati FL, Atherosclerosis Risk in Communities (ARIC) Study Investigators. Cardiovascular events in diabetic and nondiabetic adults with or without history of myocardial infarction. Circulation. 2004;109(7):855–60. https://doi.org/10.1161/01.CIR.0000116389.61864.DE.

    Article  PubMed  Google Scholar 

  18. Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34. https://doi.org/10.1056/NEJM199807233390404.

    Article  CAS  PubMed  Google Scholar 

  19. Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CD, Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray KK, Danesh J. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22. https://doi.org/10.1016/S0140-6736(10)60484-9.

    Article  CAS  Google Scholar 

  20. Cavender MA, Steg PG, Smith SC Jr, Eagle K, Ohman EM, Goto S, Kuder J, Im K, Wilson PW, Bhatt DL, REACH Registry Investigators. Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death: outcomes at 4 years from the Reduction of Atherothrombosis for Continued Health (REACH) Registry. Circulation. 2015;132(10):923–31. https://doi.org/10.1161/CIRCULATIONAHA.114.014796.

    Article  PubMed  Google Scholar 

  21. Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet JP, Falk V, Head SJ, et al. ESC Scientific Document Group. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40:87–165. https://doi.org/10.1093/eurheartj/ehy394.

    Article  PubMed  Google Scholar 

  22. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, Douglas PS, Foody JM, Gerber TC, Hinderliter AL, King SB III, Kligfield PD, Krumholz HM, Kwong RY, Lim MJ, Linderbaum JA, Mack MJ, Munger MA, Prager RL, Sabik JF, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2012;126(25):e354–471. https://doi.org/10.1161/CIR.0b013e318277d6a0.

    Article  PubMed  Google Scholar 

  23. Wiholm BE, Myrhed M. Metformin-associated lactic acidosis in Sweden 1977-1991. Eur J Clin Pharmacol. 1993;44(6):589–91. https://doi.org/10.1007/BF02440866.

    Article  CAS  PubMed  Google Scholar 

  24. Bangalore S, Barsness GW, Dangas GD, Kern MJ, Rao SV, Shore-Lesserson L, Tamis-Holland JE. Evidence-based practices in the cardiac catheterization laboratory: a scientific statement from the American Heart Association. Circulation. 2021;144(5):e107–19. https://doi.org/10.1161/CIR.0000000000000996.

    Article  PubMed  Google Scholar 

  25. ACR. Manual on contrast media 2021 by ACR Committee on Drugs and Contrast material. Reston, VA: ACR; 2021.

    Google Scholar 

  26. BARI Investigators. Seven-year outcome in the Bypass Angioplasty Revascularization Investigation (BARI) by treatment and diabetic status. J Am Coll Cardiol. 2000;35(5):1122–9. https://doi.org/10.1016/s0735-1097(00)00533-7.

    Article  Google Scholar 

  27. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, Knudtson M, Dada M, Casperson P, Harris CL, Chaitman BR, Shaw L, Gosselin G, Nawaz S, Title LM, Gau G, Blaustein AS, Booth DC, Bates ER, Spertus JA, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–16. https://doi.org/10.1056/NEJMoa070829.

    Article  CAS  PubMed  Google Scholar 

  28. Kapur A, Hall RJ, Malik IS, Qureshi AC, Butts J, de Belder M, Baumbach A, Angelini G, de Belder A, Oldroyd KG, Flather M, Roughton M, Nihoyannopoulos P, Bagger JP, Morgan K, Beatt KJ. Randomized comparison of percutaneous coronary intervention with coronary artery bypass grafting in diabetic patients. 1-year results of the CARDia (Coronary Artery Revascularization in Diabetes) trial. J Am Coll Cardiol. 2010;55(5):432–40. https://doi.org/10.1016/j.jacc.2009.10.014.

    Article  PubMed  Google Scholar 

  29. Mohr FW, Morice MC, Kappetein AP, Feldman TE, Ståhle E, Colombo A, Mack MJ, Holmes DR Jr, Morel MA, Van Dyck N, Houle VM, Dawkins KD, Serruys PW. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet. 2013;381(9867):629–38. https://doi.org/10.1016/S0140-6736(13)60141-5.

