Skip to main content

Pulmonary Alveolar Proteinosis Syndrome

  • Chapter
  • First Online:
Orphan Lung Diseases

Abstract

Pulmonary alveolar proteinosis (PAP) is a syndrome characterized by the accumulation of pulmonary surfactant resulting in reduced oxygen uptake. It affects men, women, and children without predilection for socioeconomic status, geographic location, or race but occurs more commonly in smokers. Prevalence has been reported at 7–26 per million in the general population. Symptoms include dyspnea, cough, and fatigue. The clinical course includes progressive dyspnea, failure and, in some patients, serious secondary infections, pulmonary fibrosis, hypoxemic respiratory failure, and death. PAP is classified as primary (mediated by disruption of GM-CSF signaling), secondary (mediated by reduced alveolar macrophage functions due to an underlying clinical condition), or congenital (caused by mutations in genes involved in surfactant production). In primary PAP the most common cause is autoimmune PAP, which accounts for over 90% of all PAP syndrome. Pathogenesis is driven by impaired GM-CSF signaling to alveolar macrophages which require GM-CSF stimulation to stimulate surfactant clearance. The diagnosis of autoimmune PAP can be made by testing for an increased level of serum GM-CSF autoantibodies without a requirement for a lung biopsy. Whole-lung lavage is the main current treatment approach designed to remove excess surfactant by physically washing it out of the lungs but a pharmacotherapeutic approaches, inhaled GM-CSF is currently under evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Trapnell BC, Whitsett JA, Nakata K. Pulmonary alveolar proteinosis. N Engl J Med. 2003;349(26):2527–39.

    Article  CAS  PubMed  Google Scholar 

  2. Seymour JF, Presneill JJ. Pulmonary alveolar proteinosis: progress in the first 44 years. Am J Respir Crit Care Med. 2002;166(2):215–35.

    Article  PubMed  Google Scholar 

  3. Carey B, Trapnell BC. The molecular basis of pulmonary alveolar proteinosis. Clin Immunol. 2010;135(2):223–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu Z, Jing J, Wang H, Xu F, Wang J. Pulmonary alveolar proteinosis in China: a systematic review of 241 cases. Respirology. 2009;14(5):761–6.

    Article  PubMed  Google Scholar 

  5. Bonella F, Bauer PC, Griese M, Ohshimo S, Guzman J, Costabel U. Pulmonary alveolar proteinosis: new insights from a single-center cohort of 70 patients. Respir Med. 2011;105(12):1908–16.

    Article  PubMed  Google Scholar 

  6. Campo I, Mariani F, Rodi G, Paracchini E, Tsana E, Piloni D, et al. Assessment and management of pulmonary alveolar proteinosis in a reference center. Orphanet J Rare Dis. 2013;8:40.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Trapnell BC, Nakata K, Bonella F, Campo I, Griese M, Hamilton J, et al. Pulmonary alveolar proteinosis. Nat Rev Dis Primers. 2019;5(1):16.

    Article  PubMed  Google Scholar 

  8. Pattle RE. Properties, function and origin of the alveolar lining layer. Nature. 1955;175:1125–6.

    Article  CAS  PubMed  Google Scholar 

  9. Rosen SG, Castleman B, Liebow AA. Pulmonary alveolar proteinosis. N Engl J Med. 1958;258:1123–42.

    Article  CAS  PubMed  Google Scholar 

  10. Golde DW, Territo M, Finley TN, Cline MJ. Defective lung macrophages in pulmonary alveolar proteinosis. Ann Intern Med. 1976;85(3):304–9.

    Article  CAS  PubMed  Google Scholar 

  11. Muller-Quernheim J, Schopf RE, Benes P, Schulz V, Ferlinz R. A macrophage-suppressing 40-kD protein in a case of pulmonary alveolar proteinosis. Klin Wochenschr. 1987;65(19):893–7.

    Article  CAS  PubMed  Google Scholar 

  12. Stratton JA, Sieger L, Wasserman K. The immunoinhibitory activities of the lung lavage materials and sera from patients with pulmonary alveolar proteinosis (PAP). J Clin Lab Immunol. 1981;5(2):81–6.

    CAS  PubMed  Google Scholar 

  13. Bury T, Corhay JL, Saint-Remy P, Radermecker M. Alveolar proteinosis: restoration of the function of the alveolar macrophages after therapeutic lavage. Rev Mal Respir. 1989;6(4):373–5.

    CAS  PubMed  Google Scholar 

  14. Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JA, et al. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci U S A. 1994;91(12):5592–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dranoff G, Crawford AD, Sadelain M, Ream B, Rashid A, Bronson RT, et al. Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science. 1994;264(5159):713–6.

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka N, Watanabe J, Kitamura T, Yamada Y, Kanegasaki S, Nakata K. Lungs of patients with idiopathic pulmonary alveolar proteinosis express a factor which neutralizes granulocyte-macrophage colony stimulating factor. FEBS Lett. 1999;442(2–3):246–50.

    Article  CAS  PubMed  Google Scholar 

  17. Kitamura T, Tanaka N, Watanabe J, Uchida KS, Yamada Y, et al. Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor. J Exp Med. 1999;190(6):875–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uchida K, Beck DC, Yamamoto T, Berclaz PY, Abe S, Staudt MK, et al. GM-CSF autoantibodies and neutrophil dysfunction in pulmonary alveolar proteinosis. N Engl J Med. 2007;356(6):567–79.

