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Chapter 6
Pathway Analysis, Causal Mediation, 
and the Identification of Causal 
Mechanisms

Leonce Röth

Abstract This chapter presents the systematic analysis of causal mechanisms from 
the perspective of pathway analysis as an essential complement to conventional 
approaches to causation. It builds on the evidence that credible causal identification 
defies design-based strategies such as randomization or linear mediation analysis 
unless their research designs are supported by reliable mechanistic knowledge. The 
chapter reasons that the reliable causal identification of a mechanism requires the 
concept of ‘natural indirect effect’ and a double-nested counterfactual strategy. It 
discusses the empirical quantification of causal mechanisms and its underlying 
assumptions, offers empirical examples that clarify them, and reviews the condi-
tions and limits of the strategy.

Learning Objectives
After studying this chapter, you will be able to:

• Understand the meaning of a mechanism from the pathway perspective.
• Learn how a counterfactual perspective on causality relates to mechanistic 

thinking.
• Learn how to identify and quantify causal mechanisms using non-parametric 

procedures.
• Understand why randomization alone does not suffice to identify causal 

mechanisms.
• Learn how to identify mechanisms when treatment and mediator interact.
• Understand the crucial assumptions under which indirect natural effect estimates 

equal identified causal mechanisms.
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6.1  Introduction

An increasingly popular postulate of causal analysis maintains that good research 
includes some account of how one variable generates another to underpin a causal 
claim. Causal mechanisms are at the center of research in small-n analyses, often 
are a crucial part of the theoretical argument in large-n studies, and prove indispens-
able for scholars of systematic pathway analysis. In some accounts, a credible 
causal mechanism makes the difference between explanatory and non-explanatory 
propositions (Waldner, 2007, 146; Kiser & Hechter, 1991, 5; Mayntz, 2004, 14; 
Hedström, 2008).

Asking not just for a cause of an effect but also for the intermediate process in 
between is a deeper or second form of asking why (Pearl & Mackenzie, 2018, 
299–300). The response to this deeper why always complements other types of evi-
dence but remains crucial for qualifying the external and internal validity of causal 
relations. Indeed, mechanisms can raise our confidence in the established validity of 
a causal association – or undermine it (internal validity). Moreover, their knowledge 
can change the inference on evidence even from well-executed trials and improve 
the next experimental setup. This is because mechanisms convey information on the 
scope conditions of a causal association, which expose the limits of causal effects 
and their underlying processes (external validity). Besides, knowledge of mecha-
nisms can reveal multiple pathways between cause and outcome, thus guiding us to 
more effective interventions.

A textbook illustration of these points comes from one of the earliest documented 
controlled experiments. In 1747, James Lind observed that eating citrus fruits pre-
vents scurvy; understanding and validating the mechanism between citrus intake 
and scurvy prevention took another 183 years. In the meantime, the link from citrus 
to scurvy was discredited because the mechanism and its scope conditions remained 
unknown.1

The central intuition about the citrus treatment was that it involved vitamin C – a 
particular type of acid, later called ‘ascorbic’ in recognition of its scurvy preventive 
properties. We now know that vitamin C oxidizes when exposed to heat and light or 
put in contact with copper. In other words, the citrus treatment only works under 
specific scope conditions. Back then, however, the juice was heated for conserva-
tion, copper pipes were in widespread use, and exposure to light was regular. Thus, 
many attempts to produce lime juice for sea travels proved ineffective against scurvy.

Furthermore, mechanisms take time to unfold. Today we know that the intake of 
ascorbic acid activates the synthesis of the enzyme collagen IV. Collagen is a struc-
tural protein necessary for healthy blood vessels, muscle, skin, bone, cartilage, and 
other connective tissues. Ascorbic acid is required for various biosynthetic path-
ways; when these pathways decay, humans develop a series of symptoms 

1 The startling history of the cure for scurvy is well told in Lewis (1972). Pearl and Mackenzie 
(2018) recall it to illustrate mediation. This chapter’s version enriches the history with some recent 
knowledge about the causal mechanism, and gives center stage to its scope conditions.
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collectively assembled in the diagnosis of scurvy. Moreover, humans cannot synthe-
size collagen without ascorbic acid and have a low capacity to store it. As collagen 
IV synthesis stops 4–12 weeks after the last intake of ascorbic acid, symptoms of 
scurvy start to be visible after 4 weeks. The citrus intake also appeared ineffective 
for sea travels as the diffusion of steam navigation made many sea trips too short for 
the symptoms to show. However, Arctic expeditions remained long enough, and 
many seafarers suffered from scurvy in expeditions until the early twentieth century.2

For long, the wrong inference that citrus intake is ineffective for scurvy preven-
tion survived due to the lack of knowledge of the mechanism of activation of col-
lagen IV synthesis. Filling this gap proved crucial for restoring the causal association, 
as the mechanism disclosed many necessary scope conditions required for it to 
hold – namely, time, temperature, and exposure to light or copper. These conditions 
imply that the link between the effect of the treatment and the outcome can only be 
established in a study period of at least 4 weeks and if the ascorbic acid is kept 
intact. Moreover, they suggest that the link blurs whenever equivalent pathways are 
activated – for instance, if seafarers can eat raw meat or any fresh food containing 
sufficient ascorbic acid. Thus, perfect randomization of citrus intake may not reveal 
its preventive effect when its design does not take the relevant scope conditions of 
the mechanism into account.

In short, the knowledge of mechanisms improves three vital criteria of scientific 
inference – reliability and internal and external validity. But how to study mecha-
nisms systematically?

In the following, I present the answer provided by the particular version of path-
way analysis that merges graph theory with a counterfactual model of causality into 
a powerful framework for identifying mechanisms. This development is roughly 
15 years old and still in full swing. It has taken computer science and biology by 
storm: biostatisticians now usually run millions of pathway models a minute to 
analyze gene expressions and understand the mechanisms linking a drug treatment 
and its effect. In comparison, social scientists still seem hesitant to embrace the 
many benefits that such a pathway perspective can bring. This chapter’s first and 
foremost intention is to reduce hesitation.3

To this end, Sect. 6.2 locates the mechanistic why-question in the philosophy of 
science and discusses the assumptions under which a generic definition of a path-
way or mediator4 can be called ‘a mechanism’. Then, Sect. 6.3 discusses how to 
distinguish between mechanistic associations and causal mechanisms. To this end, 
it dwells upon a remarkable strength of this method for pathway analysis  – a 

2 Notably, the two expeditions of Robert Falcon Scott to Antarctica in 1903 and 1911 suffered 
greatly from scurvy.
3 Excellent discussions of causal identification of mechanisms using graph theory are in Morgan 
and Winship (2015, Chap. 10); Pearl and Mackenzie (2018, Chap. 9); VanderWeele (2015, Part 
One). This chapter owes almost everything to these contributions. However, it takes a more specific 
angle on the causal identification of mechanisms in the social sciences.
4 Note that, in some disciplines, the identification of mechanism is synonymous with causal media-
tion analysis. Here, instead, mediation is considered a special instance of pathway analysis.
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graphical rendering of causal assumptions that helps to lay out the structural condi-
tions under which pathways are causally identified or mistaken. Thus, it clarifies 
how the graph perspective improves on one of the most applied and cited methods 
in the history of the social sciences – the so-called Baron-Kenny approach to media-
tion analysis – and, in so doing, enhances our conditioning strategies.