    Article  PubMed  Google Scholar 

  30. Thuijs D, Kappetein AP, Serruys PW, Mohr FW, Morice MC, Mack MJ, Holmes DR Jr, Curzen N, Davierwala P, Noack T, Milojevic M, Dawkins KD, da Costa BR, Jüni P, Head SJ, SYNTAX Extended Survival Investigators. Percutaneous coronary intervention versus coronary artery bypass grafting in patients with three-vessel or left main coronary artery disease: 10-year follow-up of the multicentre randomised controlled SYNTAX trial. Lancet. 2019;394(10206):1325–34. https://doi.org/10.1016/S0140-6736(19)31997-X.

    Article  CAS  PubMed  Google Scholar 

  31. Escaned J, Collet C, Ryan N, De Maria GL, Walsh S, Sabate M, Davies J, Lesiak M, Moreno R, Cruz-Gonzalez I, Hoole SP, Ej West N, Piek JJ, Zaman A, Fath-Ordoubadi F, Stables RH, Appleby C, van Mieghem N, van Geuns RJ, Uren N, et al. Clinical outcomes of state-of-the-art percutaneous coronary revascularization in patients with de novo three vessel disease: 1-year results of the SYNTAX II study. Eur Heart J. 2017;38(42):3124–34. https://doi.org/10.1093/eurheartj/ehx512.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Farkouh ME, Domanski M, Sleeper LA, Siami FS, Dangas G, Mack M, Yang M, Cohen DJ, Rosenberg Y, Solomon SD, Desai AS, Gersh BJ, Magnuson EA, Lansky A, Boineau R, Weinberger J, Ramanathan K, Sousa JE, Rankin J, Bhargava B, et al. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367(25):2375–84. https://doi.org/10.1056/NEJMoa1211585.

    Article  CAS  PubMed  Google Scholar 

  33. Farkouh ME, Domanski M, Dangas GD, Godoy LC, Mack MJ, Siami FS, Hamza TH, Shah B, Stefanini GG, Sidhu MS, Tanguay JF, Ramanathan K, Sharma SK, French J, Hueb W, Cohen DJ, Fuster V, FREEDOM Follow-On Study Investigators. Long-term survival following multivessel revascularization in patients with diabetes: the FREEDOM follow-on study. J Am Coll Cardiol. 2019;73(6):629–38. https://doi.org/10.1016/j.jacc.2018.11.001.

    Article  PubMed  Google Scholar 

  34. Stone GW, Sabik JF, Serruys PW, Simonton CA, Généreux P, Puskas J, Kandzari DE, Morice MC, Lembo N, Brown WM III, Taggart DP, Banning A, Merkely B, Horkay F, Boonstra PW, van Boven AJ, Ungi I, Bogáts G, Mansour S, Noiseux N, et al. Everolimus-eluting stents or bypass surgery for left main coronary artery disease. N Engl J Med. 2016;375(23):2223–35. https://doi.org/10.1056/NEJMoa1610227.

    Article  CAS  PubMed  Google Scholar 

  35. Mäkikallio T, Holm NR, Lindsay M, Spence MS, Erglis A, Menown IB, Trovik T, Eskola M, Romppanen H, Kellerth T, Ravkilde J, Jensen LO, Kalinauskas G, Linder RB, Pentikainen M, Hervold A, Banning A, Zaman A, Cotton J, Eriksen E, et al. Percutaneous coronary angioplasty versus coronary artery bypass grafting in treatment of unprotected left main stenosis (NOBLE): a prospective, randomised, open-label, non-inferiority trial. Lancet. 2016;388(10061):2743–52. https://doi.org/10.1016/S0140-6736(16)32052-9).

    Article  PubMed  Google Scholar 

  36. Head SJ, Milojevic M, Daemen J, Ahn JM, Boersma E, Christiansen EH, Domanski MJ, Farkouh ME, Flather M, Fuster V, Hlatky MA, Holm NR, Hueb WA, Kamalesh M, Kim YH, Mäkikallio T, Mohr FW, Papageorgiou G, Park SJ, Rodriguez AE, et al. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention with stenting for coronary artery disease: a pooled analysis of individual patient data. Lancet. 2018;391(10124):939–48. https://doi.org/10.1016/S0140-6736(18)30423-9).