    Article  CAS  PubMed  Google Scholar 

  19. Sakagami T, Uchida K, Suzuki T, Carey BC, Wood RE, Wert SE, et al. Human GM-CSF autoantibodies and reproduction of pulmonary alveolar proteinosis. N Engl J Med. 2009;361(27):2679–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakagami T, Beck D, Uchida K, Suzuki T, Carey BC, Nakata K, et al. Patient-derived granulocyte/macrophage colony-stimulating factor autoantibodies reproduce pulmonary alveolar proteinosis in nonhuman primates. Am J Respir Crit Care Med. 2010;182(1):49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bendtzen K, Svenson M, Hansen MB, Busch T, Bercker S, Kaisers U, et al. GM-CSF autoantibodies in pulmonary alveolar proteinosis. N Engl J Med. 2007;356:2001–2.

    Article  CAS  PubMed  Google Scholar 

  22. McCarthy C, Carey B, Trapnell BC. Autoimmune pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2022;205(9):1016–35.

    Article  CAS  PubMed  Google Scholar 

  23. Inoue Y, Trapnell BC, Tazawa R, Arai T, Takada T, Hizawa N, et al. Characteristics of a large cohort of patients with autoimmune pulmonary alveolar proteinosis in Japan. Am J Respir Crit Care Med. 2008;177(7):752–62.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dirksen U, Nishinakamura R, Groneck P, Hattenhorst U, Nogee L, Murray R, et al. Human pulmonary alveolar proteinosis associated with a defect in GM- CSF/IL-3/IL-5 receptor common beta chain expression. J Clin Invest. 1997;100(9):2211–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suzuki T, Sakagami T, Rubin BK, Nogee LM, Wood RE, Zimmerman SL, et al. Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA. J Exp Med. 2008;205(12):2703–10.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Asamoto H, Kitaichi M, Nishimura K, Itoh H, Izumi T. Primary pulmonary alveolar proteinosis—clinical observation of 68 patients in Japan. Nihon Kyobu Shikkan Gakkai Zasshi. 1995;33(8):835–45.

    CAS  PubMed  Google Scholar 

  27. McCarthy C, Avetisyan R, Carey BC, Chalk C, Trapnell BC. Prevalence and healthcare burden of pulmonary alveolar proteinosis. Orphanet J Rare Dis. 2018;13(1):129.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Anderson K, Carey B, Martin A, Roark C, Chalk C, Nowell-Bostic M, et al. Pulmonary alveolar proteinosis: an autoimmune disease lacking an HLA association. PLoS One. 2019;14(3):e0213179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sakaue S, Yamaguchi E, Inoue Y, Takahashi M, Hirata J, Suzuki K, et al. Genetic determinants of risk in autoimmune pulmonary alveolar proteinosis. Nat Commun. 2021;12(1):1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sallese A, Suzuki T, McCarthy C, Bridges J, Filuta A, Arumugam P, et al. Targeting cholesterol homeostasis in lung diseases. Sci Rep. 2017;7(1):10211.

    Article  PubMed  PubMed Central  Google Scholar 

  31. McCarthy C, Lee E, Bridges JP, Sallese A, Suzuki T, Woods JC, et al. Statin as a novel pharmacotherapy of pulmonary alveolar proteinosis. Nat Commun. 2018;9(1):3127.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gschwend J, Sherman SPM, Ridder F, Feng X, Liang HE, Locksley RM, et al. Alveolar macrophages rely on GM-CSF from alveolar epithelial type 2 cells before and after birth. J Exp Med. 2021;218(10):e20210745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lieschke GJ, Burgess AW. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor (1). N Engl J Med. 1992;327(1):28–35.

    Article  CAS  PubMed  Google Scholar 

  34. Fleetwood AJ, Cook AD, Hamilton JA. Functions of granulocyte-macrophage colony-stimulating factor. Crit Rev Immunol. 2005;25(5):405–28.

    Article  CAS  PubMed  Google Scholar 

  35. Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 2008;8(7):533–44.

    Article  CAS  PubMed  Google Scholar 

  36. Nakata K, Akagawa KS, Fukayama M, Hayashi Y, Kadokura M, Tokunaga T. Granulocyte-macrophage colony-stimulating factor promotes the proliferation of human alveolar macrophages in vitro. J Immunol. 1991;147(4):1266–72.

    Article  CAS  PubMed  Google Scholar 

  37. Shibata Y, Berclaz PY, Chroneos ZC, Yoshida M, Whitsett JA, Trapnell BC. GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity. 2001;15(4):557–67.

    Article  CAS  PubMed  Google Scholar 

  38. Berclaz PY, Shibata Y, Whitsett JA, Trapnell BC. GM-CSF, via PU.1, regulates alveolar macrophage Fcgamma R-mediated phagocytosis and the IL-18/IFN-gamma -mediated molecular connection between innate and adaptive immunity in the lung. Blood. 2002;100(12):4193–200.

    Article  CAS  PubMed  Google Scholar 

  39. Berclaz PY, Zsengeller Z, Shibata Y, Otake K, Strasbaugh S, Whitsett JA, et al. Endocytic internalization of adenovirus, nonspecific phagocytosis, and cytoskeletal organization are coordinately regulated in alveolar macrophages by GM-CSF and PU.1. J Immunol. 2002;169(11):6332–42.

    Article  CAS  PubMed  Google Scholar 

  40. Gearing DP, King JA, Gough NM, Nicola NA. Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor. EMBO J. 1989;8(12):3667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hayashida K, Kitamura T, Gorman DM, Arai K, Yokota T, Miyajima A. Molecular cloning of a second subunit of the receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF): reconstitution of a high-affinity GM-CSF receptor. Proc Natl Acad Sci U S A. 1990;87(24):9655–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. D'Andrea RJ, Gonda TJ. A model for assembly and activation of the GM-CSF, IL-3 and IL-5 receptors: insights from activated mutants of the common beta subunit. Exp Hematol. 2000;28(3):231–43.