Section 6.4 discusses the innovative core of pathways analysis  – namely, the 
‘decomposition’ and the quantification of the total, direct, and indirect effects on 
observational data. Indeed, Judea Pearl and others spearheaded a causal revolution 
when they defined the conditions of causally identified pathways and developed 
non-parametric formulae to decompose total effects into direct and indirect ones 
(Pearl, 2022). This quantification strategy of pathway effects took time to be 
accepted and faced some deep-rooted skepticism from the more conventional quar-
ters of causal analysis (e.g., Rubin, 2004; Rubin, 2005). Nevertheless, social science 
scholars are slowly getting familiar with indirect effects and their underlying coun-
terfactual theory of causation (see Imbens, 2020).

Section 6.5 replicates one influential model from development economics and 
sketches another from educational research. The first example demonstrates how 
strong supposedly mechanistic inference based on innovative cluster randomization 
in Kenya can be misleading. The second example shows how pathways analysis can 
draw important mechanistic lessons from a randomized controlled trial run in the 
United States to seemingly no effect. These examples prove mechanistic knowledge 
essential to validate and refine even causal evidence from compelling research 
designs.

The last section of this chapter intends to keep the promises of the pathway 
approach in check and dispel the illusion that causal identification is a simple tech-
nical exercise. As randomized controlled trials or instrumental variable applications 
show, the devil lies in the detail of the exclusion restrictions; in this respect, pathway 
causal identification is even more demanding than total effects via randomization or 
quasi-randomization. Pathway analysis reminds us that our models seldom ensure 
the perfect causal identification of a mechanism. Indeed, the complexity of the real 
world typically defies our attempts to draw exhaustive causal maps with analytic 
tools that require exclusion restrictions. Nonetheless, these restrictions ensure the 
transparent rigor that qualifies evidence as causal and distinct from mere association.

6.2  Can Pathways Be Mechanisms?

Sometimes, the concepts of mechanism, pathway, and mediation can be confusing. 
All three terms adhere to the general idea of increasing causal depth by diminishing 
the contiguity of time and space between cause and outcome. However, what exactly 
is considered a cause–effect framework and a mechanistic framework is subject to 
the relative status of a research field and is constantly in flux (see also Chap. 2, 
Sect. 2.3.1).

L. Röth
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What appears to be a sufficiently deep causal mechanism in one particular 
research tradition and time can be perceived as a superficial association in another. 
Ideally, research fields increase causal depth over time and remain cautious about 
the trade-off between desirable specificity and useful parsimony (Craver & Kaplan, 
2020). The balance of specificity and parsimony changes while research progresses, 
and what was considered a mechanism once might be addressed as separate cause–
effect relations. Recall from the introduction that it took 183 years to detect the 
crucial acid for the mechanism between citrus intake and scurvy prevention. During 
the attempts to isolate ascorbic acid, the intake of vitamin C could have been appro-
priately described as the causal mechanism. In light of new knowledge, researchers 
today focus on way more specific biosynthesis pathways as distinct causal relation-
ships. In short, researchers have approached the old mechanism to more causal 
depth. Philosophers of science call this kind of deepening process “bottoming-out” 
(see Fig. 6.1) or, in simpler terms, delivering on the demand for the explanation that 
can stop the infinite regress in causal analysis.

Aiming at fundamental explanations has had a strong appeal for a long time now 
in the social sciences (see Elster, 1989; Goldthorpe, 2001; Hedström et al., 1998; 
Hedström & Ylikoski, 2010; Knight & Winship, 2013). Nonetheless, causal mecha-
nisms are also seen as the least understood kind of causal claim (Gerring, 2010; 
Hedström & Ylikoski, 2010; Waldner, 2012).

Some scholars use the term “mechanism” to refer to a series of events between 
the original cause and the outcome (Abell, 2004; Mahoney, 2012; Morgan & 
Winship, 2015; Pearl, 2009, Pearl & Mackenzie, 2018). The concept of “pathway”, 
too, indicates a chain of mediators connecting a cause to an outcome. Thus, some 
have embraced the term “mechanism” for the analysis of pathways across cases (see 
Gerring, 2010; Imai et al. 2011; Weller & Barnes, 2014; Woodward, 2003, 350–58; 
Runhardt, 2015; Morgan & Winship, 2015, 325–352). Other scholars, however, try 
to exclusively use the term “causal mechanism” for process tracing within single 
cases (for example, Beach, 2017). These scholars adhere to the “process” or “physi-
cal” theories of causation that provide a substantive account of what causal pro-
cesses are in light of what science tells us about the world (Dowe, 2000, 1–11 and 
Chap. 10).

Far from a terminological subtlety, these usages point to a fundamental divide 
over the concept of mechanism. The first group considers causality a matter of epis-
temology that can be addressed with probabilistic or counterfactual models. From 
this standpoint, establishing causation is an exercise in logic that many techniques 

Fig. 6.1 Approaching to causal depth
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can perform – provided that they afford comparisons (“type” causality; see Rohlfing 
& Zuber, 2021, 1634–35). In contrast, the holders of the process theory of causation 
maintain that causality is necessarily local – which means that it is manifest only in 
individual cases (“token” causality). Following the process view, within every 
unique case, causality exists in fine-grained sequences of entities’ activities that 
have to satisfy the criterion of seamless productive continuity (Dowe, 2000). From 
the perspective of bottoming-out, the process viewpoint on mechanistic causation 
raises the highest possible demand on causal depth.

A pathway as a sequence of mediators (or interactions) cannot satisfy the onto-
logical criteria established by the process view of mechanistic causation. First, 
seamless productive continuity can hardly be demonstrated by pathway analysis. 
Second, the very strength of pathway analysis lies in inferences from comparisons 
across cases or samples. In short, from the process view on causation, pathways do 
not deserve the term “mechanism”. However, this reservation is a relative rarity in 
the social sciences. Most scholars are satisfied with an evidential view on mecha-
nisms as a cause-to-effect pathway that at least includes one mediator. Even without 
satisfying the high demands from the process view, pathway analysts also approach 
causal depth as they want to know what connects a supposed cause and its outcome 
at the fundamental level, hence in a general form. As we will see in the next part, the 
biggest strength of pathway analysis in that ambition for deeper explanations is 
epistemological. Pathway analysis has developed clear and transparent criteria to 
distinguish causal mechanisms from mechanistic associations.

6.3  Identifying Causal Mechanisms with Graphs

Causal identification is a general problem independent of the commitment to a 
mechanistic theory (Pearl, 2009). Pearl’s metaphor of a “ladder of causation” ren-
ders the solutions to the identification problem as a historical endeavor to more 
reliable causal knowledge (Pearl & Mackenzie, 2018, 23–52). In this line of thought, 
scientists moved from the regularity theory over probabilistic theory to the interven-
tionist theory before reaching the top level of the counterfactual theory. As Pearl’s 
argument goes, counterfactuals win the highest pitch as they synthesize and improve 
on previous solutions to causal identification problems.

From a regularity viewpoint, only the perfect sequence of the candidate cause 
and outcome constitutes evidence for causation. In our scurvy example, the regular-
ity criterion requires that every citrus intake prevents scurvy without exceptions. 
The scope conditions of the mechanism demonstrated this bare inference mostly 
wrong. Under some circumstances, citrus can fail, or the causal effect might be 
observed without citrus. In Pearl’s account, the limits of perfect regularity motivate 
the shift toward the probabilistic account of causality.