    Article  PubMed  Google Scholar 

  37. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, Douglas PS, Foody JM, Gerber TC, Hinderliter AL, King SB III, Kligfield PD, Krumholz HM, Kwong RY, Lim MJ, Linderbaum JA, Mack MJ, Munger MA, Prager RL, Sabik JF, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2012;126(25):3097–137. https://doi.org/10.1161/CIR.0b013e3182776f83.

    Article  PubMed  Google Scholar 

  38. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE, Hansen TB, Huikuri HV, Johansson I, Jüni P, Lettino M, Marx N, Mellbin LG, Östgren CJ, Rocca B, Roffi M, Sattar N, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486.

    Article  PubMed  Google Scholar 

  39. Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–e360. https://doi.org/10.1161/CIR.0000000000000350.

    Article  Google Scholar 

  40. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, Fleisher LA, Fowkes FG, Hamburg NM, Kinlay S, Lookstein R, Misra S, Mureebe L, Olin JW, Patel RA, Regensteiner JG, Schanzer A, Shishehbor MH, Stewart KJ, Treat-Jacobson D, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017;135(12):e686–725. https://doi.org/10.1161/CIR.0000000000000470.

    Article  PubMed  Google Scholar 

  41. American Diabetes Association. Peripheral arterial disease in people with diabetes. Diabetes Care. 2003;26(12):3333–41. https://doi.org/10.2337/diacare.26.12.3333.

    Article  Google Scholar 

  42. Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet. 2014;383(9921):999–1008. https://doi.org/10.1016/S0140-6736(13)61752-3.

    Article  PubMed  Google Scholar 

  43. Selvin E, Erlinger TP. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999-2000. Circulation. 2004;110(6):738–43. https://doi.org/10.1161/01.CIR.0000137913.26087.F0.

    Article  PubMed  Google Scholar 

  44. Marso SP, Hiatt WR. Peripheral arterial disease in patients with diabetes. J Am Coll Cardiol. 2006;47(5):921–9. https://doi.org/10.1016/j.jacc.2005.09.065.

    Article  PubMed  Google Scholar 

  45. Jude EB, Oyibo SO, Chalmers N, Boulton AJ. Peripheral arterial disease in diabetic and nondiabetic patients: a comparison of severity and outcome. Diabetes Care. 2001;24(8):1433–7. https://doi.org/10.2337/diacare.24.8.1433.

    Article  CAS  PubMed  Google Scholar 

  46. Giannopoulos S, Armstrong EJ. Diabetes mellitus: an important risk factor for peripheral vascular disease. Expert Rev Cardiovasc Ther. 2020;18(3):131–7. https://doi.org/10.1080/14779072.2020.1736562.

    Article  CAS  PubMed  Google Scholar 

  47. van Haelst ST, Haitjema S, de Vries JP, Moll FL, Pasterkamp G, den Ruijter HM, de Borst GJ. Patients with diabetes differ in atherosclerotic plaque characteristics and have worse clinical outcome after iliofemoral endarterectomy compared with patients without diabetes. J Vasc Surg. 2017;65(2):414–421.e5. https://doi.org/10.1016/j.jvs.2016.06.110.

    Article  PubMed  Google Scholar 

  48. Edmonds ME. Medial arterial calcification and diabetes mellitus. Z Kardiol. 2000;89(Suppl 2):101–4. https://doi.org/10.1007/s003920070107.

    Article  PubMed  Google Scholar 

  49. Feinglass J, Pearce WH, Martin GJ, Gibbs J, Cowper D, Sorensen M, Henderson WG, Daley J, Khuri S. Postoperative and late survival outcomes after major amputation: findings from the Department of Veterans Affairs National Surgical Quality Improvement Program. Surgery. 2001;130(1):21–9. https://doi.org/10.1067/msy.2001.115359.

    Article  CAS  PubMed  Google Scholar 

  50. CDC. n.d.. https://www.cdc.gov/diabetes/data/statistics-report/appendix.html. Accessed 10 Aug 2021.

  51. Thiruvoipati T, Kielhorn CE, Armstrong EJ. Peripheral artery disease in patients with diabetes: epidemiology, mechanisms, and outcomes. World J Diabetes. 2015;6(7):961–9. https://doi.org/10.4239/wjd.v6.i7.961.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–e492. https://doi.org/10.1161/CIR.0000000000000558.

    Article  PubMed  Google Scholar 

  53. Low Wang CC, Blomster JI, Heizer G, Berger JS, Baumgartner I, Fowkes F, Held P, Katona BG, Norgren L, Jones WS, Lopes RD, Olin JW, Rockhold FW, Mahaffey KW, Patel MR, Hiatt WR, EUCLID Trial Executive Committee and Investigators. Cardiovascular and limb outcomes in patients with diabetes and peripheral artery disease: the EUCLID trial. J Am Coll Cardiol. 2018;72(25):3274–84. https://doi.org/10.1016/j.jacc.2018.09.078.

    Article  PubMed  Google Scholar 

  54. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, Olin JW, Krook SH, Hunninghake DB, Comerota AJ, Walsh ME, McDermott MM, Hiatt WR. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286(11):1317–24. https://doi.org/10.1001/jama.286.11.1317.

    Article  CAS  PubMed  Google Scholar 

  55. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, Fleisher LA, Fowkes FG, Hamburg NM, Kinlay S, Lookstein R, Misra S, Mureebe L, Olin JW, Patel RA, Regensteiner JG, Schanzer A, Shishehbor MH, Stewart KJ, Treat-Jacobson D, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017;135(12):e726–79. https://doi.org/10.1161/CIR.0000000000000471.

    Article  PubMed  Google Scholar 

  56. Suggested standards for reports dealing with lower extremity ischemia. Prepared by the Ad Hoc Committee on Reporting Standards, Society for Vascular Surgery/North American Chapter, International Society for Cardiovascular Surgery. J Vasc Surg. 1986;4(1):80–94.

    Article  Google Scholar 

  57. Rutherford RB, Baker JD, Ernst C, Johnston KW, Porter JM, Ahn S, Jones DN. Recommended standards for reports dealing with lower extremity ischemia: revised version. J Vasc Surg. 1997;26(3):517–38. https://doi.org/10.1016/s0741-5214(97)70045-4.

    Article  CAS  PubMed  Google Scholar 

  58. Taylor GI, Palmer JH. The vascular territories (angiosomes) of the body: experimental study and clinical applications. Br J Plast Surg. 1987;40(2):113–41. https://doi.org/10.1016/0007-1226(87)90185-8.

    Article  CAS  PubMed  Google Scholar 

  59. Taylor GI, Pan WR. Angiosomes of the leg: anatomic study and clinical implications. Plast Reconstr Surg. 1998;102(3):599–618.

    Article  CAS  PubMed  Google Scholar 

  60. Biancari F, Juvonen T. Angiosome-targeted lower limb revascularization for ischemic foot wounds: systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2014;47(5):517–22. https://doi.org/10.1016/j.ejvs.2013.12.010.

    Article  CAS  PubMed  Google Scholar 

  61. Berchiolli RN, Marconi M, Mocellin DM, Adami D, Ferrari M. Hybrid procedures and femoral endarterectomy in diabetic patients. Eur Rev Med Pharmacol Sci. 2019;23(3):1257–65. https://doi.org/10.26355/eurrev_201902_17019.

    Article  CAS  PubMed  Google Scholar 

  62. Adam DJ, Beard JD, Cleveland T, Bell J, Bradbury AW, Forbes JF, Fowkes FG, Gillepsie I, Ruckley CV, Raab G, Storkey H, BASIL trial participants. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet. 2005;366(9501):1925–34. https://doi.org/10.1016/S0140-6736(05)67704-5.

    Article  CAS  PubMed  Google Scholar 

  63. Bradbury AW, Adam DJ, Bell J, Forbes JF, Fowkes FG, Gillespie I, Raab G, Ruckley CV. Multicentre randomised controlled trial of the clinical and cost-effectiveness of a bypass-surgery-first versus a balloon-angioplasty-first revascularisation strategy for severe limb ischaemia due to infrainguinal disease. The Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial. Health Technol Assess. 2010;14(14):1–iv. https://doi.org/10.3310/hta14140.