    Article  CAS  PubMed  Google Scholar 

  43. Matsuguchi T, Zhao Y, Lilly MB, Kraft AS. The cytoplasmic domain of granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha subunit is essential for both GM-CSF-mediated growth and differentiation. J Biol Chem. 1997;272(28):17450–9.

    Article  CAS  PubMed  Google Scholar 

  44. Watanabe S, Itoh T, Arai K. Roles of JAK kinases in human GM-CSF receptor signal transduction. J Allergy Clin Immunol. 1996;98(6 Pt 2):S183–91.

    Article  CAS  PubMed  Google Scholar 

  45. Lehtonen A, Matikainen S, Miettinen M, Julkunen I. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced STAT5 activation and target-gene expression during human monocyte/macrophage differentiation. J Leukoc Biol. 2002;71(3):511–9.

    Article  CAS  PubMed  Google Scholar 

  46. Arumugam P, Suzuki T, Shima K, McCarthy C, Sallese A, Wessendarp M, et al. Long-term safety and efficacy of gene-pulmonary macrophage transplantation therapy of PAP in Csf2ra(−/−) mice. Mol Ther. 2019;27(9):1597–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nishinakamura R, Wiler R, Dirksen U, Morikawa Y, Arai K, Miyajima A, et al. The pulmonary alveolar proteinosis in granulocyte macrophage colony-stimulating factor/interleukins 3/5 beta c receptor-deficient mice is reversed by bone marrow transplantation. J Exp Med. 1996;183(6):2657–62.

    Article  CAS  PubMed  Google Scholar 

  48. Reed JA, Ikegami M, Cianciolo ER, Lu W, Cho PS, Hull W, et al. Aerosolized GM-CSF ameliorates pulmonary alveolar proteinosis in GM-CSF- deficient mice. Am J Physiol. 1999;276(4 Pt 1):L556–63.

    CAS  PubMed  Google Scholar 

  49. Zsengeller ZK, Reed JA, Bachurski CJ, LeVine AM, Forry-Schaudies S, Hirsch R, et al. Adenovirus-mediated granulocyte-macrophage colony-stimulating factor improves lung pathology of pulmonary alveolar proteinosis in granulocyte-macrophage colony-stimulating factor-deficient mice. Hum Gene Ther. 1998;9(14):2101–9.

    Article  CAS  PubMed  Google Scholar 

  50. Huffman JA, Hull WM, Dranoff G, Mulligan RC, Whitsett JA. Pulmonary epithelial cell expression of GM-CSF corrects the alveolar proteinosis in GM-CSF-deficient mice. J Clin Invest. 1996;97(3):649–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arumugam P, Suzuki T, Shima K, McCarthy C, Sallese A, Wessendarp M, et al. Long-term safety and efficacy of gene/pulmonary macrophage transplantation therapy of pulmonary alveolar proteinosis in Csf2ra−/− mice. Mol Ther. 2019;27(9):1597–611. In Press

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Suzuki T, Arumugam P, Sakagami T, Lachmann N, Chalk C, Sallese A, et al. Pulmonary macrophage transplantation therapy. Nature. 2014;514(7523):450–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Suzuki T, McCarthy C, Carey BC, Borchers M, Beck D, Wikenheiser-Brokamp KA, et al. Increased pulmonary GM-CSF causes alveolar macrophage accumulation. Mechanistic implications for Desquamative interstitial pneumonitis. Am J Respir Cell Mol Biol. 2020;62(1):87–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Andersson LP, Altshuler D, et al. The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat Med. 2001;7(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  55. Bonfield TL, Raychaudhuri B, Malur A, Abraham S, Trapnell BC, Kavuru MS, et al. PU.1 regulation of human alveolar macrophage differentiation requires granulocyte-macrophage colony-stimulating factor. Am J Physiol Lung Cell Mol Physiol. 2003;285(5):L1132–6.

    Article  CAS  PubMed  Google Scholar 

  56. Baker AD, Malur A, Barna BP, Ghosh S, Kavuru MS, Malur AG, et al. Targeted PPAR{gamma} deficiency in alveolar macrophages disrupts surfactant catabolism. J Lipid Res. 2010;51(6):1325–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baker AD, Malur A, Barna BP, Kavuru MS, Malur AG, Thomassen MJ. PPARgamma regulates the expression of cholesterol metabolism genes in alveolar macrophages. Biochem Biophys Res Commun. 2010;393(4):682–7.

    Article  CAS  PubMed  Google Scholar 

  58. Thomassen MJ, Barna BP, Malur AG, Bonfield TL, Farver CF, Malur A, et al. ABCG1 is deficient in alveolar macrophages of GM-CSF knockout mice and patients with pulmonary alveolar proteinosis. J Lipid Res. 2007;48(12):2762–8.

    Article  CAS  PubMed  Google Scholar 

  59. de Aguiar Vallim TQ, Lee E, Merriott DJ, Goulbourne CN, Cheng J, Cheng A, et al. ABCG1 regulates pulmonary surfactant metabolism in mice and men. J Lipid Res. 2017;58(5):941–54.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Baldán A, Tarr P, Vales CS, Frank J, Shimotake TK, Hawgood S, et al. Deletion of the transmembrane transporter ABCG1 results in progressive pulmonary lipidosis. J Biol Chem. 2006;281(39):29401–10.