The probabilistic account admits that a causal relation unfolds or fails due to 
scope conditions and alternative mechanisms but maintains that many of them 
remain unknown. Hence, our best knowledge about citrus intake can focus on 
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whether it affects the probability of getting scurvy net of contextual vagaries – that 
is, on average. However, evidence that a factor affects the probability of an outcome 
does not constitute evidence for causation either. A limit of the probabilistic 
approach is that it cannot establish the direction of causation – a problem known as 
“asymmetry” or “endogeneity”. In light of observed probability, for instance, it 
might also be that scurvy causes lemon intake.

The problem of asymmetry is solved when the candidate cause precedes the 
outcome. The best way of ensuring this order is to get some control over the candi-
date causal factor. So, if we prescribe citrus intake to healthy and compliant seafar-
ers once on board, we can gather more convincing evidence of its contribution to the 
probability of getting scurvy. This approach is at the heart of the ‘interventionist’ 
school of causality.

With the asymmetry problem being solved, the thorniest issue of causal identifi-
cation takes center stage. Even in an interventionist framework, confounders can 
bias the identification. Thus, we might mistake the sequence of two events as causal 
despite it being due to a third unobserved factor instead. Logically, the counterfac-
tual theory of causation can discriminate between a confounded relationship and a 
causal one. The observed event is the real cause when it precedes the outcome, and 
its manipulation resonates with a change in the outcome that would not have 
occurred without the intervention. Thus, the counterfactual subsumes all preceding 
approaches to causal identification. Moreover, it embraces the ‘would haves’ and, 
on this basis, can offer a single theoretical solution to both asymmetry and con-
founding problems.

The counterfactual approach is deeply embedded in pathway analysis with 
graphs. Its notation responds to the problem of asymmetry by using directed arrows 
to clarify the direction of causality in contrast to the equal sign typical of the regres-
sion framework. Directed arrows connect “nodes” or variables in structures of 
dependency that recall family trees. Thus, the nodes in a path of directed arrows can 
be indicated as “grand-parent”, “parent”, “child”, and “grand-child.” These struc-
tures embody strong and weak causal assumptions. An arrow between two nodes 
indicates a weak causal assumption. It renders the direction of dependency – the fact 
that values of the child variable change in response to the values taken by the parent 
variable – but neither its sign5 nor the size of the causal effect. The strongest causal 
assumption is the absence of an arrow between two nodes, as it signals that the cor-
responding variables take their values independently of one another. Furthermore, 
pathway analysts have introduced the so-called “do-operator” to mimic an interven-
tion on an arrow and model the effect of its removal on observational data. This 
operator marks a relevant difference from conventional counterfactual studies based 
on non-intervention.

5 However, some biologists introduced a distinction in the notation of the positive and the negative 
effects.
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6.3.1  Closing the Backdoor

Graph theory offers a transparent strategy to tackle the two crucial problems of 
causal identification, namely, asymmetry and confounding. Figure 6.2 illustrates the 
task in its simplest form.

On the left-hand side of Fig. 6.2, we see the identification for the total effect 
framework, as in a typical correlation or regression analysis. To declare the associa-
tion between X and Y causal, we first need to demonstrate that X precedes Y and not 
the other way around. This assumption is embodied in the direction of the arrows. 
The second task is to check that the association between X and Y is not confounded 
by third factors such as C. Path X ← C → Y is a so-called “open back-door path” 
and can be seen as a pipe where non-causal variance is flowing that confounds the 
true relationship between X and Y. Back-door paths can be closed in two ways. 
First, by conditioning on C. If we can hold C constant, the back-door paths between 
X and Y are closed, and the association between X and Y is not confounded any-
more. To hold confounders constant is a common identification strategy – for exam-
ple, in multivariate regressions where we regress Y on X and condition on C (Pearl 
& Mackenzie, 2018, 157). A second widespread approach is the randomization of 
X. If we assign the treatment condition of X randomly, all associations running into 
X are broken, and, therefore, all back-door paths are closed (compare middle part of 
Fig.  6.2). Experimental designs build on the randomization of the treatment. In 
quasi-experimental designs – such as regression discontinuity or instrumental vari-
ables – randomness in the assignment to treatment arises indirectly from natural 
factors or events independently of the causal channel of interest (see Chap. 3). If we 
can rule out both reversed causality and confounding, the associations between X 
and Y imply causation by necessity. The power of the back-door criterion is that it 
reveals under which conditions associations are causal even based on observa-
tional data.

In a mechanistic framework, the two conditions for a causal interpretation of 
associations are the same: X needs to precede Y, and all back-door paths between X 
and Y need to be closed, as on the right-hand side of Fig. 6.2. However, these condi-
tions allow the causal interpretation of the total effect between X and Y, not the 
causal interpretation of the other quantities of interest to a mechanistic framework – 
namely, the effect of X on M (X → M, M being the mediator), and the effect of M 
on Y (M → Y; Y being the outcome). More conditions must be fulfilled to allow for 
a causal interpretation of the associations b and c on the right-hand side of Fig. 6.2. 

Fig. 6.2 Causal identification with and without a mechanism
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Fig. 6.3 Collider bias in 
mediation analysis

X has to precede M, and M has to precede Y. Furthermore, all three associations (a, 
b, and c) have to be un-confounded to reveal the ‘true’ causal effect from X → M, 
from M → Y, and the remaining effect of X → Y. In that framework, the total effect 
equals the sum of the effect from X over M to Y (the indirect effect) and the remain-
ing effect of X on Y (the direct effect).

If we randomize the treatment X of a mediation model, the randomized treatment 
blocks all arrows running into X. In the example on the right-hand side of Fig. 6.2, 
the randomization means ruling out the confounding of C1 and C2 so that the total 
effect of X on Y still is the true causal effect. However, even with a randomized 
treatment, we are still unable to quantify the indirect effect. The reason is that C3 is 
left unconditioned and confounds the relationship between M and Y (path c). 
Randomization of the treatment does close all back-door paths running into X but 
does not suffice to identify mechanisms. Unfortunately, the problem of potential 
confounding between M and Y runs even deeper.

Figure 6.3 represents a famous causal model of the effect of smoking on child 
mortality. It represents precisely the constellation described on the right-hand side 
of Fig. 6.2 and represents a fundamental problem of mechanistic identification, the 
collider bias. The collider bias has troubled statisticians for centuries and led to 
uncountable false inferences, the birth-weight paradox just being a prominent 
example.6

Let us consider the example in Fig. 6.3. In the mid-1960s, Jacob Yerushalmy 
pointed out that smoking during pregnancy seemed to benefit the health of children 
if the baby happened to be born underweight – the so-called “birth-weight paradox” 
(see Yerushalmy, 1971).7 Until 2006, this paradox remained unexplained.

In an extensive data set, Yerushalmy found unexpected relationships. Babies of 
smokers were lighter than babies of non-smokers. However, within the group of 
low-birth-weight babies, the babies of smoking mothers had a better survival rate 
than those of non-smokers. It was as if the mother’s smoking had a protective effect 
within the group of babies being born underweight. The inference was that “there is 
no causal path from smoking to mortality” (Yerushalmy, 1971). How come?

Yerushalmy’s findings are the consequence of a problematic conditioning strat-
egy. He was unaware of the importance of genetic disposition and operated under 

6 It likely was Barbara Burks who first modeled the problem using causal graphs in 1926.
7 An excellent discussion of the birthweight paradox can be found in Wilcox (2006).
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Fig. 6.4 Collider bias in mediation analysis

the assumption of the left model in Fig. 6.4. However, even within that model, it 
does not make sense to condition on birthweight. Birthweight is not a confounder, 
but a mediator. Conditioning on the mediator means correcting for the variance that 
runs through it. In the example, it means controlling for the indirect effect of birth-
weight. The remaining effect of X on Y is typically seen as the direct effect.

Conditioning on a mediator is justified to separate the indirect effect 
(X → M → Y) from the direct one (X → Y). As such, it lies at the heart of the con-
ventional mediation analysis. Indeed, conventional mediation analysis compares 
effect estimates of the cause based on two separate regressions. The crucial differ-
ence runs between the estimate of the coefficient of X on Y in a model without a 
mediator and in one conditioned on the mediator. As an illustration, if 100% of the 
variance of the effect from cause X runs through mediator M, conditioning on M 
leads to a null coefficient of the cause. Baron and Kenny (1986) define three neces-
sary, but not sufficient, conditions for detecting mediation along these lines8:

 – X has to be significantly related to M.
 – M has to be significantly related to Y.
 – The total association between X and Y has to decrease when M is kept in 

the model.

This reasoning allows inferring four types of mediations based on how the effect 
between X on Y changes when we condition on M (see Fig. 6.5).

Conventional mediation analysis speaks of ‘full mediation’ when the total vari-
ance is associated with the path from X via M to Y (indirect effect), and the direct 
effect of X on Y leaves nothing unexplained. “Partial mediation” is inferred from a 
reduced direct effect of X on Y after conditioning on the mediator. “No evidence for 
mediation” is inferred when the conditioning on the mediator does not affect the 
direct effect from X on Y. Finally, “inconsistent mediation” is inferred when the 
adjustment on the mediator reverses the direction of the effect of X on Y.

The birth weight paradox is an instructive example of inconsistent mediation. 
The reason is that the most prominent factor for low birth weight is a specific genetic 
disposition that sorts an even higher impact on mortality than smoking. Genetic 
dispositions confound the path M →  Y, as illustrated on the right-hand side of 

8 Note that this paper is one of the most cited papers in scientific history.
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Fig. 6.5 Types of mediation. (Note: *** refers to the level of significance)

Fig. 6.4. It is easy to see that Yerushalmy overlooked an important confounder; what 
is not so easy to see is that Yerushalmy conditioned on a collider.

A collider is given when the same outcome depends on two different causes or, 
in graphical terms, when at least two arrows point to the same node. In Fig. 6.4, 
birthweight is a mediator (X → M → Y) and a collider (X → M ← C). Adjusting for 
the collider means opening a closed back-door path from X over C to Y. In other 
words, conditioning on birthweight creates a spurious positive association between 
the smoking of mothers and children’s survival because genetic dispositions con-
found the relationship between birth weight and child mortality.

In short, Yerushalmy’s surprising findings follow from this troublesome condi-
tioning strategy. Conditioning on birth weight leads to an entirely new comparison 
within the stratum of children with low weight at birth. Within this new stratum, 
smoking mothers seem to affect babies’ survival positively. However, this associa-
tion is spurious. Genetic disposition has an even stronger effect on birth weight than 
smoking, and unless controlled for, it biases the association between birth weight 
and child mortality.

The graph-theoretical solution of the birth weight paradox offers at least two 
important lessons. First, while conditioning on confounders closes back-door paths 
and yields unbiased associations, conditioning on mediators and/or collider vari-
ables leads to biased associations. Second, and more important for the causal iden-
tification of mechanisms, standard mediation analysis proves unreliable. 
Conditioning on a collider has caused uncountable “mediation fallacies” (Pearl & 
Mackenzie, 2018, 315). Despite the increased awareness, the pervasiveness of the 
problem can still be underestimated. Indeed, mediation fallacies are not limited to 
the cases of inconsistent mediation. Instead, they may affect all types of conven-
tional mediation with significant consequences. If a collider cannot be ruled out, 
regression-based mediation analysis cannot be trusted to produce reliable effect 
estimates as we cannot quantify the bias introduced by conditioning on the mediator.

Figure 6.6 illustrates a more complex causal system where we might be inter-
ested in the relative importance of pathway X → M1 → M2 → Y versus pathway 
X → M3 → Y. This identification task clearly falls beyond the possibilities of the 
regression framework and demands the more powerful approach to pathway analy-
sis that graphs afford instead.

The overall model entails 11 variables and consists of 16 paths. The back-door 
criteria guide us to an effective conditioning strategy. There is no confounding 
between X and Y and the total effect represents the true causal effect, as we declare 
the causal system exhaustive. However, estimating the indirect effect of the two 
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Fig. 6.6 More complex pathways

pathways of interest requires conditioning. The effect of path b is biased unless we 
condition on C1. The effect of path d is biased unless we condition on C2, C3, or C2 
and C3  – conditioning on any of these confounders blocks the back-door path 
M2 ← C2 → C3 → Y effectively. A1 could be considered an alternative explanation 
for Y on which it is unnecessary to condition because it does not affect the quantities 
of interest. C4 and C5 should not be conditioned on: C4 is a collider and would open 
the non-active backdoor path M3 → C4 → C5 → Y; similarly, C5 should not be 
conditioned because of the extended collider rule that even ‘descendants’ of collid-
ers, too, activate back-door paths.

The overall goal of the conditioning strategy guided by the back-door criterion is 
to block all the paths that generate non-causal associations between the cause and 
the outcome without inadvertently blocking any of the paths that generate the causal 
effect itself (Morgan & Winship, 2015, 109). Conditioning on C in Fig. 6.2 is a 
viable option whereas conditioning on M in Fig.  6.3 opens an otherwise closed 
back-door path. Eventually, with Morgan and Winship (2015, 109), the back-door 
criterion can be defined as follows:

If one or more back-door paths connect the causal variable to the outcome variable, the 
causal effect is identified by conditioning on a set of variables Z if

Condition 1: All back-door paths between the causal variable and the outcome variable 
are blocked after conditioning on Z, which will always be the case if each back-door path

 (a) Contains a chain of mediation, where the middle variable is in Z or
 (b) Contains a fork of mutual dependence, where the middle variable is in Z or
 (c) Contains an inverted fork of mutual causation, where the middle variable and all of its descen-

dants are not in Z

and
Condition 2: No variables in Z are descendants of the causal variable that lie on any of 

the directed paths that begin at the causal variable and reach the outcome variable.

However, closing the back-doors is only one of two possible identification strategies.

6.3.2  Closing the Front Door

The front-door criterion provides another interesting identification strategy derived 
from causal graph theory in cases where essential confounders remain unobserved. 
For example, let us turn to the prize-winning paper on skills and the labor market by 
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Glynn and Kashin (2018). Glynn and Kashin applied the front-door criterion to a 
well-known dataset on the effect of the Job Training Partnership Act (JTPA). The 
Act institutes a job training program to equip participants with different skills. The 
dataset contains data on the people who applied for the program, whether they 
showed up, and their earnings over 18 months. The study includes a randomized 
control trial (RCT) and an observational component. Figure 6.7 provides the causal 
graphs of the general problem (left), the example (middle), and the front-door 
approach (right).

The variable signed up records whether a person did enroll to the job training, the 
variable showed up whether the enrollee did use the services. The program can only 
affect the earnings if users showed up, so the absence of a direct arrow between 
signed up to earnings can be easily justified. In other words, the entire effect is 
mediated. Let us say cause, outcome, and mediator are all affected by the general 
motivation of an applicant, but unfortunately, we have not measured motivation. In 
a causal graph, an unmeasured variable is typically depicted by a hollow node.

The logic of the front door is to block all paths running into M – in other words, 
to shield the mediator. In the example of Fig. 6.7, we might randomly call applicants 
off and compare the randomly canceled applicants with those given real training. 
With all front-door paths being closed, the estimates of paths b and c can be calcu-
lated and are unbiased by definition. In that example, absent a direct effect, the 
indirect effect equals the total effect, and the estimate using the front-door equals 
the estimate based on the randomization of X.  Glynn and Kashin compared the 
front-door predictions with those from a randomized controlled experiment, and 
found the results very similar (Glynn & Kashin, 2018).

The front-door approach could remove almost all of the bias introduced by the 
omission of the confounder of motivation. In contrast, a simultaneous estimation 
using the back-door without the possibility of conditioning on motivation showed 
substantial differences to both the experimental results and the front-door approach 
(Glynn & Kashin, 2017, 2018).

With Morgan and Winship (2015, 333–334), the front-door criterion can be 
defined as follows:

If one or more unblocked back-door paths connect a causal variable to an outcome variable, 
the causal effect is identified by conditioning on a set of observed variables, M, that make 
up an identifying mechanism if

Fig. 6.7 How to shield a mediator
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Condition 1 (exhaustiveness): The variable in the set M intercepts all directed paths 
from the causal variable to the outcome variable.

and
Condition 2 (isolation): No unblocked back-door paths connect the causal variable to 

the variables in the set M, and all back-door paths from the variables in the set M to the 
outcome variable can be blocked by conditioning on the causal variable.

At this point, we have learned two different ways to identify causal mechanisms. By 
definition, closing all back-door paths or closing all front-door paths leads to causal 
estimates even with observational data. The logic of back-door paths explains why 
the identification of indirect effect is neither ensured by the randomization of the 
cause nor by conditioning on the mediator as applied by conventional regression- 
based mediation analysis. The next section discusses how indirect and direct effects 
can nonetheless be identified.

6.4  Identifying Indirect Effects

For a long time, mediation analysts defined:

 TotalEffect Direct Effect Indirect Effect� �  

This formula understands the indirect effect as a residual category. The Baron- 
Kenny approach (1986) is entirely built upon this logical pillar. As a straightforward 
consequence, the conventional approach advised conditioning on the mediator to 
arrive at the direct effect and, in force of the composition assumption, calculating 
the indirect effect of mediation as the total minus the direct effect.

The first problem, as already seen, is that the composition stands if M and Y are 
not confounded or, in other words, if a collider bias can be ruled out. The second 
problem is that the estimate of the residual is only credible in strictly linear systems. 
Once we relax the linearity assumption, the composition rule fails (Pearl & 
Mackenzie, 2018, 322–336).9

6.4.1  Indirect Effect in Non-linear Systems

The language of indirect, direct, and total effects evolved in the 1970s, but only 
recently was the indirect effect defined in causal terms. This shift entailed embrac-
ing counterfactual thinking.

9 The problem of conventional mediation analysis is very fundamental. Mediation analysis based 
on the difference methods (Baron & Kenny, 1986; Judd and Kenny, 1981) and linear regression 
models suffer from problems in the presence of interactions, non-linearities, binary outcomes, 
unobserved confounders, and other modeling complications (see Shpitser, 2013).
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Let us start with the direct effect using the do-calculus. In the simple graph of 
treatment (X), mediator (M), and outcome (Y), we get the direct effect of X on Y 
when we intervene on X without allowing M to change. We do(M = 0) and ran-
domly assign units to do(X = 1) or do(X = 0). We call this the ‘controlled direct 
effect’ or CDE.

CDE(0) raises when we force the mediator to take on the value of zero and can 
be computed as

 

CDE Pr do do Pr do do( ) | , |, |,0 1 1 0 1 0 0� � �� � �� �� � � �� � �� �� �Y X M Y X M�
 

Had we forced the mediator to be 1, we would have denoted the resulting controlled 
direct effect as CDE(1). In practice, however, this alternative strategy could prove 
unwise as it forces M on instances of X that are potentially implausible to observe. 
Moreover, inferring the direct effect from the difference between CDE(1) and 
CDE(0) is to infer from an over-controlled experiment.

The so-called ‘natural direct effect’ or NDE offers an alternative perspective. We 
randomize X, but let M take the value it would naturally do. The ‘would’ indicates 
that a counterfactual is required and can be calculated as follows:

 
NDE Pr do Pr do� � �� �� � � �� �� �� �Y X Y XM M M M0 01 1 1 0| | .�

 

The NDE subtracts the probability of having a positive outcome without the treat-
ment (X = 0) under M equal to zero from the probability of having a positive out-
come with the treatment (X = 1) again under null M. In short, the NDE holds the 
mediator constant while the treatment is forced toward specific values. Indirect 
effects, unlike direct effects, have no controlled version because there is no way to 
disable the direct path by holding some variable constant.

Indirect effects have a natural version, too, which again requires thinking in 
counterfactual terms. The natural indirect effect (NIE) is when we would abstain 
from the treatment, but allow the mediator to be present. Understanding the causal 
properties of the indirect effect requires a double-nested counterfactual. In formal 
terms, we can define the natural indirect effect as follows:

 
NIE Pr do Pr do� � �� �� � � �� �� �� �Y X Y XM M M M1 01 0 1 0| |�

 

The first term indicates the probability of a positive outcome under absent treatment 
and present mediator. From this quantity, we subtract the probability of the positive 
outcome under the ‘natural’ situation where both the treatment and mediator 
are given.

The counterfactual M1 must be computed for each observation on a case-by-case 
basis. This requirement places the natural indirect effect out of the experimenters’ 
reach as they may not know the value of the mediator M1 for any particular 
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treatment X at the level of the individual unit. However, assuming there is no con-
founding between X and M as well as M and Y (i.e., ruling out the confounding and 
the collider bias), the NIE can still be computed on observational data. The natural 
indirect effect entails denying the treatment to anyone, and letting the mediator take 
the value it would have in the presence of the counterfactual treatment for each 
individual. The difference yields Pearl and Mackenzie (2018, 333) mediation for-
mula as follows:

 
NIE Pr Pr Pr m

m

� �� � �� ��� �� � � �� �� X X Y X M1 0 1 0� � |, |,
 

The expression stands for the effect of X on M in the subset of the units where the 
mediator takes the value m (in square brackets) times the probability that Y = 1 
when X = 0 and the mediator takes the value m. So formulated, the NIE exposes the 
source of the product-of-coefficients idea and casts the product of two non-linear 
effects. Moreover, this formula allows calculating what is explained by mediation 
and the percentage owed to mediation.

6.4.2  Indirect Effect When the Cause 
and the Mediator Interact

The identification of indirect effects becomes more complex when the mediator and 
the supposed cause (or “exposure”) interact. A unified perspective on the decompo-
sition of the total effect in a case where the independent variable of interest interacts 
with the mediator has been provided by VanderWeele (2014).

So far, effect decomposition has meant to split a total effect into an indirect and 
direct one. In the presence of exposure-mediator interaction, two components need 
to be added: the one due to interaction only; the other due to mediation and interac-
tion (see VanderWeele, 2014, 751). The counterfactual assumptions to identify the 
effect quantities are similar to those required to analyze causal mediation without 
interaction. As in the case of causal mediation, indirect effects including interac-
tions require double-nested counterfactuals, whereas the direct effect requires 
weaker assumptions. The attribution of the interaction quantities to either the indi-
rect or direct effect, instead, remains an empirical question. Figure 6.8 illustrates 
two possible response strategies based on VanderWeele (2014, 757).

The fourfold decomposition depicted in Fig. 6.8 encompasses both decomposi-
tions for mediation and interaction.

For interaction, the reference interaction (INTref) and the mediated interaction 
(INTmed) combine to the portion attributable to interaction (PAI). The portion 
attributable to interaction (PAI) combines with the controlled direct effect (CDE) 
and the pure indirect effect (PIE) to give the total effect (TE).
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Fig. 6.8 Fourfold decomposition

For mediation, the controlled direct effect and the reference interaction (INTref) 
combine to give the pure direct effect (PDE); the pure indirect effect (PIE) com-
bines with the mediated interaction (INTmed) to give the total indirect effect (TIE), 
and the pure direct effect (PDE) combines with total indirect effect (TIE) to give the 
total effect (TE).

6.4.3  Wrapping Up

The graph theory reveals that the identification of causal mechanisms requires coun-
terfactuals. The natural indirect effect is when we abstain from the treatment, but the 
mediator is present. Contrasted with the state where both the treatment and the 
mediator are present, we can quantify how much of the effect of X on Y is captured 
by the mediator M, and how much of Y is owed to the mediator M alone. Such a 
natural indirect effect gauges a causal mechanism once the back-door criterion is 
satisfied, e.g., all back-door paths are closed.

The consequences of this definition are far-reaching. The identification of causal 
mechanisms appears as out of reach to the conventional mediation analysis than to 
randomization. What appears as bad news can also be a good insight, as the natural 
indirect effect yields a mediation formula stripped of any parametric assumptions. 
Under some assumptions, this formula allows quantifying the causal mechanism 
based on observational data. Section 6.5 demonstrates this claim with the example 
of a renowned identification debate.
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6.5  Applications

6.5.1  A Mechanistic View on the Worm Wars

In this application case, I add a causal mediation view to the “worm wars”  – a 
famous debate over the interpretation of influential cluster randomization in Kenya 
that, besides other studies, brought one of its authors, Michael Kremer, the Nobel 
Memorial Prize in Economic Sciences in 2019.

The study originates from the evidence that nearly two billion people world-
wide – mostly children – are infected by intestinal worms. These species inhabit the 
human digestive tract; they spread by expelling their eggs via the body waste of 
infected people. Without good sanitation, these microscopic eggs can find their way, 
unnoticed, onto the skin or food of another person. Once someone ingests an egg, 
the reinfection cycle continues. Poor sanitation facilities and hygiene practices 
allow infections to spread locally.

In 2004, a landmark study showed that an inexpensive medication to treat para-
sitic worms could improve health and school attendance for millions of children in 
many developing countries (Miguel & Kremer, 2004). Eleven years later, a headline 
in The Guardian reported that the deworming treatment had been debunked. In 
2021, a carefully exercised replication study restated the original findings (see 
Ozier, 2021). Why so?

Miguel and Kremer convincingly argued that, due to the infectiousness of the 
worms, individual treatments are unlikely to be effective because children will 
quickly re-infect themselves with other children. Consequently, they run an encom-
passing field experiment in Kenya using cluster randomization at the school level. 
The experiment compared more than 25,000 treated children across three waves to 
a control group for each wave with similar attributes except for the suppressed treat-
ment. They found a remarkable effect of the treatment on school attendance not 
only in the treatment area (up to 3 km) but also in the surrounding areas (3–6 km 
from the treatment).

Replication analyses have mainly confirmed the direct effect in the treatment 
areas. However, the spillover effects became subject to debate and turned insignifi-
cant in some specifications (for example, Aiken et al., 2014). The debate about the 
replication involved many influential scholars, was covered by several blogs, and 
eventually came to be known as the “worm wars”. A systematic review of the debate 
seemed to restore the trust in the key findings of the original study. Ozier (2021) 
concluded that, if anything, years of debates and replication have reinforced his 
belief in the main effect. In short, it appeared as if the treatment of Miguel and 
Kremer had indeed sorted a substantial positive impact on children’s school 
attendance.

However, there is a second line of skepticism, less concerned with the signifi-
cance levels of the total effects but with the plausibility of the indirect effect. The 
indirect effect, as we have learned, considers the probability of a positive outcome 
(school attendance) given that we do not have a treatment (no de-worming drug 
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intake), but we set the mediator (being, in fact, de-wormed) to the values as if we 
would have had treatment (de-worming drug intake). We contrast this with the prob-
ability of a positive outcome (school attendance) under natural conditions where the 
treatment is given (de-worming drug intake) and the mediator too (being de- 
wormed). Based on Pearl’s mediation formulae, we can compute the natural indirect 
effect using observational data. The results can be given a causal interpretation if we 
can exclude confounding between the mediator (being de-wormed) and the out-
come (school attendance).

This mechanistic perspective on the study is of great interest for at least two 
reasons. First, experts in deworming cast considerable doubt on the findings. 
Epidemiologists refused to include the paper in a meta-study for methodological 
reasons (no blinded treatment was performed) and referred instead to existing epi-
demiological studies that, if at all, showed very modest effects of deworming on 
school attendance. In other words, the authors of a Cochrane review were uncon-
vinced that de-worming could have had such a substantial effect as reported in 
Miguel and Kremer (Taylor-Robinson et al., 2015). Second, the authors of the origi-
nal experiment framed their study and their results as if they had strong evidence for 
the entire mechanism. In the words of the authors’ abstract, “[d]eworming substan-
tially improved health and school participation among untreated children in both 
treatment schools and neighboring schools, and these externalities are large enough 
to justify fully subsidizing treatment.” (Miguel & Kremer, 2004, 159). In short, the 
authors’ inference is that their evidence point to a clear recommendation for subsi-
dizing de-worming treatments because de-wormed students have a higher likeli-
hood of attending school. Is it the de-worming via the drug intake that causes 
students to attend school more often?

Based on the original data, the mediation formulae can be used to put the mecha-
nistic claim under scrutiny. Table 6.1 includes all probabilities required to compute 
the natural indirect, natural direct, and the total effect based on the replication data 
of Miguel and Kremer (2014), Miguel et al. (2014).10 By relating indirect and direct 
effect quantities to the total effect, we can draw valuable conclusions. The natural 
indirect effect supports the suspicion of the epidemiologists. Only 1.8% of the total 
effect would be achieved by worm-free students alone. In contrast, 94.2% of the 
total effect is related to the natural direct effect of the treatment other than 

10 For the replication, I use a very simple model based on the drug treatment in the first period of 
the field experiment. The experiment had three waves, but the comparison groups changed during 
the waves and because the effect on school attendance is predominantly a result of the first wave, 
I focus on the first wave only. For the mediator, I use the reversed indicator of any moderate or 
heavy worm infection based on the WHO standard in 1999. I see the mechanism present when a 
treated student is indeed free of worms. For the outcome, I use a dummy of students being present 
in school at times of the surprise visit. The current documentation of the data is exemplary (see 
Miguel and Kremer, 2014; Miguel et al. 2014; Hicks and Nekesa, 2014).
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Table 6.1 Probabilities of the treatment, the mechanism, the outcome and the natural direct 
(NDI), indirect (NIE), and total effect (NTE)

Treatment condition, mediator condition, and outcome probabilities

Treatment Dewormed
Present in school 
(in %) Treatment

Dewormed (in 
%)

Yes Yes 0.90 No 0.55
Yes No 0.86 Yes 0.59
No Yes 0.86
No No 0.85

Inference
NIE 0.05 NIE/TE 1.8 1.8% of the school attendance effect would be 

achieved by worm-free students alone
NDE 2.7 NDE/TE 94.2 94.2% of the attendance effect is related to the 

treatment other than deworming students
TE 2.9 1-NDE/TE 5.8 5.8% of attendance effect is owed to the capacity 

of the treatment to deworm students

Note: Compare equations for NIE, NDE, and TE above. 

deworming students. Finally, 5.8% of the effect on attendance is owed to the capac-
ity of the treatment to deworm students.11

How do we make sense of these numbers?
Humphreys (2015) documented and commented on the worm wars in close 

detail, driven by concerns for the mechanistic element of the study. He points to 
several important aspects that can be learned from the documentation of the experi-
ment. Based on background information and the skeptical comments of epidemiolo-
gists, we might add several pathways between treatment and outcome (see Fig. 6.9). 
The causal graph reveals that the estimate above of the natural indirect effect is not 
identified. There is nothing identified in this system of pathways because too many 
nodes are unobserved. Let us briefly describe the pathways in Fig. 6.9.

One element of the treatment is the drug intake that seems to effectively de-worm 
students. The effect of de-worming alone is relatively weak, as the path analysis in 
Table 6.1 confirms. The drug intake has as least two more effects on attendance that 
cannot be isolated given the existing data. De-wormed students create spillovers, 
and spillovers might feedback to the treated. This feedback is problematic because 
it undermines the assumption of the independence of the treatment group and the 
control group – the problem that compelled resorting to cluster randomization in the 
first place.

Beyond spillovers, the drug intake can create placebo effects. Students feel better 
because of the drug, irrespective of being de-wormed, which might increase school 

11 An alternative way of modeling these numbers would be to use readymade packages in software 
such as R or Stata. In Stata, you would use the model builder and simple graph the mediation 
model. After the estimation of all path-coefficients, the effects can be decomposed into total, 
direct, and indirect effects using the teffects command (see Bollen, 1989; Sobel, 1987). Note that 
this command still assumes linearity and leads to biased estimates in this case.
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Fig. 6.9 Mechanisms in the worm wars

attendance. Since the control group was not treated with a placebo, we cannot esti-
mate the placebo effect. More worrisome is how the research group treated the treat-
ment group beyond the drug intake. The documentation files list health lectures, 
wall charts in the schools, training of teachers in the treatment schools, encourage-
ments of the treated students for handwashing, wearing shoes, and avoiding fresh-
water (see Hicks & Nekesa, 2014, 7).12 This extensive treatment had obvious health 
effects – including a contribution to de-worming – which suggests that the treated 
students likely became well aware of being subject to an encompassing treatment 
package. Thus, at least three more paths follow from that treatment beyond 
drug intake.

First, the educational elements on health issues might have affected the well- 
being of students besides de-worming, which raises their probability to be present 
in school. Second, being so obviously treated might activate the Hawthorne effect, 
the rising willingness of participants to make the experiment a success in light of the 
efforts experimenters provided for the treated. For example, teachers might just 
encourage students in the treatment group to show up because they know that school 
attendance is an important measure (although it has to be noted that the measure-
ment of school attendance was achieved by surprise visits). Third, health education 

12 The educational treatments at the school level were part of a separate intervention of the same 
NGO and could in principle be controlled based on the data (see Hicks & Nekesa, 2014, 5). In fact 
Miguel and Kremer condition on those interventions. They write “None of these programs involved 
health treatments for pupils, and given the cross-cutting design, are unlikely to complicate the 
identification of average treatment effects across PSDP program and comparison schools.” 
Nonetheless, in many specifications Miguel and Kremer (2004) control for assignment to assis-
tance through these other programs’. Only a page later, they write without considering any poten-
tial bias “[t]he educational component of the intervention focused on teaching children about 
avoiding the disease. Health educators explained the transmission vectors for different types of 
helminths [one of the relevant worm types] and also promoted hand-washing, wearing shoes, and 
avoiding contact with fresh water” (2014, 7).
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affects the likelihood of being de-wormed besides de-worming drug intake and 
school attendance. Accordingly, the effect of being de-wormed on school atten-
dance, including the spillover effects, is confounded. Knowing about the direction 
of the influence of health education (increasing de-worming and school attendance), 
the already weak indirect effect of de-worming via drug-intake on school atten-
dance is most likely biased upwards. This perspective reveals that the authors make 
strong mechanistic inference without ever quantifying the importance of their 
hypothesized mechanism and without noticing that the indirect effect cannot be 
precisely identified, given the observable data at hand.

Such a mechanistic perspective also reveals the standing of the main criticism of 
the epidemiologists. The Cochrane reviewers classified the study as very weak in 
terms of evidence, predominantly because of the lack of placebo treatment of the 
control group. Indeed, except for the spillover path, all alternative paths between 
treatment and outcome could have been closed by placebo treatment. The consider-
ation also applies to the educational health elements.

Thus, the mechanistic view qualifies the inference of this landmark study sub-
stantially. First, there is a confirmation of a significant indirect effect running from 
the treatment over being de-wormed to higher school attendance. However, this 
indirect effect explains a very marginal part of the increased school attendance. Way 
more important are the indirect effects triggered by the entire treatment package 
beyond the ability to de-worm students. The rise in school attendance is predomi-
nantly a composite of different pathways from the Hawthorne pathway over the 
health education pathway to a potential placebo pathway, combined around 54 
times more powerful for school attendance than the de-worming effect. The overall 
inference to recommend the distribution of cheap drugs might be replaced by the 
recommendation to offer supposedly more expensive health education.

To be very clear about it, the study of Miguel and Kremer is comparatively well- 
executed and deserves to be praised for the logic of cluster randomization alone. 
Nonetheless, the mechanistic view on this experiment demonstrates that randomiza-
tion does not allow for mechanistic inference. While the total effect of the treatment 
package might still be perfectly identified, the mechanistic view helps identify 
which elements of the treatment have created more or less powerful pathways to the 
outcome. It is extremely interesting to know how much Hawthorne, placebo, or 
health education contributed to the substantial rise in school attendance, as such 
effect decomposition can help to improve similar experiments in the future. Like in 
the lemon-scurvy example, experimenters need to disable these alternative path-
ways (exclusion restriction) for getting to the correct inference.

A mechanistic view may help to understand supposedly strong effects in well- 
executed experiments. Moreover, it can reveal causal mechanisms where experi-
ments seem to yield nothing.
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6.5.2  A Mechanistic View on a Chicago School Reform

In 1998, US secretary of education, William Bennet, called Chicago’s public school 
the worst of the nation. However, several reforms in the late 1990s moved them 
from the worst to ‘innovators of the nation’.13 One of the core reforms involved a 
program called ‘Algebra for All’, compulsory prep courses for ninth graders in high 
school. At first sight, the program seemed a success as math scores rose signifi-
cantly. However, the qualification of incoming ninth-grade students was already 
improving due to changes in the K-8 curriculums (an important confounder). Once 
controlled for this confounder, the reform turned out to be insignificantly related to 
the math performance of ninth graders. Here, the story would have typically found 
its end.

Luckily, Professor Guanghei Hong remained curious because she knew that 
when Algebra for All was introduced, more than the curriculum changed. The 
lower-achieving students found themselves in classrooms with higher-achieving 
students and could not keep up. Detrimental effects for students and teachers caused 
by mixed classes compared to remedial classes are well-known. In short, Mrs. Hong 
was suspicious of the unanticipated side effects of the treatment package. Testing 
the classroom environment as a mediator between reform and outcome clearly 
showed that this pathway had negative consequences. Once taken into consider-
ation, the direct effect turned positive. The lesson seemed clear: removing the mixed 
classes and keeping the prep courses was the logical consequence and created a 
success story of the modified Algebra for All program.

Students in Chicago significantly benefited from a mechanistic view on an edu-
cation program that has, at first sight, falsely been considered a failure. We learn 
from this example that different mechanisms can cancel each other out (“opposing 
mediation” as in Kenny [1998]), which demonstrates that even a null finding based 
on a randomized treatment can be worth considering with closer scrutiny on the 
level of mechanisms. The Algebra for All example is similar to the discredited 
causal link between lemons and scurvy prevention, although its revitalization took 
place in a substantially shorter period.

6.6  Thou Shall Not Raise Causal Illusions

Scholars of pathways have revolutionized our view on causal identification. The 
counterfactual perspective on pathways reveals that fundamental problems of cau-
sality – asymmetry and confounding – can logically be solved by closing either the 
back- or the front-door. This perspective embraces conventional counterfactual 
causal inference such as randomization or quasi-experiments. Causal graphs help to 
make its logic and assumptions very transparent. Applying the logic of the 

13 One of its inventors, Arne Duncan, became secretary of education under Barack Obama.
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back- door to generally defined causal mechanisms reveals two things. First, con-
ventional approaches are ill-suited for identifying causal mechanisms as they can 
mistake their structure. Pathway analysis solved that issue by focussing on indirect 
effects. This perspective reveals that causal mechanisms can be quantified by non- 
parametric comparisons of observable with counterfactual probabilities. To lend 
these numbers a causal meaning depends on a simple assumption: path estimates in 
a system of pathways must be unconfounded.

This unconfoundedness can unfortunately not be fully ensured by randomiza-
tion – although the randomization of the treatment helps a lot to block all paths 
running into the candidate cause. Moreover, causal mechanisms can only be identi-
fied if a theoretically exhaustive causal system is given and all confounders are 
observed and conditioned on. Based on a theoretically defined causal system, effec-
tive strategies of de-confounding can be determined. The complexity of the task 
becomes apparent when we remind ourselves of the problem of the collider bias. 
The collider bias is an instance of a single confounded path in a system of pathways, 
leading in the worst of events to completely misleading estimates of the indirect and 
direct effects – such as when smoking mothers are understood to increase the sur-
vival rate of their children. Besides, complex pathways with sequences of many 
mediators can complicate the identification task and the chances for false inference 
multiply.

The pathways perspective on the identification of causal mechanisms is logically 
simple. However, mechanisms can only be identified given a theoretically exhaus-
tive causal system where all the variables required to close the back-doors are mea-
sured, free of error, and conditioned. Empirically, these assumptions are hard to 
meet. Thus, research relying on pathways or causal mechanisms should avoid creat-
ing the causal illusion that the back-door criterion will easily tackle identifica-
tion tasks.

The greater strength of the pathway approach is not to deliver a readymade tool 
for causal inference but a perspective that can boost the transparency over what is 
needed to identify a mechanism causally. It complements standard approaches of 
causal inference that typically seek to identify total effects. Analyses of mechanisms 
searching for indirect effects ask a deeper form of why. Preliminary answers to 
these deeper questions can at times be very generic, such as a single mediator con-
necting cause and outcome, and at times can also span to very complex systems of 
pathways. However, even the most generic mechanism can reveal a great deal. 
Thinking of lemons’ ability to prevent scurvy, smoking mothers to decrease the 
survival rate of their children, the capacity of de-worming to increase school atten-
dance or preparation courses to improve school performance. In all examples of this 
chapter, evidence on a single mediator considerably qualified the inference of a 
cause–effect relationship.

Despite the capacity of a mechanistic view to qualify the inference of even well- 
executed experiments, the added values are complementary. Randomized treat-
ments facilitate the identification of causal mechanisms because important sources 
of confounding are erased by design. Mechanisms, in turn, improve the exercise and 
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inference on well-executed experiments too. The more we know about the mecha-
nisms, the better we can identify total effects.

Suggested Readings
There are three books of great help to understand causal mediation. The most 
encompassing work on causal mediation analysis, including moderated mediation, 
is most likely VanderWeeles’ book Explanation in causal inference: methods for 
mediation and interaction, published in 2015 by Oxford University Press. Although 
probably the most encompassing, it addresses the issue from the perspective of bio-
statistics. Easier access to causal mediation can prove Chapter 9 on Mediation: The 
search for a mechanism in Pearl and Mackenzie (2018), published by Basic Books. 
The entire textbook can be highly recommended to cast light on recent develop-
ments in causal identification against the background of the history of statistics. 
Finally, Chapter 10 on Mechanisms and causal explanation in Morgan and Winship 
(2015) lies somehow in between VanderWeeles’ equation- based insights and Pearl 
and Mackenzie’s captivating narrative. Their entire book on Counterfactuals and 
causal inference can be recommended, as it covers virtually all causal identification 
tasks from the perspective of the social sciences while preserving a deep commit-
ment to graph theory and counterfactual thinking.

Helpful Websites
Beyond books, there are two highly informative websites on causal mediation. The 
one by David Kenny provides regular updates on mediation analysis and also cov-
ered issues in causal mediation (http://davidakenny.net/cm/mediate.htm). 
Alternatively, Columbia University provides information on causal mediation, 
including a recorded lecture of VanderWeele based on the Harvard Seminar Series 
in Biostatistics (https://www.publichealth.columbia.edu/research/population- 
health- methods/causal- mediation#websites).

Software Recommendations
Causal mediation, the identification of mechanisms, or causal pathway analysis are 
relatively new and characterized by rapid development. Formulas, methods, and 
software applications change accordingly. Nonetheless, several software packages 
have proven extremely useful.

 1. R mediation package (Tingley et al. 2014):

 – the mediate() function estimates the natural direct and indirect effects based 
on Pearl’s mediation formula,

 – X-M interaction may be conducted by the function test TMint() (significant 
finding implies that the no X-M interaction assumption does not hold).

 – the sensitivity analysis function medsens() allows for investigators to exam-
ine, through simulations, the robustness of their findings to potential unmea-
sured M-Y confounders.

Results for all analyses are displayed using the summary() and plot() functions
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 2. SAS macro:

 – The SAS macro is a regression-based approach to estimating controlled direct 
and natural direct and indirect effects.

 – The macro can handle virtually every distributional and link assumption 
(compare Valeri et al., 2013).

 3. Stata:

 – paramed package (no sensitivity analysis) (Emsley et al., 2013).
 – ldecomp (no sensitivity analysis) (Buis, 2010).
 – medeff (sensitivity analysis) (Hicks and Tingley, 2011).
 – gformula (helpful in case of post-treatment and time-varying confounding) 

(Daniel et al., 2011).

Review Questions
 1. Under which conditions can mechanisms be causally identified?
 2. What is a natural indirect effect in comparison to a controlled indirect effect?
 3. Why randomization might identify cause-effect relationships but not neccessar-

ily indirect effects?
 4. Why might conventional mediation analysis be misleading for the causal identi-

fication of the mechanism?
 5. How does mechanistic evidence help to improve the implementation of 

experiments?
 6. What are the consequences of treatment-mediator interactions for the identifica-

tion of mechanisms?
 7. What are the limits of mechanistic causal identification?
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