    Article  CAS  PubMed  Google Scholar 

  64. Hicks CW, Canner JK, Lum YW, Black JH III, Abularrage CJ. Long-term outcomes of an endovascular-first approach for diabetic patients with predominantly tibial disease treated in a multidisciplinary setting. Ann Vasc Surg. 2019;60:315–326.e2. https://doi.org/10.1016/j.avsg.2019.04.001.

    Article  PubMed  Google Scholar 

  65. Sabeti S, Mlekusch W, Amighi J, Minar E, Schillinger M. Primary patency of long-segment self-expanding nitinol stents in the femoropopliteal arteries. J Endovasc Ther. 2005;12(1):6–12. https://doi.org/10.1583/04-1359.1.

    Article  PubMed  Google Scholar 

  66. DeRubertis BG, Pierce M, Ryer EJ, Trocciola S, Kent KC, Faries PL. Reduced primary patency rate in diabetic patients after percutaneous intervention results from more frequent presentation with limb-threatening ischemia. J Vasc Surg. 2008;47(1):101–8. https://doi.org/10.1016/j.jvs.2007.09.018.

    Article  PubMed  Google Scholar 

  67. Shammas AN, Jeon-Slaughter H, Tsai S, Khalili H, Ali M, Xu H, Rodriguez G, Cawich I, Armstrong EJ, Brilakis ES, Banerjee S. Major limb outcomes following lower extremity endovascular revascularization in patients with and without diabetes mellitus. J Endovasc Ther. 2017;24(3):376–82. https://doi.org/10.1177/1526602817705135.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lee MS, Choi BG, Rha SW. Impact of diabetes mellitus on 5-year clinical outcomes following successful endovascular revascularization for peripheral artery disease. Vasc Med. 2020;25(1):33–40. https://doi.org/10.1177/1358863X19879751.

    Article  PubMed  Google Scholar 

  69. Hicks CW, Najafian A, Farber A, Menard MT, Malas MB, Black JH III, Abularrage CJ. Diabetes does not worsen outcomes following infrageniculate bypass or endovascular intervention for patients with critical limb ischemia. J Vasc Surg. 2016;64(6):1667–1674.e1. https://doi.org/10.1016/j.jvs.2016.07.107.

    Article  PubMed  Google Scholar 

  70. Rocha-Singh KJ, Jaff MR, Crabtree TR, Bloch DA, Ansel G, VIVA Physicians, Inc. Performance goals and endpoint assessments for clinical trials of femoropopliteal bare nitinol stents in patients with symptomatic peripheral arterial disease. Catheter Cardiovasc Interv. 2007;69(6):910–9. https://doi.org/10.1002/ccd.21104.

    Article  PubMed  Google Scholar 

  71. Laird JR. Limitations of percutaneous transluminal angioplasty and stenting for the treatment of disease of the superficial femoral and popliteal arteries. J Endovasc Ther. 2006;13(Suppl 2):II30–40. https://doi.org/10.1583/05-1754.1.

    Article  PubMed  Google Scholar 

  72. Shanmugasundaram M, Murugapandian S, Truong HT, Lotun K, Banerjee S. Drug-coated balloon in peripheral artery disease. Cardiovasc Revascular Med. 2019;20(4):338–43. https://doi.org/10.1016/j.carrev.2018.04.017.

    Article  Google Scholar 

  73. Fanelli F, Cannavale A, Boatta E, Corona M, Lucatelli P, Wlderk A, Cirelli C, Salvatori FM. Lower limb multilevel treatment with drug-eluting balloons: 6-month results from the DEBELLUM randomized trial. J Endovasc Ther. 2012;19(5):571–80. https://doi.org/10.1583/JEVT-12-3926MR.1.