    Article  PubMed  Google Scholar 

  61. Bernardino de la Serna J, Perez-Gil J, Simonsen AC, Bagatolli LA. Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures. J Biol Chem. 2004;279(39):40715–22.

    Article  PubMed  Google Scholar 

  62. Serrano AG, Pérez-Gil J. Protein-lipid interactions and surface activity in the pulmonary surfactant system. Chem Phys Lipids. 2006;141(1–2):105–18.

    Article  CAS  PubMed  Google Scholar 

  63. Orgeig S, Daniels CB. The roles of cholesterol in pulmonary surfactant: insights from comparative and evolutionary studies. Comp Biochem Physiol A Mol Integr Physiol. 2001;129(1):75–89.

    Article  CAS  PubMed  Google Scholar 

  64. Yancey PG, Jerome WG. Lysosomal sequestration of free and esterified cholesterol from oxidized low density lipoprotein in macrophages of different species. J Lipid Res. 1998;39(7):1349–61.

    Article  CAS  PubMed  Google Scholar 

  65. Seymour JF, Doyle IR, Nakata K, Presneill JJ, Schoch OD, Hamano E, et al. Relationship of anti-GM-CSF antibody concentration, surfactant protein a and B levels, and serum LDH to pulmonary parameters and response to GM-CSF therapy in patients with idiopathic alveolar proteinosis. Thorax. 2003;58(3):252–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Samson CM, Jurickova I, Molden E, Schreiner W, Colliver J, Bonkowski E, et al. Granulocyte-macrophage colony stimulating factor blockade promotes ccr9(+) lymphocyte expansion in Nod2 deficient mice. Inflamm Bowel Dis. 2011;17(12):2443–55.

    Article  PubMed  Google Scholar 

  67. Ikegami M, Jobe AH, Huffman Reed JA, Whitsett JA. Surfactant metabolic consequences of overexpression of GM-CSF in the epithelium of GM-CSF-deficient mice. Am J Physiol. 1997;273(4 Pt 1):L709–14.

    CAS  PubMed  Google Scholar 

  68. McGeachy MJ. GM-CSF: the secret weapon in the T(H)17 arsenal. Nat Immunol. 2011;12(6):521–2.

    Article  CAS  PubMed  Google Scholar 

  69. Milleron BJ, Costabel U, Teschler H, Ziesche R, Cadranel JL, Matthys H, et al. Bronchoalveolar lavage cell data in alveolar proteinosis. Am Rev Respir Dis. 1991;144(6):1330–2.

    Article  CAS  PubMed  Google Scholar 

  70. Caparros D, Steenhouwer F, Marquette CH, Carpentier F, Foulet A. Pulmonary alveolar proteinosis. A sequential analysis of the alveolar cell population after complete pulmonary lavage. Apropos of a case. Rev Mal Respir. 1994;11(1):63–6.

    CAS  PubMed  Google Scholar 

  71. Schoch OD, Schanz U, Koller M, Nakata K, Seymour JF, Russi EW, et al. BAL findings in a patient with pulmonary alveolar proteinosis successfully treated with GM-CSF. Thorax. 2002;57(3):277–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Punatar AD, Kusne S, Blair JE, Seville MT, Vikram HR. Opportunistic infections in patients with pulmonary alveolar proteinosis. J Infect. 2012;65(2):173–9.

    Article  PubMed  Google Scholar 

  73. Uchida K, Nakata K, Suzuki T, Luisetti M, Watanabe M, Koch DE, et al. Granulocyte/macrophage-colony-stimulating factor autoantibodies and myeloid cell immune functions in healthy subjects. Blood. 2009;113(11):2547–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Presneill JJ, Nakata K, Inoue Y, Seymour JF. Pulmonary alveolar proteinosis. Clin Chest Med. 2004;25(3):593–613. viii

    Article  PubMed  Google Scholar 

  75. Seymour JF, Lieschke GJ, Grail D, Quilici C, Hodgson G, Dunn AR. Mice lacking both granulocyte colony-stimulating factor (CSF) and granulocyte-macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amyloidosis, and reduced long-term survival. Blood. 1997;90(8):3037–49.

    Article  CAS  PubMed  Google Scholar 

  76. Agarwal PP, Seely JM, Perkins DG, Matzinger FR, Alikhan Q. Pulmonary alveolar proteinosis and end-stage pulmonary fibrosis: a rare association. J Thorac Imaging. 2005;20(3):242–4.

    Article  PubMed  Google Scholar 

  77. King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083–92.

    Article  PubMed  Google Scholar 

  78. Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of Nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2071–82.

    Article  PubMed  Google Scholar 

  79. Wells AU, Flaherty KR, Brown KK, Inoue Y, Devaraj A, Richeldi L, et al. Nintedanib in patients with progressive fibrosing interstitial lung diseases-subgroup analyses by interstitial lung disease diagnosis in the INBUILD trial: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Respir Med. 2020;8(5):453–60.

    Article  CAS  PubMed  Google Scholar 

  80. Goldstein LS, Kavuru MS, Curtis-McCarthy P, Christie HA, Farver C, Stoller JK. Pulmonary alveolar proteinosis: clinical features and outcomes. Chest. 1998;114(5):1357–62.

    Article  CAS  PubMed  Google Scholar 

  81. Lee KN, Levin DL, Webb WR, Chen D, Storto ML, Golden JA. Pulmonary alveolar proteinosis: high-resolution CT, chest radiographic, and functional correlations. Chest. 1997;111(4):989–95.

    Article  CAS  PubMed  Google Scholar 

  82. Johkoh T, Itoh H, Muller NL, Ichikado K, Nakamura H, Ikezoe J, et al. Crazy-paving appearance at thin-section CT: spectrum of disease and pathologic findings. Radiology. 1999;211(1):155–60.

    Article  CAS  PubMed  Google Scholar 

  83. Ishii H, Trapnell BC, Tazawa R, Inoue Y, Akira M, Kogure Y, et al. Comparative study of high-resolution CT findings between autoimmune and secondary pulmonary alveolar proteinosis. Chest. 2009;136(5):1348–55.

    Article  PubMed  Google Scholar 

  84. Costabel U, Guzman J, Bonella F, Oshimo S. Bronchoalveolar lavage in other interstitial lung diseases. Semin Respir Crit Care Med. 2007;28(5):514–24.

    Article  PubMed  Google Scholar 

  85. Bonella F, Ohshimo S, Bauer P, Guzman J, Costabel U. Bronchoalveolar lavage. In: Strausz J, Bolliger CT, editors. Interventional pneumology. European Respiratory Society monograph, vol. 48. Lausanne: European Respiratory Society; 2010. p. 59–72.

    Google Scholar 

  86. Doyle IR, Davidson KG, Barr HA, Nicholas TE, Payne K, Pfitzner J. Quantity and structure of surfactant proteins vary among patients with alveolar proteinosis. Am J Respir Crit Care Med. 1998;157(2):658–64.

    Article  CAS  PubMed  Google Scholar 

  87. Martin RJ, Rogers RM, Myers NM. Pulmonary alveolar proteinosis: shunt fraction and lactic acid dehydrogenase concentration as aids to diagnosis. Am Rev Respir Dis. 1978;117(6):1059–62.

    CAS  PubMed  Google Scholar 

  88. Fujishima T, Honda Y, Shijubo N, Takahashi H, Abe S. Increased carcinoembryonic antigen concentrations in sera and bronchoalveolar lavage fluids of patients with pulmonary alveolar proteinosis. Respiration. 1995;62(6):317–21.

    Article  CAS  PubMed  Google Scholar 

  89. Arai T, Hamano E, Inoue Y, Ryushi T, Nukiwa T, Sakatani M, et al. Serum neutralizing capacity of GM-CSF reflects disease severity in a patient with pulmonary alveolar proteinosis successfully treated with inhaled GM-CSF. Respir Med. 2004;98(12):1227–30.

    Article  PubMed  Google Scholar 

  90. Fang SC, Lu KH, Wang CY, Zhang HT, Zhang YM. Elevated tumor markers in patients with pulmonary alveolar proteinosis. Clin Chem Lab Med. 2013;51(7):1493–8.

    Article  CAS  PubMed  Google Scholar 

  91. Takahashi T, Munakata M, Suzuki I, Kawakami Y. Serum and bronchoalveolar fluid KL-6 levels in patients with pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 1998;158(4):1294–8.

    Article  CAS  PubMed  Google Scholar 

  92. Kuroki Y, Tsutahara S, Shijubo N, Takahashi H, Shiratori M, Hattori A, et al. Elevated levels of lung surfactant protein a in sera from patients with idiopathic pulmonary fibrosis and pulmonary alveolar proteinosis. Am Rev Respir Dis. 1993;147(3):723–9.

    Article  CAS  PubMed  Google Scholar 

  93. Seymour JF, Presneill JJ, Schoch OD, Downie GH, Moore PE, Doyle IR, et al. Therapeutic efficacy of granulocyte-macrophage colony-stimulating factor in patients with idiopathic acquired alveolar proteinosis. Am J Respir Crit Care Med. 2001;163(2):524–31.

    Article  CAS  PubMed  Google Scholar 

  94. Iyonaga K, Suga M, Yamamoto T, Ichiyasu H, Miyakawa H, Ando M. Elevated bronchoalveolar concentrations of MCP-1 in patients with pulmonary alveolar proteinosis. Eur Respir J. 1999;14(2):383–9.

    Article  CAS  PubMed  Google Scholar 

  95. Uchida K, Nakata K, Trapnell BC, Terakawa T, Hamano E, Mikami A, et al. High-affinity autoantibodies specifically eliminate granulocyte-macrophage colony-stimulating factor activity in the lungs of patients with idiopathic pulmonary alveolar proteinosis. Blood. 2004;103(3):1089–98.

    Article  CAS  PubMed  Google Scholar 

  96. Kitamura T, Uchida K, Tanaka N, Tsuchiya T, Watanabe J, Yamada Y, et al. Serological diagnosis of idiopathic pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2000;162(2 Pt 1):658–62.

    Article  CAS  PubMed  Google Scholar 

  97. McCarthy C, Carey B, Trapnell BC. Blood testing for differential diagnosis of pulmonary alveolar proteinosis syndrome. Chest. 2019;155(2):450–2.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Carey B, Uchida K, Nakata K, Tazawa R, Inoue Y, Hirose M, et al. A multicenter, international evaluation of blood testing for the diagnosis of autoimmune pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2012:A1624.

    Google Scholar 

  99. Kusakabe Y, Uchida K, Hiruma T, Suzuki Y, Totsu T, Suzuki T, et al. A standardized blood test for the routine clinical diagnosis of impaired GM-CSF signaling using flow cytometry. J Immunol Methods. 2014;413:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Carey B, Heald C, Chalk C, Suzuki T, Uchida K, Trapnell BC. Use of serum GM-CSF for diagnosis of patients with hereditary pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2013;187:A850.

    Google Scholar 

  101. Ito M, Nakagome K, Ohta H, Akasaka K, Uchida Y, Hashimoto A, et al. Elderly-onset hereditary pulmonary alveolar proteinosis and its cytokine profile. BMC Pulm Med. 2017;17(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Suzuki T, Maranda B, Sakagami T, Catellier P, Couture CY, Carey BC, et al. Hereditary pulmonary alveolar proteinosis caused by recessive CSF2RB mutations. Eur Respir J. 2011;37(1):201–4.

    Article  CAS  PubMed  Google Scholar 

  103. Suzuki T, Sakagami T, Young LR, Carey BC, Wood RE, Luisetti M, et al. Hereditary pulmonary alveolar proteinosis: pathogenesis, presentation, diagnosis, and therapy. Am J Respir Crit Care Med. 2010;182(10):1292–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Martinez-Moczygemba M, Doan ML, Elidemir O, Fan LL, Cheung SW, Lei JT, et al. Pulmonary alveolar proteinosis caused by deletion of the GM-CSFRalpha gene in the X chromosome pseudoautosomal region 1. J Exp Med. 2008;205(12):2711–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tredano M, van Elburg RM, Kaspers AG, Zimmermann LJ, Houdayer C, Aymard P, et al. Compound SFTPB 1549C-->GAA (121ins2) and 457delC heterozygosity in severe congenital lung disease and surfactant protein B (SP-B) deficiency. Hum Mutat. 1999;14(6):502–9.

    Article  CAS  PubMed  Google Scholar 

  106. Nogee LM, Garnier G, Dietz HC, Singer L, Murphy AM, deMello DE, et al. A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds. J Clin Invest. 1994;93(4):1860–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Griese M, Schumacher S, Tredano M, Steinecker M, Braun A, Guttentag S, et al. Expression profiles of hydrophobic surfactant proteins in children with diffuse chronic lung disease. Respir Res. 2005;6:80.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tredano M, Griese M, Brasch F, Schumacher S, de Blic J, Marque S, et al. Mutation of SFTPC in infantile pulmonary alveolar proteinosis with or without fibrosing lung disease. Am J Med Genet A. 2004;126A(1):18–26.

    Article  PubMed  Google Scholar 

  109. Stevens PA, Pettenazzo A, Brasch F, Mulugeta S, Baritussio A, Ochs M, et al. Nonspecific interstitial pneumonia, alveolar proteinosis, and abnormal proprotein trafficking resulting from a spontaneous mutation in the surfactant protein C gene. Pediatr Res. 2005;57(1):89–98.

    Article  PubMed  Google Scholar 

  110. Saugstad OD, Hansen TW, Ronnestad A, Nakstad B, Tollofsrud PA, Reinholt F, et al. Novel mutations in the gene encoding ATP binding cassette protein member A3 (ABCA3) resulting in fatal neonatal lung disease. Acta Paediatr. 2007;96(2):185–90.

    Article  PubMed  Google Scholar 

  111. Leonidas DD, Maiti TK, Samanta A, Dasgupta S, Pathak T, Zographos SE, et al. The binding of 3'-N-piperidine-4-carboxyl-3′-deoxy-ara-uridine to ribonuclease a in the crystal. Bioorg Med Chem. 2006;14(17):6055–64.

    Article  CAS  PubMed  Google Scholar 

  112. Hamvas A, Deterding RR, Wert SE, White FV, Dishop MK, Alfano DN, et al. Heterogeneous pulmonary phenotypes associated with mutations in the thyroid transcription factor gene NKX2-1. Chest. 2013;144(3):794–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sebastio G, Nunes V. Lysinuric protein intolerance. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, et al., editors. Gene reviews (R). Seattle, WA: University of Washington; 1993.

    Google Scholar 

  114. Ceruti M, Rodi G, Stella GM, Adami A, Bolongaro A, Baritussio A, et al. Successful whole lung lavage in pulmonary alveolar proteinosis secondary to lysinuric protein intolerance: a case report. Orphanet J Rare Dis. 2007;2:14.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Enaud L, Hadchouel A, Coulomb A, Berteloot L, Lacaille F, Boccon-Gibod L, et al. Pulmonary alveolar proteinosis in children on La Reunion Island: a new inherited disorder? Orphanet J Rare Dis. 2014;9:85.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hadchouel A, Wieland T, Griese M, Baruffini E, Lorenz-Depiereux B, Enaud L, et al. Biallelic mutations of Methionyl-tRNA Synthetase cause a specific type of pulmonary alveolar proteinosis prevalent on Reunion Island. Am J Hum Genet. 2015;96(5):826–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. McCarthy C, Carey B, Trapnell BC. Blood testing in the diagnosis of pulmonary alveolar proteinosis. Lancet Respir Med. 2018;6(11):e54.

    Article  PubMed  Google Scholar 

  118. Ishii H, Tazawa R, Kaneko C, Saraya T, Inoue Y, Hamano E, et al. Clinical features of secondary pulmonary alveolar proteinosis: pre-mortem cases in Japan. Eur Respir J. 2011;37(2):465–8.

    Article  CAS  PubMed  Google Scholar 

  119. Ramirez J, Schultz RB, Dutton RE. Pulmonary alveolar proteinosis: a new technique and rationale for treatment. Arch Intern Med. 1963;112:419–31.

    Article  CAS  PubMed  Google Scholar 

  120. Ben-Abraham R, Greenfeld A, Rozenman J, Ben-Dov I. Pulmonary alveolar proteinosis: step-by-step perioperative care of whole lung lavage procedure. Heart Lung. 2002;31(1):43–9.

    Article  PubMed  Google Scholar 

  121. Wasserman K, Blank N, Fletcher G. Lung lavage (alveolar washing) in alveolar proteinosis. Am J Med. 1968;44(4):611–7.

    Article  CAS  PubMed  Google Scholar 

  122. Beccaria M, Luisetti M, Rodi G, Corsico A, Zoia MC, Colato S, et al. Long-term durable benefit after whole lung lavage in pulmonary alveolar proteinosis. Eur Respir J. 2004;23(4):526–31.

    Article  CAS  PubMed  Google Scholar 

  123. Wood RE. Pediatric bronchoscopy. Chest Surg Clin N Am. 1996;6(2):237–51.

    CAS  PubMed  Google Scholar 

  124. Awab A, Khan MS, Youness HA. Whole lung lavage-technical details, challenges and management of complications. J Thorac Dis. 2017;9(6):1697–706.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Campo I, Luisetti M, Griese M, Trapnell BC, Bonella F, Grutters J, et al. Whole lung lavage therapy for pulmonary alveolar proteinosis: a global survey of current practices and procedures. Orphanet J Rare Dis. 2016;11(1):115.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Campo I, Luisetti M, Griese M, Trapnell BC, Bonella F, Grutters JC, et al. A global survey on whole lung lavage in pulmonary alveolar proteinosis. Chest. 2016;150(1):251–3.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Cohen ES, Elpern E, Silver MR. Pulmonary alveolar proteinosis causing severe hypoxemic respiratory failure treated with sequential whole-lung lavage utilizing venovenous extracorporeal membrane oxygenation: a case report and review. Chest. 2001;120(3):1024–6.

    Article  CAS  PubMed  Google Scholar 

  128. Jansen HM, Zuurmond WW, Roos CM, Schreuder JJ, Bakker DJ. Whole-lung lavage under hyperbaric oxygen conditions for alveolar proteinosis with respiratory failure. Chest. 1987;91(6):829–32.

    Article  CAS  PubMed  Google Scholar 

  129. Cheng SL, Chang HT, Lau HP, Lee LN, Yang PC. Pulmonary alveolar proteinosis: treatment by bronchofiberscopic lobar lavage. Chest. 2002;122(4):1480–5.

    Article  PubMed  Google Scholar 

  130. Selecky PA, Wasserman K, Benfield JR, Lippmann M. The clinical and physiological effect of whole-lung lavage in pulmonary alveolar proteinosis: a ten-year experience. Ann Thorac Surg. 1977;24(5):451–61.

    Article  CAS  PubMed  Google Scholar 

  131. Rogers RM, Levin DC, Gray BA, Moseley LW Jr. Physiologic effects of bronchopulmonary lavage in alveolar proteinosis. Am Rev Respir Dis. 1978;118(2):255–64.

    CAS  PubMed  Google Scholar 

  132. Seymour JF, Dunn AR, Vincent JM, Presneill JJ, Pain MC. Efficacy of granulocyte-macrophage colony-stimulating factor in acquired alveolar proteinosis. N Engl J Med. 1996;335(25):1924–5.

    Article  CAS  PubMed  Google Scholar 

  133. Venkateshiah SB, Yan TD, Bonfield TL, Thomassen MJ, Meziane M, Czich C, et al. An open-label trial of granulocyte macrophage colony stimulating factor therapy for moderate symptomatic pulmonary alveolar proteinosis. Chest. 2006;130(1):227–37.

    Article  CAS  PubMed  Google Scholar 

  134. Tazawa R, Hamano E, Arai T, Ohta H, Ishimoto O, Uchida K, et al. Granulocyte-macrophage colony-stimulating factor and lung immunity in pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2005;171(10):1142–9.

    Article  PubMed  Google Scholar 

  135. Tazawa R, Nakata K, Inoue Y, Nukiwa T. Granulocyte-macrophage colony-stimulating factor inhalation therapy for patients with idiopathic pulmonary alveolar proteinosis: a pilot study; and long-term treatment with aerosolized granulocyte-macrophage colony-stimulating factor: a case report. Respirology. 2006;11(Suppl):S61–4.

    Article  PubMed  Google Scholar 

  136. Moore BB, Coffey MJ, Christensen P, Sitterding S, Ngan R, Wilke CA, et al. GM-CSF regulates bleomycin-induced pulmonary fibrosis via a prostaglandin-dependent mechanism. J Immunol. 2000;165(7):4032–9.

    Article  CAS  PubMed  Google Scholar 

  137. Wylam ME, Ten R, Prakash UB, Nadrous HF, Clawson ML, Anderson PM. Aerosol granulocyte-macrophage colony-stimulating factor for pulmonary alveolar proteinosis. Eur Respir J. 2006;27(3):585–93.

    Article  CAS  PubMed  Google Scholar 

  138. Tazawa R, Trapnell BC, Inoue Y, Arai T, Takada T, Nasuhara Y, et al. Inhaled granulocyte/macrophage-colony stimulating factor as therapy for pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2010;181(12):1345–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tazawa R, Inoue Y, Arai T, Takada T, Kasahara Y, Hojo M, et al. Duration of benefit in patients with autoimmune pulmonary alveolar proteinosis after inhaled granulocyte-macrophage colony-stimulating factor therapy. Chest. 2014;145(4):729–37.

    Article  CAS  PubMed  Google Scholar 

  140. Tian X, Yang Y, Chen L, Sui X, Xu W, Li X, et al. Inhaled granulocyte-macrophage colony stimulating factor for mild-to-moderate autoimmune pulmonary alveolar proteinosis—a six month phase II randomized study with 24 months of follow-up. Orphanet J Rare Dis. 2020;15(1):174.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Tazawa R, Ueda T, Abe M, Tatsumi K, Eda R, Kondoh S, et al. Inhaled GM-CSF for pulmonary alveolar proteinosis. N Engl J Med. 2019;381(10):923–32.

    Article  CAS  PubMed  Google Scholar 

  142. Trapnell BC, Inoue Y, Bonella F, Morgan C, Jouneau S, Bendstrup E, et al. Inhaled molgramostim therapy in autoimmune pulmonary alveolar proteinosis. N Engl J Med. 2020;383(17):1635–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Campo I, Mariani F, Paracchini E, Kadija Z, Zoretto M, Tinelli C, et al. Inhaled sargramostim and whole lung lavage (WLL) as therapy of autoimmune pulmonary alveolar proteinosis (aPAP). Eur Respir J. 2016;48:PA3870.

    Google Scholar 

  144. Ohkouchi S, Akasaka K, Ichiwata T, Hisata S, Iijima H, Takada T, et al. Sequential granulocyte-macrophage colony-stimulating factor inhalation after whole-lung lavage for pulmonary alveolar proteinosis. A report of five intractable cases. Ann Am Thorac Soc. 2017;14(8):1298–304.

    Article  PubMed  Google Scholar 

  145. Yamamoto H, Yamaguchi E, Agata H, Kandatsu N, Komatsu T, Kawai S, et al. A combination therapy of whole lung lavage and GM-CSF inhalation in pulmonary alveolar proteinosis. Pediatr Pulmonol. 2008;43(8):828–30.

    Article  PubMed  Google Scholar 

  146. Dupin C, Hurtado M, Cazes A, Taille C, Debray MP, Guenée C, et al. Pioglitazone in pulmonary alveolar proteinosis: promising first clinical experience. Respir Med Res. 2020;78:100756.

    CAS  PubMed  Google Scholar 

  147. Kavuru MS, Bonfield TL, Thomassen MJ. Plasmapheresis, GM-CSF, and alveolar proteinosis. Am J Respir Crit Care Med. 2003;167(7):1036; author reply -7.

    Article  PubMed  Google Scholar 

  148. Kavuru MS, Malur A, Marshall I, Barna BP, Meziane M, Huizar I, et al. An open-label trial of rituximab therapy in pulmonary alveolar proteinosis. Eur Respir J. 2011;38(6):1361–7.

    Article  CAS  PubMed  Google Scholar 

  149. Soyez B, Borie R, Menard C, Cadranel J, Chavez L, Cottin V, et al. Rituximab for auto-immune alveolar proteinosis, a real life cohort study. Respir Res. 2018;19(1):74.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Borie R, Debray MP, Laine C, Aubier M, Crestani B. Rituximab therapy in autoimmune pulmonary alveolar proteinosis. Eur Respir J. 2009;33(6):1503–6.

    Article  CAS  PubMed  Google Scholar 

  151. Akasaka K, Tanaka T, Kitamura N, Ohkouchi S, Tazawa R, Takada T, et al. Outcome of corticosteroid administration in autoimmune pulmonary alveolar proteinosis: a retrospective cohort study. BMC Pulm Med. 2015;15:88.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Parker LA, Novotny DB. Recurrent alveolar proteinosis following double lung transplantation. Chest. 1997;111(5):1457–8.

    Article  CAS  PubMed  Google Scholar 

  153. Sui X, Du Q, Xu KF, Tian X, Song L, Wang X, et al. Quantitative assessment of pulmonary alveolar proteinosis (PAP) with ultra-dose CT and correlation with pulmonary function tests (PFTs). PLoS One. 2017;12(3):e0172958.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Tokura S, Akira M, Okuma T, Tazawa R, Arai T, Sugimoto C, et al. A semiquantitative computed tomographic grading system for evaluating therapeutic response in pulmonary alveolar proteinosis. Ann Am Thorac Soc. 2017;14(9):1403–11.

    Article  PubMed  Google Scholar 

  155. Jacob J, Bartholmai BJ, Rajagopalan S, van Moorsel CHM, van Es HW, van Beek FT, et al. Predicting outcomes in idiopathic pulmonary fibrosis using automated computed tomographic analysis. Am J Respir Crit Care Med. 2018;198(6):767–76.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Zavaletta VA, Bartholmai BJ, Robb RA. High resolution multidetector CT-aided tissue analysis and quantification of lung fibrosis. Acad Radiol. 2007;14(7):772–87.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kelly A, McCarthy C. Pulmonary alveolar proteinosis syndrome. Semin Respir Crit Care Med. 2020;41(2):288–98.

    Article  PubMed  Google Scholar 

  158. McCarthy C, Bartholmai BJ, Woods JC, McCormack FX, Trapnell BC. Automated parenchymal pattern analysis of treatment responses in pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2019;199(9):1151–2.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Griese M, Bonella F, Costabel U, de Blic J, Tran NB, Liebisch G. Quantitative lipidomics in pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2019;200(7):881–7.

    Article  CAS  PubMed  Google Scholar 

  160. Trapnell BC, McCarthy C. The alveolar Lipidome in pulmonary alveolar proteinosis. A new target for therapeutic development? Am J Respir Crit Care Med. 2019;200(7):800–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce C. Trapnell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Callaghan, M., McCarthy, C., Trapnell, B.C. (2023). Pulmonary Alveolar Proteinosis Syndrome. In: Cottin, V., Richeldi, L., Brown, K., McCormack, F.X. (eds) Orphan Lung Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-12950-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12950-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12949-0

  • Online ISBN: 978-3-031-12950-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics