
Chapter 9
Convolutional Neural Networks

The previous two chapters have been considering fully-connected feed-forward
neural (FN) networks and recurrent neural (RN) networks. Fully-connected FN
networks are the prototype of networks for deep representation learning on tabular
data. This type of networks extracts global properties from the features x. RN
networks are an adaption of FN networks to time-series data. Convolutional neural
(CN) networks are a third type of networks, and their specialty is to extract local
structure from the features. Originally, they have been introduced for speech and
image recognition aiming at finding similar structure in different parts of the feature
x. For instance, if x is a picture consisting of pixels, and if we want to classify
this picture according to its contents, then we try to find similar structure (objects)
in different locations of this picture. CN networks are suitable for this task as
they work with filters (kernels) that have a fixed window size. These filters then
screen across the picture to detect similar local structure at different locations in
the picture. CN networks were introduced in the 1980s by Fukushima [145] and
LeCun et al. [234, 235], and they have been celebrating great success in many
applications. Our introduction to CN networks is based on the tutorial of Meier–
Wüthrich [269]. For real data applications there are many pre-trained CN network
libraries that can be downloaded and used for several different tasks, an example for
image recognition is the AlexNet of Krizhevsky et al. [226].

9.1 Plain-Vanilla Convolutional Neural Network Layer

Structurally, the CN network architectures are similar to the FN network architec-
tures, only they replace certain FN layers by CN layers. Therefore, we start by
introducing the CN layer, and one should keep the structure of the FN layer (7.5)
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408 9 Convolutional Neural Networks

in mind. In a nutshell, FN layers consider non-linearly activated inner products
〈w(m)

j , z〉, and CN layers replace these inner products by a type of convolution

W
(m)
j ∗ z.

9.1.1 Input Tensors and Channels

We start from an input tensor z ∈ R
q(1)×···×q(K)

that has dimension q(1)×· · ·×q(K).
This input tensor z is a multi-dimensional array of order (length) K ∈ N and with
elements zi1,...,iK ∈ R for 1 ≤ ik ≤ q(k) and 1 ≤ k ≤ K . The special case of order

K = 2 is a matrix z ∈ R
q(1)×q(2)

. This matrix can illustrate a black and white image
of dimension q(1) × q(2) with the matrix entries zi1,i2 ∈ R describing the intensities
of the gray scale in the corresponding pixels (i1, i2). A color image typically has
the three color channels Red, Green and Blue (RGB), and such a RGB image can
be represented by a tensor z ∈ R

q(1)×q(2)×q(3)
of order 3 with q(1) × q(2) being

the dimension of the image and q(3) = 3 describing the three color channels, i.e.,
(zi1,i2,1, zi1,i2,2, zi1,i2,3)

� ∈ R
3 describes the intensities of the colors RGB in the

pixel (i1, i2).
Typically, the structure of black and white images and RGB images is unified by

representing the black and white picture by a tensor z ∈ R
q(1)×q(2)×q(3)

of order 3
with a single channel q(3) = 1. This philosophy is going to be used throughout this
chapter. Namely, if we consider a tensor z ∈ R

q(1)×···×q(K−1)×q(K)
of order K , the

first K − 1 components (i1, . . . , iK−1) will play the role of the spatial components
that have a natural topology, and the last components 1 ≤ iK ≤ q(K) are called
the channels reflecting, e.g., a gray scale (for q(K) = 1) or the RGB intensities (for
q(K) = 3).

In Sect. 9.1.3, below, we will also study time-series data where we have 2nd
order tensors (matrices). The first component reflects time 1 ≤ t ≤ q(1), i.e.,
the spatial component is temporal for time-series data, and the second component
(channels) describes the different elements zt = (zt,1, . . . , zt,q(2))� ∈ R

q(2)
that are

measured/observed at each time point t .

9.1.2 Generic Convolutional Neural Network Layer

We start from an input tensor z ∈ R
q

(1)
m−1×···×q

(K)
m−1 of order K . The first K − 1

components of this tensor have a spatial structure and the K-th component stands
for the channels. A CN layer applies (local) convolution operations to this tensor.We
choose a filter size, also called window size or kernel size, (f (1)

m , . . . , f
(K)
m )� ∈ N

K

with f
(k)
m ≤ q

(k)
m−1, for 1 ≤ k ≤ K −1, and f

(K)
m = q

(K)
m−1. This filter size determines
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the output dimension of the CN operation by

q(k)
m

def.= q
(k)
m−1 − f (k)

m + 1, (9.1)

for 1 ≤ k ≤ K . Thus, the size of the image is reduced by the window size of
the filter. In particular, the output dimension of the channels component k = K

is q
(K)
m = 1, i.e., all channels are compressed to a scalar output. The spatial

components 1 ≤ k ≤ K − 1 retain their spatial structure but the dimension is
reduced according to (9.1).

A CN operation is a mapping (note that the order of the tensor is reduced from
K to K − 1 because the channels are compressed; index j is going to be explained
later)

z
(m)
j : Rq

(1)
m−1×···×q

(K)
m−1 → R

q
(1)
m ×···×q

(K−1)
m (9.2)

z 	→ z
(m)
j (z) =

(
z
(m)
i1,...,iK−1;j (z)

)
1≤ik≤q

(k)
m ;1≤k≤K−1

,

taking the values for a fixed activation function φ : R → R

z
(m)
i1,...,iK−1;j (z) = φ

⎛
⎝w

(m)
0,j +

f
(1)
m∑

l1=1

· · ·
f

(K)
m∑

lK=1

w
(m)
l1,...,lK ;j zi1+l1−1,...,iK−1+lK−1−1,lK

⎞
⎠ ,

(9.3)

for given intercept w(m)
0,j ∈ R and filter weights

W
(m)
j =

(
w

(m)
l1,...,lK ;j

)
1≤lk≤f

(k)
m ;1≤k≤K

∈ R
f

(1)
m ×···×f

(K)
m ; (9.4)

the network parameter has dimension rm = 1 + ∏K
k=1 f

(k)
m .

At first sight this CN operation looks quite complicated. Let us give some
remarks that allow for a better understanding and a more compact notation. The
operation in (9.3) chooses the corner (i1, . . . , iK−1, 1) as base point, and then it
reads the tensor elements in the (discrete) window

(i1, . . . , iK−1, 1) +
[
0 : f (1)

m − 1
]

× · · · ×
[
0 : f (K−1)

m − 1
]

×
[
0 : f (K)

m − 1
]
,

(9.5)

with given filter weights W
(m)
j . This window is then moved across the entire

tensor z by changing the base point (i1, . . . , iK−1, 1) accordingly, but with fixed
filter weights W

(m)
j . This operation resembles a convolution, however, in (9.3) the

indices in zi1+l1−1,...,iK−1+lK−1−1,lK run in reverse direction compared to a classical
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(mathematical) convolution. By a slight abuse of notation, nevertheless, we use the
symbol of the convolution operator ∗ to abbreviate (9.2). This gives us the compact
notation:

z
(m)
j : Rq

(1)
m−1×···×q

(K)
m−1 → R

q
(1)
m ×···×q

(K−1)
m

z 	→ z
(m)
j (z) = φ

(
w

(m)
0,j + W

(m)
j ∗ z

)
, (9.6)

having the activations for 1 ≤ ik ≤ q
(k)
m , 1 ≤ k ≤ K − 1,

φ
(
w

(m)
0,j + W

(m)
j ∗ z

)
i1,...,iK−1

= z
(m)
i1,...,iK−1;j (z),

where the latter is given by (9.3).

Remarks 9.1

• The beauty of this notation is that we can now see the analogy to the FN layer.
Namely, (9.6) exactly plays the role of a FN neuron (7.6), but the CN operation
w

(m)
0,j + W

(m)
j ∗ z replaces the inner product 〈w(m)

j , z〉, and correspondingly
accounting for the intercept.

• A FN neuron (7.6) can be seen as a special case of CN operation (9.6). Namely,

if we have a tensor of order K = 1, the input tensor (vector) reads as z ∈ R
q

(1)
m−1 .

That is, we do not have a spatial component, but only qm−1 = q
(1)
m−1 channels.

In that case we have W
(m)
j ∗ z = 〈W (m)

j , z〉 for the filter weights W
(m)
j ∈ R

q
(1)
m−1 ,

and where we assume that z does not include an intercept component. Thus, the
CN operation boils down to a FN neuron in the case of a tensor of order 1.

• In the CN operation we take advantage of having a spatial structure in the tensor
z, which is not the case in the FN operation. The CN operation takes a spatial
input of dimension

∏K
k=1 q

(k)
m−1 and it maps this input to a spatial object of

dimension
∏K−1

k=1 q
(k)
m . For this it uses rm = 1 + ∏K

k=1 f
(k)
m filter weights. The

FN operation takes an input of dimension qm−1 and it maps it to a 1-dimensional
neuron activation, for this it uses 1 + qm−1 parameters. If we identify the input

dimensions qm−1
!= ∏K

k=1 q
(k)
m−1 we can observe that rm 
 1 + qm−1 because,

typically, the filter sizes f
(k)
m 
 q

(k)
m−1, for 1 ≤ k ≤ K − 1. Thus, the CN

operation uses much less parameters as the filters only act locally through the
∗-operation by translating the filter window (9.5).

This understanding now allows us to define a CN layer. Note that the map-
pings (9.6) have a lower index j which indicates that this is one single projection
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(filter extraction), called a filter. By choosing multiple different filters (w
(m)
0,j ,W

(m)
j ),

we can define the CN layer as follows.

Choose q
(K)
m ∈ N filters, each having a rm-dimensional filter weight

(w
(m)
0,j ,W

(m)
j ), 1 ≤ j ≤ q

(K)
m . A CN layer is a mapping

z(m) : Rq
(1)
m−1×···×q

(K)
m−1 → R

q
(1)
m ×···×q

(K)
m (9.7)

z 	→ z(m)(z) =
(

z
(m)
1 (z), . . . , z

(m)

q
(K)
m

(z)

)
,

with filters z
(m)
j (z) ∈ R

q
(1)
m ×···×q

(K−1)
m , 1 ≤ j ≤ q

(K)
m , given by (9.6).

A CN layer (9.7) converts the q
(K)
m−1 input channels to q

(K)
m output filters by

preserving the spatial structure on the first K − 1 components of the input tensor z.
More mathematically, CN layers and networks have been studied, among others,
by Zhang et al. [403, 404], Mallat [263] and Wiatowski–Bölcskei [382]. These
authors prove that CN networks have certain translation invariance properties
and deformation stability. This exactly explains why these networks allow one to
recognize similar objects at different locations in the input tensor. Basically, by
translating the filter windows (9.5) across the tensor, we try to extract the local
structure from the tensor that provides similar signals in different locations of that
tensor. Thinking of an image where we try to recognize, say, a dog, such a dog can
be located at different sites in the image, and a filter (window) that moves across
that image tries to locate the dogs in the image.

A CN layer (9.7) defines one layer indexed by the upper index (m), and for deep
representation learning we now have to composemultiple of these CN layers, but we
can also compose CN layers with FN layers or RN layers. Before doing so, we need
to introduce some special purpose layers and tools that are useful for CN network
modeling, this is done in Sect. 9.2, below.

9.1.3 Example: Time-Series Analysis and Image Recognition

Most CN network examples are based on time-series data or images. The former
has a 1-dimensional temporal component, and the latter has a 2-dimensional spatial
component. Thus, these two examples are giving us tensors of orders K = 2 and
K = 3, respectively. We briefly discuss such examples as specific applications of a
tensors of a general order K ≥ 2.
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Time-Series Analysis with CN Networks

For a time-series analysis we often have observations xt ∈ R
q0 for the time points

0 ≤ t ≤ T . Bringing this time-series data into a tensor form gives us

x = x�
0:T = (x0, . . . , xT )� ∈ R

(T +1)×q0 = R
q

(1)
0 ×q

(2)
0 ,

with q
(1)
0 = T + 1 and q

(2)
0 = q0. We have met such examples in Chap. 8 on RN

networks. Thus, for time-series data the input to a CN network is a tensor of order
K = 2 with a temporal component having the dimension T + 1 and at each time
point t we have q0 measurements (channels) xt ∈ R

q0 . A CN network tries to find
similar structure at different time points in this time-series data x0:T . For a first CN
layer m = 1 we therefore choose q1 ∈ N filters and consider the mapping

z(1) : R(T +1)×q0 → R
(T −f1+2)×q1 (9.8)

x�
0:T 	→ z(1)(x�

0:T ) =
(
z
(1)
1 (x�

0:T ), . . . , z(1)
q1

(x�
0:T )

)
,

with filters z
(1)
j (x�

0:T ) ∈ R
T −f1+2, 1 ≤ j ≤ q1, given by (9.6) and for a fixed

window size f1 ∈ N. From (9.8) we observe that the length of the time-series is
reduced from T + 1 to T − f1 + 2 accounting for the window size f1. In financial
mathematics, a structure (9.8) is often called a rolling window that moves across the
time-series x0:T and extracts the corresponding information.

We have introduced two different architectures to process time-series information
x0:T , and these different architectures serve different purposes. A RN network
architecture is most suitable if we try to forecast the next response of a time-
series. I.e., we typically process the past observations through a recurrent structure
to predict the next response, this is the motivation, e.g., behind Figs. 8.4 and 8.5.
The motivation for the use of a CN network architecture is different as we try to
find similar structure at different times, e.g., in a financial time-series we may be
interested in finding the downturns of more than 20%. The latter is a local analysis
which is explored by local filters (of a finite window size).

Image Recognition

Image recognition extends (9.8) by one order to a tensor of order K = 3. Typically,
we have images of dimensions (pixels) I ×J , and having three color channels RGB.
These images then read as

x = (x1, x2, x3) ∈ R
I×J×3 = R

q
(1)
0 ×q

(2)
0 ×q

(3)
0 ,

where x1 ∈ R
I×J is the intensity of red, x2 ∈ R

I×J is the intensity of green, and
x3 ∈ R

I×J is the intensity of blue.
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Chose a window size of f
(1)
1 × f

(2)
1 and q1 ∈ N filters to receive the CN layer

z(1) : RI×J×3 → R
(I−f

(1)
1 +1)×(J−f

(2)
1 +1)×q1 (9.9)

(x1, x2, x3) 	→ z(1)(x1, x2, x3) =
(
z
(1)
1 (x1, x2, x3), . . . , z

(1)
q1

(x1, x2, x3)
)

,

with filters z
(1)
j (x1, x2, x3) ∈ R

(I−f
(1)
1 +1)×(J−f

(2)
1 +1), 1 ≤ j ≤ q1. Thus, we

compress the 3 channels in each filter j , but we preserve the spatial structure of
the image (by the convolution operation ∗).

For black and white pictures which only have one color channel, we preserve the
spatial structure of the picture, and we modify the input tensor to a tensor of order 3
and of the form

x = (x1) ∈ R
I×J×1.

9.2 Special Purpose Tools for Convolutional Neural
Networks

9.2.1 Padding with Zeros

We have seen that the CN operation reduces the size of the output by the filter sizes,
see (9.1). Thus, if we start from an image of size 100× 50× 1, and if the filter sizes
are given by f

(1)
m = f

(2)
m = 9, then the output will be of dimension 92 × 42 × q

(3)
1 ,

see (9.9). Sometimes, this reduction in dimension is impractical, and padding helps
to keep the original shape. Padding a tensor z with p

(k)
m parameters, 1 ≤ k ≤ K −1,

means that the tensor is extended in all K −1 spatial directions by (typically) adding
zeros of that size, so that the padded tensor has dimension

(
p(1)

m + q
(1)
m−1 + p(1)

m

)
× · · · ×

(
p(K−1)

m + q
(K−1)
m−1 + p(K−1)

m

)
× q

(K)
m−1.

This implies that the output filters will have the dimensions

q(k)
m = q

(k)
m−1 + 2p(k)

m − f (k)
m + 1,

for 1 ≤ k ≤ K − 1. The spatial dimension of the original tensor size is preserved if
2p(k)

m −f
(k)
m + 1 = 0. Padding does not add any additional parameters, but it is only

used to reshape the tensors.
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9.2.2 Stride

Strides are used to skip part of the input tensor z in order to reduce the size of the
output. This may be useful if the input tensor is a very high resolution image. Choose
the stride parameters s

(k)
m , 1 ≤ k ≤ K − 1. We can then replace the summation

in (9.3) by the following term

f
(1)
m∑

l1=1

· · ·
f

(K)
m∑

lK=1

w
(m)
l1,...,lK ;j z

s
(1)
m (i1−1)+l1,...,s

(K−1)
m (iK−1−1)+lK−1,lK

.

This only extracts the tensor entries on a discrete grid of the tensor by translating
the window by multiples of integers, see also (9.5),

(
s(1)
m (i1 − 1), . . . , s(K−1)

m (iK−1 − 1), 1
)
+

[
1 : f (1)

m

]
×· · ·×

[
1 : f (K−1)

m

]
×

[
0 : f (K)

m − 1
]
,

and the size of the output is reduced correspondingly. If we choose strides s
(k)
m =

f
(k)
m , 1 ≤ k ≤ K − 1, we receive a partition of the spatial part of the input tensor z,
this is going to be used in the max-pooling layer (9.11).

9.2.3 Dilation

Dilation is similar to stride, though, different in that it enlarges the filter sizes instead
of skipping certain positions in the input tensor. Choose the dilation parameters e

(k)
m ,

1 ≤ k ≤ K − 1. We can then replace the summation in (9.3) by the following term

f
(1)
m∑

l1=1

· · ·
f

(K)
m∑

lK=1

w
(m)
l1,...,lK ;j z

i1+e
(1)
m (l1−1),...,iK−1+e

(K−1)
m (lK−1−1),lK

.

This applies the filter weights to the tensor entries on discrete grids

(i1, . . . , iK−1, 1)+e(1)
m

[
0 : f (1)

m − 1
]
×· · ·×e(K−1)

m

[
0 : f (K−1)

m − 1
]
×

[
0 : f (K)

m − 1
]
,

where the intervals e
(k)
m [0 : f

(k)
m − 1] run over the grids of span sizes e

(k)
m , 1 ≤ k ≤

K −1. Thus, in comparably smoothing images we do not read all the pixels but only
every e

(k)
m -th pixel in the window. Also this reduces the size of the output tensor.
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9.2.4 Pooling Layer

As we have seen above, the dimension of the tensor is reduced by the filter
size in each spatial direction if we do not apply padding with zeros. In general,
deep representation learning follows the paradigm of auto-encoding by reducing a
high-dimensional input to a low-dimensional representation. In CN networks this
is usually (efficiently) done by so-called pooling layers. In spirit, pooling layers
work similarly to CN layers (having a fixed window size), but we do not apply a
convolution operation ∗, but rather a maximum operation to the window to extract
the dominant tensor elements.

We choose a fixed window size (f
(1)
m , . . . , f

(K−1)
m )� ∈ N

K−1 and strides s
(k)
m =

f
(k)
m , 1 ≤ k ≤ K − 1, for the spatial components of the tensor z of order K. A

max-pooling layer is given by

z(m) : Rq
(1)
m−1×···×q

(K)
m−1 → R

q
(1)
m ×···×q

(K)
m

z 	→ z(m)(z) = MaxPool(z), (9.10)

with dimensions q
(K)
m = q

(K)
m−1 and for 1 ≤ k ≤ K − 1

q(k)
m =

⌊
q

(k)
m−1/f

(k)
m

⌋
, (9.11)

having the activations for 1 ≤ ik ≤ q
(k)
m , 1 ≤ k ≤ K,

MaxPool(z)i1,...,iK = max
1≤lk≤f

(k)
m ,

1≤k≤K−1

z
f

(1)
m (i1−1)+l1,...,f

(K−1)
m (iK−1−1)+lK−1,iK

.

Alternatively, the floors in (9.11) could be replaced by ceilings and padding with
zeros to receive the right cardinality. This extracts the maximums from the (spatial)
windows
(
f (1)

m (i1 − 1), . . . , f (K−1)
m (iK−1 − 1), iK

)
+

[
1 : f (1)

m

]
× · · · ×

[
1 : f (K−1)

m

]
× [0]

=
[
f (1)

m (i1 − 1) + 1 : f (1)
m i1

]
× · · · ×

[
f (K−1)

m (iK−1 − 1) + 1 : f (K−1)
m iK−1

]
× [iK ] ,

for each channel 1 ≤ iK ≤ q
(K)
m−1 individually. Thus, the max-pooling operator is

chosen such that it extracts the maximum of each channel and each window, the
windows providing a partition of the spatial part of the tensor. This reduces the
dimension of the tensor according to (9.11), e.g., if we consider a tensor of order 3
of an RGB image of dimension I × J = 180 × 50 and apply a max-pooling layer
with window sizes f

(1)
m = 10 and f

(2)
m = 5, we receive a dimension reduction

180 × 50 × 3 	→ 18 × 10 × 3.
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Replacing themaximumoperator in (9.10) by an averaging operator is sometimes
also used, and this is called an average-pooling layer.

9.2.5 Flatten Layer

A flatten layer performs the transformation of rearranging a tensor to a vector, so that
the output of a flatten layer can be used as an input to a FN layer. That is,

z(m) : Rq
(1)
m−1×···×q

(K)
m−1 → R

qm

z 	→ z(m)(z) =
(
z1,...,1, . . . , zq

(1)
m−1,...,q

(K)
m−1

)�
, (9.12)

with qm = ∏K
k=1 q

(k)
m−1. We have already used flatten layers after embedding layers

on lines 8 and 11 of Listing 7.4.

9.3 Convolutional Neural Network Architectures

9.3.1 Illustrative Example of a CN Network Architecture

We are now ready to patch everything together. Assume we have RGB images
described by tensors x(0) ∈ R

I×J×3 of order 3 modeling the three RGB channels
of images of a fixed size I × J . Moreover, we have the tabular feature information
x(1) ∈ X ⊂ {1}×R

q that describes further properties of the data. That is, we have an
input variable (x(0), x(1)), and we aim at predicting a response variable Y by a using
a suitable regression function

(x(0), x(1)) 	→ μ(x(0), x(1)) = E

[
Y

∣∣∣x(0), x(1)
]
. (9.13)

We choose two convolutional layers z(CN1) and z(CN2), each followed by a max-
pooling layer z(Max1) and z(Max2), respectively. Then we apply a flatten layer z(flatten)

to bring the learned representation into a vector form. These layers are chosen
according to (9.7), (9.10) and (9.12) with matching input and output dimensions
so that the following composition is well-defined

z(5:1) =
(
z(flatten) ◦ z(Max2) ◦ z(CN2) ◦ z(Max1) ◦ z(CN1)

)
: RI×J×3 → R

q5 .

Listing 9.1 provides an example starting from a I ×J ×3 = 180×50×3 input tensor
x(0) and receiving a q5 = 60 dimensional learned representation z(5:1)(x(0)) ∈ R

60.
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Listing 9.1 CN network architecture in keras

1 shape <- c(180,50,3)
2 #
3 model = keras_model_sequential()
4 model %>%
5 layer_conv_2d(filters = 10, kernel_size = c(11,6), activation=’tanh’,
6 input_shape = shape) %>%
7 layer_max_pooling_2d(pool_size = c(10,5)) %>%
8 layer_conv_2d(filters = 5, kernel_size = c(6,4), activation=’tanh’) %>%
9 layer_max_pooling_2d(pool_size = c(3,2)) %>%
10 layer_flatten()

Listing 9.2 Summary of CN network architecture

1 Layer (type) Output Shape Param #
2 =======================================================================
3 conv2d_1 (Conv2D) (None, 170, 45, 10) 1990
4 -----------------------------------------------------------------------
5 max_pooling2d_1 (MaxPooling2D) (None, 17, 9, 10) 0
6 -----------------------------------------------------------------------
7 conv2d_2 (Conv2D) (None, 12, 6, 5) 1205
8 -----------------------------------------------------------------------
9 max_pooling2d_2 (MaxPooling2D) (None, 4, 3, 5) 0
10 -----------------------------------------------------------------------
11 flatten_1 (Flatten) (None, 60) 0
12 =======================================================================
13 Total params: 3,195
14 Trainable params: 3,195
15 Non-trainable params: 0

Listing 9.2 gives the summary of this architecture providing the dimension reduction
mappings (encodings)

180× 50× 3
CN1	→ 170× 45× 10

Max1	→ 17× 9× 10
CN2	→ 12× 6× 5

Max2	→ 4× 3× 5
flatten	→ 60.

The first CN layer (m = 1) involves q
(3)
1 r1 = 10 · (1+ 11 · 6 · 3) = 1′990 filter weights

(w
(1)
0,j , W

(1)
j )

1≤j≤q
(3)
1

(including the intercepts), and the second CN layer (m = 3)

involves q
(3)
3 r3 = 5·(1+6·4·10) = 1′205 filter weights (w

(3)
0,j , W

(3)
j )

1≤j≤q
(3)
3
. Altogether

we have a network parameter of dimension 3′195 to be fitted in this CN network
architecture.

To perform the prediction task (9.13) we concatenate the learned representation
z(5:1)(x(0)) ∈ R

q5 of the RGB image x(0) with the tabular feature x(1) ∈ X ⊂ {1}×R
q .

This concatenated vector is processed through a FN network architecture z(d+5:6) of
depth d ≥ 1 providing the output

(
z(5:1)(x(0)), x(1)

)
	→ E

[
Y

∣∣∣x(0), x(1)
]

= g−1
〈
β, z(d+5:6) (

z(5:1)(x(0)), x(1)
)〉

,

for given link function g. This last step can be done in complete analogy to Chap. 7,
and fitting of such a network architecture uses variants of the SGD algorithm.
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9.3.2 Lab: Telematics Data

We present a CN network example that studies time-series of telematics car driving
data. Unfortunately, this data is not publicly available. Recently, telematics car
driving data has gained much popularity in actuarial science, because this data
provides information of car drivers that goes beyond the classical features (age of
driver, year of driving test, etc.), and it provides a better discrimination of good and
bad drivers as it is directly based on the driving habits and the driving styles.

The telematics data has many different aspects. Raw telematics data typically
consists of high-frequency GPS location data, say, second by second, from which
several different statistics such as speed, acceleration and change of direction can
be calculated. Besides the GPS location data, it often contains vehicle speeds
from the vehicle instrumental panel, and acceleration in all directions from an
accelerometer. Thus, often, there are 3 different sources from which the speed and
the acceleration can be extracted. In practice, the data quality is often an issue as
these 3 different sources may give substantially different numbers, Meng et al. [271]
give a broader discussion on these data quality issues. The telematics GPS data
is often complemented by further information such as engine revolutions, daytime
of trips, road and traffic conditions, weather conditions, traffic rule violations, etc.
This raw telematics data is then pre-processed, e.g., special maneuvers are extracted
(speeding, sudden acceleration, hard braking, extreme right- and left-turns), total
distances are calculated, driving distances at different daytimes and weekdays are
analyzed. For references analyzing such statistics for predictivemodelingwe refer to
Ayuso et al. [17–19], Boucher et al. [42], Huang–Meng [193], Lemaire et al. [246],
Paefgen et al. [291], So et al. [344], Sun et al. [347] and Verbelen et al. [370]. A
different approach has been taken by Wüthrich [388] and Gao et al. [151, 154, 155],
namely, these authors aggregate the telematics data of speed and acceleration to
so-called speed-acceleration v-a heatmaps. These v-a heatmaps are understood as
images which can be analyzed, e.g., by CN networks; such an analysis has been
performed in Zhu–Wüthrich [407] for image classification and in Gao et al. [154]
for claim frequencymodeling. Finally, the work of Weidner et al. [377, 378] directly
acts on the time-series of the telematics GPS data by performing a Fourier analysis.

In this section, we aim at allocating individual car driving trips to the right drivers
by directly analyzing the time-series of the telematics data of these trips using CN
networks. We therefore replicate the analysis of Gao–Wüthrich [156] on slightly
different data. For our illustrative example we select 3 car drivers and we call them
driver A, driver B and driver C. For each of these 3 drivers we choose individual
car driving trips of 180 seconds, and we analyze their speed-acceleration-change in
angle (v-a-�) pattern every second. Thus, for t = 1, . . . , T = 180, we study the three
input channels

xs,t = (vs,t , as,t , �s,t )
� ∈ [2, 50]km/h × [−3, 3]m/s2 × [0, 1/2] ⊂ R

3,
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where 1 ≤ s ≤ S labels all individual trips of the considered drivers. This data has
been pre-processed by cutting-out the idling phase and the speeds above 50km/h
and concatenating the remaining pieces. We perform this pre-processing since
we do not want to identify the drivers because they have a special idling phase
picture or because they are more likely on the highway. Acceleration has been
censored at ±3m/s2 because we cannot exclude that more extreme observations are
caused by data quality issues (note that the acceleration is calculated from the GPS
coordinates and if the signals are not fully precise it can lead to extreme acceleration
observations). Finally, change in angle is measured in absolute values of sine per
second (censored at 1/2), i.e., we do not distinguish between left and right turns.
This then provides us with three time-series channels giving tensors of order 2

xs =
(
(vs,1, as,1,�s,1)

�, . . . , (vs,180, as,180,�s,180)
�)� ∈ R

180×3,

for 1 ≤ s ≤ S. Moreover, there is a categorical response Ys ∈ {A,B,C} indicating
which driver has been driving trip s.
Figure 9.1 illustrates the first three trips xs of T = 180 seconds of each of these three
drivers A (top), B (middle) and C (bottom); note that the 180 seconds have been
chosen at a random location within each trip. The first lines in red color show the
acceleration patterns (at )1≤t≤T , the second lines in black color the change in angle
patterns (�t )1≤t≤T , and the last lines in blue color the speed patterns (vt )1≤t≤T .
Table 9.1 summarizes the available data. In total we have 932 individual trips, and
we randomly split these trips in the learning data L consisting of 744 trips and the
test data T collecting the remaining trips. The goal is to train a classification model
that correctly allocates the test data T to the right driver. As feature information, we
use the telematics data xs of length 180 seconds. We design a logistic categorical
regression model with response set Y = {A,B,C}. Hence, we obtain a vector-valued
parameter EF with a response having 3 levels, see Sect. 2.1.4.

To process the telematics data xs , we design a CN network architecture having
three convolutional layers z(CNj), 1 ≤ j ≤ 3, each followed by a max-pooling
layer z(Maxj), then we apply a drop-out layer z(DO) and finally a fully-connected FN
layer z(FN) providing the logistic response classification; this is the same network
architecture as used in Gao–Wüthrich [156]. The code is given in Listing 9.3 and it
describes the mapping

z(8:1) =
(
z(FN) ◦ z(DO) ◦ z(Max3) ◦ z(CN3) ◦ z(Max2) ◦ z(CN2) ◦ z(Max1) ◦ z(CN1)

)
:

R
T ×3 → (0, 1)3.

The first CN and pooling layer z(Max1) ◦ z(CN1) maps the dimension 180 × 3 to a
tensor of dimension 58 × 12 using 12 filters; the max-pooling uses the floor (9.11).
The second CN and pooling layer z(Max2) ◦ z(CN2) maps to 18 × 10 using 10 filters,
and the third CN and pooling layer z(Max3) ◦ z(CN3) maps to 1 × 8 using 8 filters.
Actually, this last max-pooling layer is a global max-pooling layer extracting the
maximum in each of the 8 filters. Next, we apply a drop-out layer with a drop-out
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Fig. 9.1 First 3 trips of driver A (top), driver B (middle) and driver C (bottom); each trip is 180
seconds, red color shows the acceleration pattern (at )t , black color the change in angle pattern
(�t )t and blue color the speed pattern (vt )t

Table 9.1 Summary of the trips and the choice of learning and test data sets L and T

Driver A Driver B Driver C Total

Number of trips S 261 385 286 932

Learning data L 209 307 228 744

Test data T 52 78 58 188

Average speed vt 24.8 30.4 30.2 km/h

Average acceleration/braking |at | 0.56 0.61 0.74 m/s2

Average change in angle �t 0.065 0.054 0.076 |sin|/s

rate of 30% to prevent from over-fitting. Finally we apply a fully-connected FN
layer that maps the 8 neurons to the 3 categorical outputs using the softmax output
activation function, which provides the canonical link of the logistic categorical EF.
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Listing 9.3 CN network architecture for the individual car trip allocation

1 shape <- c(180,3)
2 #
3 model = keras_model_sequential()
4 model %>%
5 layer_conv_1d(filters = 12, kernel_size = 5, activation=’tanh’,
6 input_shape = shape) %>%
7 layer_max_pooling_1d(pool_size = 3) %>%
8 layer_conv_1d(filters = 10, kernel_size = 5, activation=’tanh’) %>%
9 layer_max_pooling_1d(pool_size = 3) %>%
10 layer_conv_1d(filters = 8, kernel_size = 5, activation=’tanh’) %>%
11 layer_global_max_pooling_1d() %>%
12 layer_dropout(rate = .3) %>%
13 layer_dense(units = 3, activation = ’softmax’)

For a summary of the network architecture see Listing 9.4. Altogether this involves
1’237 network parameters that need to be fitted.

Listing 9.4 Summary of CN network architecture for the individual car trip allocation

1 Layer (type) Output Shape Param #
2 ===============================================================================
3 conv1d_1 (Conv1D) (None, 176, 12) 192
4 -------------------------------------------------------------------------------
5 max_pooling1d_1 (MaxPooling1D) (None, 58, 12) 0
6 -------------------------------------------------------------------------------
7 conv1d_2 (Conv1D) (None, 54, 10) 610
8 -------------------------------------------------------------------------------
9 max_pooling1d_2 (MaxPooling1D) (None, 18, 10) 0
10 -------------------------------------------------------------------------------
11 conv1d_3 (Conv1D) (None, 14, 8) 408
12 -------------------------------------------------------------------------------
13 global_max_pooling1d_1 (GlobalMaxPool (None, 8) 0
14 -------------------------------------------------------------------------------
15 dropout_1 (Dropout) (None, 8) 0
16 -------------------------------------------------------------------------------
17 dense_1 (Dense) (None, 3) 27
18 ===============================================================================
19 Total params: 1,237
20 Trainable params: 1,237
21 Non-trainable params: 0

We choose the 744 trips of the learning data L to train this network to the
classification task, see Table 9.1. We use the multi-class cross-entropy loss function,
see (4.19), with 80% of the learning data L as training data U and the remaining
20% as validation data V to track over-fitting. We retrieve the network with the
smallest validation loss using a callback, we refer to Listing 7.3 for a callback.
Since the learning data is comparably small and to reduce randomness, we use the
nagging predictor averaging over 10 different network fits (using different seeds).
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Table 9.2 Out-of-sample
confusion matrix

True labels

Driver A Driver B Driver C

Predicted label A 39 10 2

Predicted label B 9 66 6

Predicted label C 4 2 50
% correctly allocated 75.0% 84.6% 86.2%

# of trips in test data 52 78 58

These fitted networks then provide us with a mapping

z(8:1) : RT ×3 → (0, 1)3, x 	→ z(8:1)(x) =
(
z
(8:1)
A (x), z

(8:1)
B (x), z

(8:1)
C (x)

)�
,

and for each trip xs ∈ R
T ×3 we receive the classification

Ŷs = argmax
y∈{A,B,C}

z(8:1)
y (xs).

Table 9.2 shows the out-of-sample results on the test data T . On average more than
80% of all trips are correctly allocated; a purely random allocation would provide
a success rate of 33%. This shows that this allocation problem can be solved rather
successfully and, indeed, the CN network architecture is able to learn structure in
the telematics trip data xs that allows one to discriminate car drivers. This sounds
very promising. In fact, the telematics car driving data seems to be very transparent
which, of course, also raises privacy issues. On the downside we should mention
that from this approach we cannot really see what the network has learned and how
it manages to distinguish the different trips.

There are several approaches that try to visualize what the network has learned
in the different layers by extracting the filter activations in the CN layers, others
try to invert the networks trying to backtrack which activations and weights mostly
contribute to a certain output, we mention, e.g., DeepLIFT of Shrikumar et al. [339].
For more analysis and references we refer to Sect. 4 of the tutorial Meier–Wüthrich
[269]. We do not further discuss this and close this example.

9.3.3 Lab: Mortality Surface Modeling

We revisit the mortality example of Sect. 8.4.2 where we used a LSTM architecture
to process the raw mortality data for forecasting, see Fig. 8.13. We are going to do
a (small) change to that architecture by simply replacing the LSTM encoder by a
CN network encoder. This approach has been promoted in the literature, e.g., by
Perla et al. [301], Schnürch–Korn [330] and Wang et al. [375]. A main difference
between these references is whether the mortality tensor is considered as a tensor
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of order 2 (reflecting time-series data) or of order 3 (reflecting the mortality surface
as an image). In the present example we are going to interpret the mortality tensor
as a monochrome image, and this requires that we extend (8.23) by an additional
channels component

xt−τ :t−1 = (xt−τ , . . . , xt−1)
�

= (
Mx,s

)
t−τ≤s≤t−1,x0≤x≤x1

∈ R
τ×(x1−x0+1)×1 = R

5×100×1,

for a lookback period of τ = 5. The LSTM cell encodes this tensor/matrix into a 20-
dimensional vector which is then concatenated with the embeddings of the country
code and the gender code (8.24). We use the same architecture here, only the LSTM
part is replaced by a CN network in (8.25), the corresponding code is given on lines
14–17 of Listing 9.5.

Listing 9.5 CN network architecture to directly process the raw mortality rates (Mx,t )x,t

1 Tensor = layer_input(shape=c(lookback,100,1), dtype=’float32’, name=’Tensor’)
2 Country = layer_input(shape=c(1), dtype=’int32’, name=’Country’)
3 Gender = layer_input(shape=c(1), dtype=’int32’, name=’Gender’)
4 Time = layer_input(shape=c(1), dtype=’float32’, name=’Time’)
5 #
6 CountryEmb = Country %>%
7 layer_embedding(input_dim=8,output_dim=1,input_length=1,name=’CountryEmb’) %>%
8 layer_flatten(name=’Country_flat’)
9 #
10 GenderEmb = Gender %>%
11 layer_embedding(input_dim=2,output_dim=1,input_length=1,name=’GenderEmb’) %>%
12 layer_flatten(name=’Gender_flat’)
13 #
14 CN = Tensor %>%
15 layer_conv_2d(filter = 10, kernel_size = c(5,5), activation = ’linear’) %>%
16 layer_max_pooling_2d(pool_size = c(1,8)) %>%
17 layer_flatten()
18 #
19 Output = list(CN,CountryEmb,GenderEmb) %>% layer_concatenate() %>%
20 layer_dense(units=100, activation=’linear’, name=’scalarproduct’) %>%
21 layer_reshape(c(1,100), name = ’Output’)
22 #
23 model = keras_model(inputs = list(Tensor, Country, Gender),
24 outputs = c(Output))

Line 15 maps the input tensor 5×100×1 to a tensor 1×96×10 having 10 filters, the
max-pooling layer reduces this tensor to 1 × 12 × 10, and the flatten layer encodes
this tensor into a 120-dimensional vector. This vector is then concatenated with the
embedding vectors of the country and the gender codes, and this provides us with
r = 12′570 network parameters, thus, the LSTM architecture and the CN network
architecture use roughly equally many network parameters that need to be fitted. We
then use the identical partition in training, validation and test data as in Sect. 8.4.2,
i.e., we use the data from 1950 to 2003 for fitting the network architecture, which is
then used to forecast the calendar years 2004 to 2018. The results are presented in
Table 9.3.
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Table 9.3 Comparison of the out-of-sample mean squared losses for the calendar years 2004 ≤
t ≤ 2018; the figures are in 10−4

Female Male

LC LSTM CN LC LSTM CN

Austria AUT 0.765 0.312 0.635 2.527 1.169 1.569

Belgium BE 0.371 0.311 0.290 2.835 0.960 1.100

Switzerland CH 0.654 0.478 0.772 1.609 1.134 2.035

Spain ESP 1.446 0.514 0.199 1.742 0.245 0.240
France FRA 0.175 1.684 0.309 0.333 0.363 0.770

Italy ITA 0.179 0.330 0.186 0.874 0.320 0.421

The Netherlands NL 0.426 0.315 0.266 1.978 0.601 0.606

Portugal POR 2.097 0.464 0.416 1.848 1.239 1.880

We observe that in our case the CN network architecture provides good results for
the female populations, whereas for the male populationswe rather prefer the LSTM
architecture. At the current stage we rather see this as a proof of concept, because
we have not really fine-tuned the network architectures, nor has the SGD fitting
been perfected, e.g., often bigger architectures are used in combination with drop-
outs, etc. We refrain from doing so, here, but refer to the relevant literature Perla
et al. [301], Schnürch–Korn [330] and Wang et al. [375] for a more sophisticated
fine-tuning.
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