    Article  PubMed  Google Scholar 

  74. Debing E, Aerden D, Vanhulle A, Gallala S, von Kemp K, TRIAL Investigators. Paclitaxel-coated versus plain old balloon angioplasty for the treatment of infrainguinal arterial disease in diabetic patients: the Belgian diabetic IN.PACT Trial. J Cardiovasc Surg. 2017;58(4):528–34. https://doi.org/10.23736/S0021-9509.16.09685-3.

    Article  Google Scholar 

  75. Oz II, Serifoglu I, Bilici M, Altinbas NK, Oz EB, Akduman EI. Comparison of Drug-Eluting Balloon and Standard Balloon Angioplasty for Infrapopliteal Arterial Diseases in Diabetic Patients. Vasc Endovasc Surg. 2016;50(8):534–40. https://doi.org/10.1177/1538574416676019.

    Article  Google Scholar 

  76. Gouëffic Y, Sauguet A, Desgranges P, Feugier P, Rosset E, Ducasse E, Kaladji A, Salomon du Mont L, Pernès JM, Commeau P, Lermusiaux P, Leclere B, Guyomarc’h B, Hoffmann CT, Maurel B. A polymer-free paclitaxel-eluting stent versus a bare-metal stent for de novo femoropopliteal lesions: the BATTLE trial. JACC Cardiovasc Interv. 2020;13(4):447–57. https://doi.org/10.1016/j.jcin.2019.12.028.

    Article  PubMed  Google Scholar 

  77. Gray WA, Keirse K, Soga Y, Benko A, Babaev A, Yokoi Y, Schroeder H, Prem JT, Holden A, Popma J, Jaff MR, Diaz-Cartelle J, Müller-Hülsbeck S, IMPERIAL investigators. A polymer-coated, paclitaxel-eluting stent (Eluvia) versus a polymer-free, paclitaxel-coated stent (Zilver PTX) for endovascular femoropopliteal intervention (IMPERIAL): a randomised, non-inferiority trial. Lancet. 2018;392(10157):1541–51. https://doi.org/10.1016/S0140-6736(18)32262-1.

    Article  CAS  PubMed  Google Scholar 

  78. Laird JR, Yeo KK. The treatment of femoropopliteal in-stent restenosis: back to the future. J Am Coll Cardiol. 2012;59(1):24–5. https://doi.org/10.1016/j.jacc.2011.09.037.

    Article  PubMed  Google Scholar 

  79. Liistro F, Angioli P, Porto I, Ricci L, Ducci K, Grotti S, Falsini G, Ventoruzzo G, Turini F, Bellandi G, Bolognese L. Paclitaxel-eluting balloon vs. standard angioplasty to reduce recurrent restenosis in diabetic patients with in-stent restenosis of the superficial femoral and proximal popliteal arteries: the DEBATE-ISR study. J Endovasc Ther. 2014;21(1):1–8. https://doi.org/10.1583/13-4420R.1.

    Article  PubMed  Google Scholar 

  80. Garcia LA, Jaff MR, Rocha-Singh KJ, Zeller T, Bosarge C, Kamat S, McKinsey JF. A comparison of clinical outcomes for diabetic and nondiabetic patients following directional atherectomy in the DEFINITIVE LE Claudicant Cohort. J Endovasc Ther. 2015;22(5):701–11. https://doi.org/10.1177/1526602815599550.

    Article  PubMed  Google Scholar 

  81. Singh et al. The REALITY Study: DiRectional AthErectomy + Drug-CoAted BaLloon to Treat Long, CalcifIed FemoropopliTeal ArterY Lesions.

    Google Scholar 

  82. Mustapha J, Gray W, Martinsen BJ, Bolduan RW, Adams GL, Ansel G, Jaff MR. One-year results of the LIBERTY 360 study: evaluation of acute and midterm clinical outcomes of peripheral endovascular device interventions. J Endovasc Ther. 2019;26(2):143–54. https://doi.org/10.1177/1526602819827295.

    Article  PubMed  Google Scholar 

  83. Sawicki PT, Kaiser S, Heinemann L, Frenzel H, Berger M. Prevalence of renal artery stenosis in diabetes mellitus--an autopsy study. J Intern Med. 1991;229(6):489–92. https://doi.org/10.1111/j.1365-2796.1991.tb00382.x.

    Article  CAS  PubMed  Google Scholar 

  84. Postma CT, Klappe EM, Dekker HM, Thien T. The prevalence of renal artery stenosis among patients with diabetes mellitus. Eur J Intern Med. 2012;23(7):639–42. https://doi.org/10.1016/j.ejim.2012.06.003.

    Article  CAS  PubMed  Google Scholar 

  85. ASTRAL Investigators, Wheatley K, Ives N, Gray R, Kalra PA, Moss JG, Baigent C, Carr S, Chalmers N, Eadington D, Hamilton G, Lipkin G, Nicholson A, Scoble J. Revascularization versus medical therapy for renal-artery stenosis. N Engl J Med. 2009;361(20):1953–62. https://doi.org/10.1056/NEJMoa0905368.

    Article  Google Scholar 

  86. Cooper CJ, Murphy TP, Cutlip DE, Jamerson K, Henrich W, Reid DM, Cohen DJ, Matsumoto AH, Steffes M, Jaff MR, Prince MR, Lewis EF, Tuttle KR, Shapiro JI, Rundback JH, Massaro JM, D’Agostino RB Sr, Dworkin LD, CORAL Investigators. Stenting and medical therapy for atherosclerotic renal-artery stenosis. N Engl J Med. 2014;370(1):13–22. https://doi.org/10.1056/NEJMoa1310753.

    Article  CAS  PubMed  Google Scholar 

  87. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, et al. Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–e209. https://doi.org/10.1161/CIR.0b013e3182009701.

    Article  PubMed  Google Scholar 

  88. Dimic A, Markovic M, Vasic D, Dragas M, Zlatanovic P, Mitrovic A, Davidovic L. Impact of diabetes mellitus on early outcome of carotid endarterectomy. VASA. 2019;48(2):148–56. https://doi.org/10.1024/0301-1526/a000737.

    Article  PubMed  Google Scholar 

  89. Wei LM, Zhu YQ, Bao YQ, Lu HT, Zhang PL, Zhao YW, Li M, Zhao JG. Atherosclerosis in intracranial or extracranial vessels in diabetic patients and the association with stroke subtype. Quant Imaging Med Surg. 2019;9(6):960–7. https://doi.org/10.21037/qims.2019.04.17.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Castelblanco E, Betriu À, Hernández M, Granado-Casas M, Ortega E, Soldevila B, Ramírez-Morros A, Franch-Nadal J, Puig-Domingo M, Fernández E, Avogaro A, Alonso N, Mauricio D. Ultrasound tissue characterization of carotid plaques differs between patients with type 1 diabetes and subjects without diabetes. J Clin Med. 2019;8(4):424. https://doi.org/10.3390/jcm8040424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wagenknecht LE, Zaccaro D, Espeland MA, Karter AJ, O’Leary DH, Haffner SM. Diabetes and progression of carotid atherosclerosis: the insulin resistance atherosclerosis study. Arterioscler Thromb Vasc Biol. 2003;23(6):1035–41. https://doi.org/10.1161/01.ATV.0000072273.67342.6D.

    Article  CAS  PubMed  Google Scholar 

  92. Mantese VA, Timaran CH, Chiu D, Begg RJ, Brott TG, CREST Investigators. The Carotid Revascularization Endarterectomy versus Stenting Trial (CREST): stenting versus carotid endarterectomy for carotid disease. Stroke. 2010;41(10 Suppl):S31–4. https://doi.org/10.1161/STROKEAHA.110.595330.

    Article  PubMed  PubMed Central  Google Scholar 

  93. On the management of patients with extracranial carotid and vertebral artery disease: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, Society for Vascular Medicine, and Society for Vascular Surgery. Circulation. 2011;124(4):489–532. https://doi.org/10.1161/CIR.0b013e31820d8d78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Carrozza Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daly, G.H., Abdelazeem, M., Garcia, L.A., Carrozza, J.P. (2023). Diabetes and Percutaneous Interventional Therapy. In: Johnstone, M., Veves, A. (eds) Diabetes and Cardiovascular Disease. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-13177-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13177-6_25

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-13176-9

  • Online ISBN: 978-3-031-13177-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics