
Chapter 8
Recurrent Neural Networks

Chapter 7 has discussed fully-connected feed-forward neural (FN) networks. Feed-
forward means that information is passed in a directed acyclic path from the input
layer to the output layer. A natural extension is to allow these networks to have
cycles. In that case, we call the architecture a recurrent neural (RN) network. A RN
network architecture is particularly useful for time-series modeling. The discussion
on time-series data also links to Sect. 5.8.1 on longitudinal and panel data. RN
networks have been introduced in the 1980s, and the two most popular RN network
architectures are the long short-term memory (LSTM) architecture proposed by
Hochreiter–Schmidhuber [188] and the gated recurrent unit (GRU) architecture
introduced by Cho et al. [76]. These two architectures will be described in detail
in this chapter.

8.1 Motivation for Recurrent Neural Networks

We start from a deep FN network providing the regression function, see (7.2)–(7.3),

x �→ μ(x) = g−1〈β, z(d :1)(x)〉, (8.1)

with a composition z(d :1) of d FN layers z(m), 1 ≤ m ≤ d , link function g and with
output parameter β ∈ R

qd+1. In principle, we could directly use this FN network
architecture for time-series forecasting. We explain here why this is not the best
option to deal with time-series data.

Assume we want to predict a random variable YT +1 at time T ≥ 0 based on the
time-series information x0, x1, . . . , xT . This information is assumed to be available
at time T for predicting the response YT +1. The past response information Yt , 1 ≤
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382 8 Recurrent Neural Networks

t ≤ T , is typically included in xt .1 Using the above FN network architecture we
could directly try to predict YT +1, based on this past information. Therefore, we
define the feature information x0:T = (x0, . . . , xT ) and we aim at designing a FN
network (8.1) for modeling

x0:T �→ μT (x0:T ) = E[YT +1|x0:T ] = E[YT +1|x0, . . . , xT ].

In principle we could work with such an approach, however, it has a couple
of severe drawbacks. Obviously, the length of the feature vector x0:T depends
on time T , that is, it will grow with every time step. Therefore, the regression
function (network architecture) x0:T �→ μT (x0:T ) is time-dependent. Consequently,
with this approach we have to fit a network for every T . This deficiency can be
circumvented if we assume a Markov property that does not require of carrying
forward the whole past history. Assume that it is sufficient to consider a history of
a certain length. Choose τ ≥ 0 fixed, then, for T ≥ τ , we can set for the feature
information xT −τ :T = (xT −τ , . . . , xT ), which has a fixed length τ + 1 ≥ 1, now.
In this situation we could try to design a FN network

xT −τ :T �→ μ(xT −τ :T ) = E[YT +1|xT −τ :T ] = E[YT +1|xT −τ , . . . , xT ].

This network regression function can be chosen independent of T since the relevant
history xT −τ :T always has the same length τ +1. The time variable T could be used
as a feature component in xT −τ :T . The disadvantage of this approach is that such
a FN network architecture does not respect the temporal causality. Observe that we
feed the past history into the first FN layer

xT −τ :T �→ z(1)(xT −τ :T ) ∈ {1} × R
q1 .

This operation typically does not respect any topology in the time index of
xT −τ+1:T . Thus, the FN network does not recognize that the feature xt−1 has been
experienced just before the next feature xt . For this reason we are looking for a
network architecture that can handle the time-series information in a temporal causal
way.

1 More mathematically speaking, we assume to have a filtration (At )t≥0 on the probability space
(�,A,P). The basic assumption then is that both sequences (xt )t and (Yt )t are (At )t -adapted, and
we aim at predicting YT +1, based on the information AT . In the above case this information AT is
generated by x0, x1, . . . , xT , where xt typically includes the observation Yt . We could also shift
the time index in x t by one time unit, and in that case we would assume that (x t )t is previsible
w.r.t. the filtration (At )t . We do not consider this shift in time index as it only makes the notation
unnecessarily more complicated, but the results remain the same by including the information
correspondingly into the features.
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8.2 Plain-Vanilla Recurrent Neural Network

8.2.1 Recurrent Neural Network Layer

We explain the basic idea of RN networks in a shallow network architecture, and
deep network architectures will be discussed in Sect. 8.2.2, below. We start from the
time-series input variable x0:T = (x0, . . . , xT ), all components having the same
structure xt ∈ X ⊂ {1} × R

q0 , 0 ≤ t ≤ T . The aim is to design a network
architecture that allows us to predict the random variable YT +1, based on this time-
series information x0:T .

The main idea is to feed one component xt of the time-series x0:T at a time into
the network, and at the same time we use the output zt−1 of the previous loop as
an input for the next loop. This variable zt−1 carries forward a memory of the past
variables x0:t−1. We explain this with a single RN layer having q1 ∈ N neurons. A
RN layer is given (recursively) by a mapping, t ≥ 1,

z(1) : {1} × R
q0 × R

q1 → R
q1, (8.2)

(xt , zt−1) �→ zt = z(1) (xt , zt−1) ,

where the RN layer z(1) has the same structure as the FN layer given in (7.5), but
based on feature input (xt , zt−1) ∈ X × R

q1 ⊂ {1} ×R
q0 × R

q1 , and not including
an intercept component {1} in the output.

More formally, a RN layer with activation function φ is a mapping

z(1) : {1} × R
q0 × R

q1 → R
q1 (8.3)

(x, z) �→ z(1)(x, z) =
(
z
(1)
1 (x, z), . . . , z(1)

q1
(x, z)

)

,

having neurons, 1 ≤ j ≤ q1,

z
(1)
j (x, z) = φ

(〈
w

(1)
j , x

〉
+

〈
u

(1)
j , z

〉)
, (8.4)

for given network weights w
(1)
j ∈ R

q0+1 and u
(1)
j ∈ R

q1 .

Thus, the FN layers (7.5)–(7.6) and the RN layers (8.3)–(8.4) are structurally
equivalent, only the input x ∈ X is adapted to the time-series structure (xt , zt−1) ∈
X × R

q1 . Before giving more interpretation and before explaining how this single
RN network structure can be extended to a deep RN network we illustrate this RN
layer.
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Fig. 8.1 RN layer z(1) processing the input (xt , zt−1)
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Fig. 8.2 Unfolded representation of RN layer z(1) processing the input (xt , zt−1)

Figure 8.1 shows an RN layer z(1) processing the input (xt , zt−1), see (8.2). From
this graph, the recurrent structure becomes clear since we have a loop (cycle) feeding
the output zt back into the RN layer to process the next input (xt+1, zt ).
Often one depicts the RN architecture in a so-called unfolded way. This is done
in Fig. 8.2. Instead of plotting the loop (cycle) as in Fig. 8.1 (orange arrow in the
colored version), we unfold this loop by plotting the RN layer multiple times. Note
that this RN layer in Fig. 8.2 uses always the same network weights w

(1)
j and u

(1)
j ,

1 ≤ j ≤ q1, for all t . Moreover, the use of the colors of the arrows (in the colored
version) in the two figures coincides.

Remarks 8.1

• The neurons of the RN layer (8.4) have the following structure

z
(1)
j (x, z) = φ

(
〈w(1)

j , x〉 + 〈u(1)
j , z〉

)
= φ

(
w

(1)
0,j +

q0∑
l=1

w
(1)
l,j xl +

q1∑
l=1

u
(1)
l,j zl

)
.
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The network weights W(1) = (w
(1)
j )1≤j≤q1 ∈ R

(q0+1)×q1 include an intercept

component w
(1)
0,j and the network weights U(1) = (u

(1)
j )1≤j≤q1 ∈ R

q1×q1 do not
include an intercept component, otherwise we would have a redundancy.

• The RN network architecture generates a new process (zt )t . This process encodes
the part of the past history (x0:t )t which is relevant for forecasting the next step.
Thus, (zt )t can be interpreted as a (latent) memory process, or as the process of
learned (relevant) time-series representation giving us zt = zt (x0:t ).

• The same activation function φ and the same network weights (w
(1)
j )1≤j≤q1 and

(u
(1)
j )1≤j≤q1 are shared across all time periods t ≥ 0. This means that we assume

a stationary (stochastic) process.
• The upper index (1) indicates the fact that this is the first (and single) RN layer

in this example. In this sense, Figs. 8.1 and 8.2 show a shallow RN network. In
the next section we are going to discuss deep RN networks, and below we are
also going to discuss how the output is modeled, i.e., how the response YT +1 is
predicted based on the pre-processed features (zt )0≤t≤T ∈ R

q1×(T +1).

8.2.2 Deep Recurrent Neural Network Architectures

There are many different ways of extending a shallow RN network to a deep RN
network. Assume we want to model a RN network of depth d ≥ 2. A first (obvious)
way of receiving a deep RN network architecture is

z
[1]
t = z(1)

(
xt , z

[1]
t−1

)
∈ R

q1, (8.5)

z
[m]
t = z(m)

(
z
[m−1]
t , z

[m]
t−1

)
∈ R

qm for 2 ≤ m ≤ d , (8.6)

where all RN layers z(m), 1 ≤ m ≤ d , are of type (8.3)–(8.4), and additionally we
include an intercept component in the RN layers z(m), 2 ≤ m ≤ d . We add the
upper indices (in square brackets [·]) to the time-series (z

[m]
t )t to indicate which

RN layer outputs these learned representations (memory processes). In fact, we
could also write z

[m:1]
t instead of z

[m]
t , because in z

[m:1]
t the feature input x0:t has

been processed through m RN layers z(1), . . . , z(m). For simplicity, we just use the
notation z

[m]
t = z

[m]
t (x0:t ).
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We are going to use the following abbreviation for a RN layer m ≥ 1

z
[m]
t = z(m)

(
z
[m−1]
t , z

[m]
t−1

)
= φ

(〈
W(m), z

[m−1]
t

〉
+

〈
U(m), z

[m]
t−1

〉)
∈ R

qm,

(8.7)
where the weights W(m) = (w

(m)
1 , . . . ,w

(m)
qm

) ∈ R
(qm−1+1)×qm include the

intercept components, and the weights U(m) = (u
(m)
1 , . . . ,u

(m)
qm ) ∈ R

qm×qm

do not include any intercept components. The scalar product is understood
column-wise in the weight matrices W(m) and U(m), and the activation φ is
understood component-wise. Moreover, we initialize for the input z

[0]
t = xt .
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Fig. 8.3 Unfolded representation of a RN network architecture of depth d = 2

Figure 8.3 shows the RN network architecture of depth d = 2 defined in (8.5)–(8.6).
The dimension of the input z

[0]
t = xt ∈ X ⊆ {1} × R

q0 is q0 + 1, the first RN layer
has q1 neurons and the second RN layer q2 neurons. From this graph it becomes
clear how a RN network architecture of any depth d ∈ N can be constructed
(recursively).

Remark 8.2 There are many alternative ways in building deep RN networks. E.g.,
we can add a loop that connects the output of the second RN layer back to the first
one

z
[1]
t = z(1)

(
xt , z

[1]
t−1, z

[2]
t−1

)
,

z
[2]
t = z(2)

(
z
[1]
t , z

[2]
t−1

)
,
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or we can add a skip connection from the input variable xt to the second RN layer

z
[1]
t = z(1)

(
xt , z

[1]
t−1

)
,

z
[2]
t = z(2)

(
xt , z

[1]
t , z

[2]
t−1

)
.

We refrain from explicitly studying such RN network variants any further.

8.2.3 Designing the Network Output

There remains to explain how to predict the response variable YT +1 based on
the pre-processed features (memory processes) z

[1]
T , . . . , z

[d]
T , outputted by the RN

network of depth d ≥ 1. Typically, only the final output of the last RN layer
z
[d]
T = z

[d]
T (x0:T ) ∈ R

qd is considered to predict the response YT +1. We take this
output and feed it into a FN network z̄(D:1) : {1} × R

qd → {1} × R
q̄D of depth

D ∈ N and with FN layers z̄(m), 1 ≤ m ≤ D, given by (7.5). Moreover, we choose
a strictly monotone and smooth link function g.

This then provides us with the regression function, see (7.7)–(7.8),

x0:T �→ E[YT +1|x0:T ] = μ(x0:T ) = g−1
〈
β, z̄(D:1)

(
z
[d]
T (x0:T )

)〉
. (8.8)

Thus, we first process the time-series features x0:T through a RN network
to receive the learned representation z

[d]
T (x0:T ) ∈ R

qd at time T . This learned
representation is then used as a feature input to a FN network z̄(D:1) that allows
us to predict the response YT +1. This is illustrated in Fig. 8.4 for depth d = 1.

Remarks 8.3

• From the graph in Fig. 8.4 it also becomes apparent that we can consider different
insurance policies 1 ≤ i ≤ n having different lengths of the corresponding his-
tories xi,T −τi :T ∈ R

(q0+1)×(τi+1), τi ∈ {0, . . . , T }. The stationarity assumption
allows us to enter the network in Fig. 8.4 at any time T − τi . The RN network
encodes this history into a learned feature z

[1]
T (xi,T −τi :T ) which is then decoded

by the FN network z̄(D:1) to forecast Yi,T +1.
• If there is additional insurance policy dependent feature information x̃i that

is not of a time-series structure, we can concatenate the feature information
(z

[d]
T (xi,0:T ), x̃i ) which then enters the FN network (8.8).
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Fig. 8.4 Forecasting the response YT +1 using a RN network (8.8) based on a single RN layer
d = 1 and on a FN network of depth D

There remains to fit this network architecture having d RN layers and D FN
layers to the available data. The RN layers involve the network weights W(m) ∈
R

(qm−1+1)×qm and U(m) ∈ R
qm×qm , for 1 ≤ m ≤ d , and the FN layers involve the

network weights (w̄
(m)
j )1≤j≤q̄m ∈ R

(q̄m−1+1)×q̄m , for 1 ≤ m ≤ D, and with q̄0 = qd .

Moreover, we have an output parameter β ∈ R
q̄D+1. The fitting is again done by a

gradient descent algorithm minimizing the corresponding objective function.
Assume we have independent (in i) data (Yi,T +1, x i,0:T , vi,T +1) of the cases 1 ≤

i ≤ n. We then assume that the responses Yi,T +1 can be modeled by a fixed member
of the EDF having unit deviance d. We consider the deviance loss function, see (4.9),

ϑ �→ D(Y T +1,ϑ) = 1

n

n∑
i=1

vi,T +1

ϕ
d
(
Yi,T +1, μϑ (xi,0:T )

)
, (8.9)

for the observations Y T +1 = (Y1,T +1, . . . , Yn,T +1)

, and where ϑ collects all the

RN and FN network weights/parameters of the regression function (8.8). This model
can now be fitted using a variant of the gradient descent algorithm. The variant
uses back-propagation through time (BPTT) which is an adaption of the back-
propagation method to calculate the gradient w.r.t. the network parameter ϑ .

8.2.4 Time-Distributed Layer

There is a special feature in RN network modeling which is called a time-distributed
layer. Observe from Fig. 8.4 that the deviance loss function (8.9) only focuses on the
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final observation Yi,T +1. However, the stationarity assumption allows us to output
and study any (previous) observation Yi,t+1, 0 ≤ t ≤ T . A time-distributed layer
considers applying the deep FN network (8.8) simultaneously at all time points 0 ≤
t ≤ T ; simultaneously meaning that we use the same FN network weights for all t .
The latter is justified under the assumption of having stationarity.

This then provides us with the regressions

x0:t �→ E[Yt+1|x0:t ] = μ(x0:t ) = g−1
〈
β, z̄(D:1)

(
z
[d]
t (x0:t )

)〉
for all t ≥ 0. (8.10)

Figure 8.5 illustrates a time-distributed output where we predict (Yt+1)t based on
the history (x0:t )t , and we always apply the same FN network z̄(D:1) to the memory
z
[1]
t = z

[1]
t (x0:t ).

A time-distributed layer changes the fitting procedure. Instead of considering
the objective function (8.9) for the final observation Yi,T +1, we now include all
observations Y = (Yi,t+1)0≤t≤T ,1≤i≤n into the objective function. This results in
studying the deviance loss function

ϑ �→ D(Y ,ϑ) = 1

n

n∑
i=1

1

T + 1

T∑
t=0

vi,t+1

ϕ
d
(
Yi,t+1, μϑ (xi,0:t )

)
. (8.11)
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Fig. 8.5 Forecasting (Yt+1)t using a RN network (8.10) based on a single RN layer d = 1 and
using a time-distributed FN layer for the outputs
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Note that this can easily be adapted if the different cases 1 ≤ i ≤ n have different
lengths in their histories. An example is provided in Listing 10.8, below.

8.3 Special Recurrent Neural Networks

In the plain-vanilla RN networks introduced above we have defined the memory
processes (z

[m]
t )t≥0, 1 ≤ m ≤ d , which encode the information history (xt )t≥0

through different RN layers in a temporal causal way. This is naturally done through
the use of a time-series structure as illustrated, e.g., in Fig. 8.5. There are more
specific RN network architectures that allow the memory processes to be of a long
memory or a short memory type. In this section, we present the two most popular
architectures that pay a special attention to the memory storage. This is the long
short-term memory (LSTM) architecture introduced by Hochreiter–Schmidhuber
[188] and the gated recurrent unit (GRU) architecture proposed by Cho et al. [76].

8.3.1 Long Short-Term Memory Network

The LSTM network of Hochreiter–Schmidhuber [188] is the most commonly used
RN network architecture. The LSTM network uses simultaneously three different
activation functions for different purposes, the sigmoid and hyperbolic tangent
activation functions, respectively,

φσ (x) = 1

1 + e−x
∈ (0, 1) and φtanh(x) = ex − e−x

ex + e−x
∈ (−1, 1),

and a general activation function φ : R → R, see also Table 7.1.
The LSTM network relies on several RN layers that are of the same structure

as the plain-vanilla RN layer given in (8.7). We start by defining three different so-
called gates that all have the RN layer structure (8.7). These three gates are used
to model the memory cell of the LSTM network. Choose a layer index m ≥ 1 and
assume that z

[m−1]
t is modeled by the previous layer m − 1; for m = 1 we initialize

z
[0]
t = xt . The three gates are then defined as follows, set t ≥ 1:

• The forget gate models the loss of memory rate

f
[m]
t = f (m)

(
z
[m−1]
t , z

[m]
t−1

)
= φf

σ

(〈
W

(m)
f , z

[m−1]
t

〉
+

〈
U

(m)
f , z

[m]
t−1

〉)
∈ (0, 1)qm,

with the network weights W
(m)
f ∈ R

(qm−1+1)×qm and U
(m)
f ∈ R

qm×qm , and with

the sigmoid activation function φ
f
σ = φσ , we also refer to (8.7).
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• The input gate models the memory update rate

i
[m]
t = i(m)

(
z
[m−1]
t , z

[m]
t−1

)
= φi

σ

(〈
W

(m)
i , z

[m−1]
t

〉
+

〈
U

(m)
i , z

[m]
t−1

〉)
∈ (0, 1)qm,

with the network weights W
(m)
i ∈ R

(qm−1+1)×qm and U
(m)
i ∈ R

qm×qm , and with
the sigmoid activation function φi

σ = φσ .
• The output gate models the release of memory information rate

o
[m]
t = o(m)

(
z
[m−1]
t , z

[m]
t−1

)
= φo

σ

(〈
W(m)

o , z
[m−1]
t

〉
+

〈
U(m)

o , z
[m]
t−1

〉)
∈ (0, 1)qm,

(8.12)

with the network weights W
(m)
o ∈ R

(qm−1+1)×qm and U
(m)
o ∈ R

qm×qm , and with
the sigmoid activation function φo

σ = φσ .

These gates have outputs in (0, 1), and they determine the relative amount of
memory that is updated and released in each step. The so-called cell state process
(c

[m]
t )t is used to store the relevant memory. Given z

[m−1]
t , z

[m]
t−1 and c

[m]
t−1, the

updated cell state is defined by

c
[m]
t = c(m)

(
z
[m−1]
t , z

[m]
t−1, c

[m]
t−1

)
(8.13)

= f
[m]
t � c

[m]
t−1 + i

[m]
t � φtanh

(〈
W(m)

c , z
[m−1]
t

〉
+

〈
U(m)

c , z
[m]
t−1

〉)
∈ R

qm,

with the network weights W
(m)
c ∈ R

(qm−1+1)×qm and U
(m)
c ∈ R

qm×qm , and �
denotes the Hadamard product. This defines how the memory (cell state) is updated
and passed forward using the forget and the input gates f

[m]
t and i

[m]
t , respectively.

The neuron activations z
[m]
t are updated, given z

[m−1]
t , z

[m]
t−1 and c

[m]
t , by

z
[m]
t = z(m)

(
z
[m−1]
t , z

[m]
t−1, c

[m]
t

)
= o

[m]
t � φ

(
c
[m]
t

)
∈ R

qm, (8.14)

with the cell state c
[m]
t given in (8.13) and the output gate o

[m]
t defined in (8.12).

Figure 8.62 shows a LSTM cell (8.13)–(8.14) which includes four RN layers (8.7)
for the forget gate f (m), the input gate i(m), the output gate o(m) and in the cell
state update (8.13). These RN layers are combined using the Hadamard product �
resulting in the updated cell state c

[m]
t and the learned representation z

[m]
t both being

functions of the inputs x0:t .

2 This figure is based on colah’s blog explaining LSTMs https://colah.github.io/posts/2015-08-
Understanding-LSTMs/.
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Fig. 8.6 LSTM cell z(m) with forget gate φ
f
σ , input gate φi

σ and output gate φo
σ

Below, we are going to summarize the LSTM cell update (8.13)–(8.14) as
follows

(
z
[m−1]
t , z

[m]
t−1, c

[m]
t−1

)
�→

(
z
[m]
t , c

[m]
t

)
= zLSTM(m)

(
z
[m−1]
t , z

[m]
t−1, c

[m]
t−1

)
.

(8.15)

The update (8.15) involves the eight network weight matrices W
(m)
f ,W

(m)
i ,W

(m)
o ,

W
(m)
c ∈ R

(qm−1+1)×qm and U
(m)
f , U

(m)
i , U

(m)
o , U

(m)
c ∈ R

qm×qm . Altogether we have
4(qm−1 + 1 + qm)qm network parameters in each LSTM cell 1 ≤ m ≤ d . These
are learned with the gradient descent method. Moreover, we need to initialize the
LSTM cell update (8.15). From the previous layer m − 1 we have the input z

[m−1]
t

which we initialize as z
[0]
t = xt for m = 1 and t ≥ 0. The initial states z

[m]
0 and

c
[m]
0 are usually set to zero.

8.3.2 Gated Recurrent Unit Network

The LSTM architecture of the previous section seems quite complex and involves
many parameters. Cho et al. [76] have introduced the GRU architecture that is
simpler and uses less parameters, but has similar properties. The GRU architecture
uses two gates that are defined as follows for t ≥ 1, see also (8.7):
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• The reset gate models the memory reset rate

r
[m]
t = r (m)

(
z
[m−1]
t , z

[m]
t−1

)
= φr

σ

(〈
W(m)

r , z
[m−1]
t

〉
+

〈
U(m)

r , z
[m]
t−1

〉)
∈ (0, 1)qm,

with the network weights W
(m)
r ∈ R

(qm−1+1)×qm and U
(m)
r ∈ R

qm×qm , and with
the sigmoid activation function φr

σ = φσ .
• The update gate models the memory update rate

u
[m]
t = u(m)

(
z
[m−1]
t , z

[m]
t−1

)
= φu

σ

(〈
W(m)

u , z
[m−1]
t

〉
+

〈
U(m)

u , z
[m]
t−1

〉)
∈ (0, 1)qm,

with the network weights W
(m)
u ∈ R

(qm−1+1)×qm and U
(m)
u ∈ R

qm×qm , and with
the sigmoid activation function φu

σ = φσ .

The neuron activations z
[m]
t are updated, given z

[m−1]
t and z

[m]
t−1, by

z
[m]
t = z(m)

(
z
[m−1]
t , z

[m]
t−1

)
(8.16)

= r
[m]
t � z

[m]
t−1 + (1 − r

[m]
t ) � φ

(
〈W(m), z

[m−1]
t 〉 + u

[m]
t � 〈U(m), z

[m]
t−1〉

)
∈ R

qm,

with the network weights W(m) ∈ R
(qm−1+1)×qm and U(m) ∈ R

qm×qm , and for a
general activation function φ.
The GRU and the LSTM architectures are similar, the former using less parameters
because we do not explicitly model the cell state process. For an illustration of a
GRU cell we refer to Fig. 8.7. In the sequel we focus on the LSTM architecture;

Fig. 8.7 GRU cell z(m) with reset gate φr
σ and update gate φu

σ
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though the GRU architecture is simpler and has less parameters, it is less robust in
fitting.

8.4 Lab: Mortality Forecasting with RN Networks

8.4.1 Lee–Carter Model, Revisited

The mortality data has a natural time-series structure, and for this reason mortality
forecasting is an obvious problem that can be studied within RN networks. For
instance, the LC mortality model (7.63) involves a stochastic process (kt )t that
needs to be extrapolated into the future. This extrapolation problem can be done
in different ways. The original proposal of Lee and Carter [238] has been to analyze
ARIMA time-series models, and to use standard statistical tools, Lee and Carter
found that the random walk with drift gives a good stochastic description of the
time index process (kt)t . Nigri et al. [286] proposed to fit a LSTM network to
this stochastic process, this approach is also studied in Lindholm–Palmborg [252]
where an efficient use of the mortality data for network fitting is discussed. These
approaches still rely on the classical LC calibration using the SVD of Sect. 7.5.4,
and the LSTM network is (only) used to extrapolate the LC time index process (kt )t .

More generally, one can design a RN network architecture that directly processes
the raw mortality data Mx,t = Dx,t/ex,t , not specifically relying on the LC structure.
This has been done in Richman–Wüthrich [316] using a FN network architecture, in
Perla et al. [301] using a RN network and a convolutional neural (CN) network
architecture, and in Schürch–Korn [330] extending this analysis to the study of
prediction uncertainty using bootstrapping. A similar CN network approach has
been taken by Wang et al. [375] interpreting the raw mortality data of Fig. 7.32
as an image.

Lee–Carter Mortality Model: RandomWalk with Drift Extrapolation

We revisit the LC mortality model [238] presented in Sect. 7.5.4. The LC log-
mortality rate is assumed to have the following structure, see (7.63),

log(μ
(p)
x,t ) = a

(p)
x + b

(p)
x k

(p)
t ,

for the ages x0 ≤ x ≤ x1 and for the calendar years t ∈ T . We now add the upper
indices (p) to consider different populations p. The SVD gives us the estimates â

(p)
x ,

k̂
(p)
t and b̂

(p)
x based on the observed centered raw log-mortality rates, see Sect. 7.5.4.

The SVD is applied to each population p separately, i.e., there is no interaction
between the different populations. This approach allows us to fit a separate log-
mortality surface estimate (log(μ̂

(p)
x,t ))x0≤x≤x1;t∈T to each population p. Figure 7.33
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shows an example for two populations p, namely, for Swiss females and for Swiss
males.

The mortality forecasting requires to extrapolate the time index processes
(̂k

(p)
t )t∈T beyond the latest observed calendar year t1 = max{T }. As mentioned in

Lee–Carter [238] a random walk with drift provides a suitable model for modeling
(̂k

(p)
t )t≥0 for many populations p, see Fig. 7.35 for the Swiss population. Assume

that

k̂
(p)

t+1 = k̂
(p)
t + ε

(p)

t+1 t ≥ 0, (8.17)

with ε
(p)
t

i.i.d.∼ N (δp, σ 2
p), t ≥ 1, having drift δp ∈ R and variance σ 2

p > 0.
Model assumption (8.17) allows us to estimate the (constant) drift δp with MLE.

For observations (̂k
(p)
t )t∈T we receive the log-likelihood function

δp �→ 	
(̂k

(p)
t )t∈T

(δp) =
t1∑

t=t0+1

− log(
√

2πσp) − 1

2σ 2
p

(
k̂
(p)
t − k̂

(p)
t−1 − δp

)2
,

with first observed calendar year t0 = min{T }. The MLE is given by

δ̂MLE
p = k̂

(p)
t1

− k̂
(p)
t0

t1 − t0
. (8.18)

This allows us to forecast the time index process for t > t1 by

k̂
(p)
t = k̂

(p)
t1

+ (t − t1)̂δ
MLE
p .

We explore this extrapolation for different Western European countries from the
HMD [195]. We consider separately females and males of the countries {AUT, BE,
CH, ESP, FRA, ITA, NL, POR}, thus, we choose 2 · 8 = 16 different populations
p. For these countries we have observations for the ages 0 = x0 ≤ x ≤ x1 = 99
and for the calendar years 1950 ≤ t ≤ 2018.3 For the following analysis we choose
T = {t0 ≤ t ≤ t1} = {1950 ≤ t ≤ 2003}, thus, we fit the models on 54 years
of mortality history. This fitted models are then extrapolated to the calendar years
2004 ≤ t ≤ 2018. These 15 calendar years from 2004 to 2018 allow us to perform
an out-of-sample evaluation because we have the observations M

(p)
x,t = D

(p)
x,t /e

(p)
x,t

for these years from the HMD [195].
Figure 8.8 shows the estimated time index process (̂k

(p)
t )t∈T to the left of the

dotted lines, and to the right of the dotted lines we have the random walk with
drift extrapolation (̂k

(p)
t )t>t1 . The general observation is that, indeed, the random

walk with drift seems to be a suitable model for (̂k
(p)
t )t . Moreover, there is a huge

3 We exclude Germany from this consideration of (continental) Western European countries
because the German mortality history is shorter due to the reunification in 1990.
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Fig. 8.8 Random walk with drift extrapolation of the time index process (̂kt )t for different
countries and genders; the y-scale is the same in both plots

similarity between the different countries, only with the Netherlands (NL) being
somewhat an outlier.

Remarks 8.4

• For Fig. 8.8 we did not explore any fine-tuning, for instance, the estimation of
the drift δp is very sensitive in the selection of the time span T . ESP has the
biggest negative drift estimate, but this is partially caused by the corresponding
observations in the calendar years between 1950 and 1960, see Fig. 8.8, which
may no longer be relevant for a decline in mortality in the new millennium.

• For all countries, the females have a bigger negative drift than the males (the
y-scale in both plots is the same). Moreover, note that we use the normalization∑x1

x=x0
b̂

(p)
x = 1 and

∑
t∈T k̂

(p)
t = 0, see (7.65). This normalization is discussed

and questioned in many publications as the extrapolation becomes dependent on
these choices; see De Jong et al. [90] and the references therein, who propose
different identification schemes.

• Another issue is an age coherence in forecasting, meaning that for long term
forecasts the mortality rates across the different ages should not diverge, see Li
et al. [250], Li–Lu [248] and Gao–Shi [153] and the references therein.

• There are many modifications and extensions of the LC model, we just mention
a few of them. Brouhns et al. [56] embed the LC model into a Poisson modeling
framework which provides a proper stochastic model for mortality modeling.
Renshaw–Haberman [308] extend the one-factor LC model to a multifactor
model, and in Renshaw–Haberman [309] a cohort effect is added. Hyndman–
Ullah [197] and Hainaut–Denuit [179] explore a functional data method and a
wavelet-based decomposition, respectively. The static PCA can be adopted to
a dynamic PCA version, see Shang [333], and a long memory behavior in the
time-series is studied in Yan et al. [395].
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• The LC model is fitted to each population p separately, without exploring
any common structure across the populations. There are many multi-population
extensions that try to learn common structure across different populations. We
mention the common age effect (CAE) model of Kleinow [218], the augmented
common factor (ACF) model of Li–Lee [249] and the functional time-series
models of Hyndman et al. [196] and Shang–Haberman [334]. A direct multi-
population extension of the SVD matrix decomposition of the LC model is
obtained by the tensor decomposition approaches of Russolillo et al. [325] and
Dong et al. [110].

Lee–Carter Mortality Model: LSTM Extrapolation

Our aim here is to replace the individual random walk with drift extrapola-
tions (8.17) by a common extrapolation across all considered populations p. For
this we design a LSTM architecture. A second observation is that the increments
ε
(p)
t = k̂

(p)
t − k̂

(p)

t−1 have an average empirical auto-correlation (for lag 1) of −0.33.
This clearly questions the Gaussian i.i.d. assumption in (8.17).

We first discuss the available data and we construct the input data. We have
the time-series observations (̂k

(p)
t )t∈T , and the population index p = (c, g) has

two categorical labels c for country and g for gender. We are going to use two-
dimensional embedding layers for these two categorical variables, see (7.31) for
embedding layers. The time-series observations (̂k

(p)
t )t∈T will be pre-processed

such that we do not simultaneously feed the entire time-series into the LSTM layer,
but we divide them into shorter time-series. We will directly forecast the increments
ε
(p)
t = k̂

(p)
t − k̂

(p)

t−1 and not the time index process (̂k
(p)
t )t≥t0; in extrapolations with

drift it is easier to forecast the increments with the networks. We choose a lookback
period of τ = 3 calendar years, and we aim at predicting the response Yt = ε

(p)
t

based on the time-series features xt−τ :t−1 = (ε
(p)
t−τ , . . . , ε

(p)
t−1)


 ∈ R
τ . This provides

us with the following data structure for each population p = (c, g):

year country gender feature xt−τ :t−1 Yt

t0 + τ + 1 c g ε
(p)

t0+1 · · · ε
(p)
t0+τ ε

(p)

t0+τ+1
...

...
...

...
...

...

t c g ε
(p)
t−τ · · · ε

(p)
t−1 ε

(p)
t

...
...

...
...

...
...

t1 c g ε
(p)
t1−τ · · · ε

(p)

t1−1 ε
(p)
t1

(8.19)

Thus, each observation Yt = ε
(p)
t is equipped with the feature information

(t, c, g, xt−τ :t−1). As discussed in Lindholm–Palmborg [252], one should highlight
that there is a dependence across t , since we have a diagonal cohort structure in the
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features and the observations (xt−τ :t−1, Yt ). Usually, this dependence is not harmful
in stochastic gradient descent fitting.

Listing 8.1 LSTM architecture example

1 TS = layer_input(shape=c(lookback,1), dtype=’float32’, name=’TS’)
2 Country = layer_input(shape=c(1), dtype=’int32’, name=’Country’)
3 Gender = layer_input(shape=c(1), dtype=’int32’, name=’Gender’)
4 Time = layer_input(shape=c(1), dtype=’float32’, name=’Time’)
5 #
6 CountryEmb = Country %>%
7 layer_embedding(input_dim=8,output_dim=2,input_length=1,name=’CountryEmb’) %>%
8 layer_flatten(name=’Country_flat’)
9 #

10 GenderEmb = Gender %>%
11 layer_embedding(input_dim=2,output_dim=2,input_length=1,name=’GenderEmb’) %>%
12 layer_flatten(name=’Gender_flat’)
13 #
14 LSTM = TS %>%
15 layer_lstm(units=15,activation=’tanh’,recurrent_activation=’sigmoid’,
16 name=’LSTM’)
17 #
18 Output = list(LSTM,CountryEmb,GenderEmb,Time) %>% layer_concatenate() %>%
19 layer_dense(units=10, activation=’tanh’, name=’FNLayer’) %>%
20 layer_dense(units=1, activation=’linear’, name=’Network’)
21 #
22 model = keras_model(inputs = list(TS, Country, Gender, Time),
23 outputs = c(Output))

In Fig. 8.9 we plot the LSTM architecture used to forecast ε
(p)
t for t > t1, and

Listing 8.1 gives the corresponding R code. We process the time-series xt−τ :t−1
through a LSTM cell, see lines 14–16 of Listing 8.1. We choose a shallow LSTM
network (d = 1) and therefore drop the upper index m = 1 in (8.15), but we add
an upper index [LSTM] to highlight the output of the LSTM cell. This gives us the

input
xt−τ :t−1

LSTM cell
depth d = 1

concatenation
into a shallow

FN layer

output
̂Yt

country
c

embedding
layer

gender
g

embedding
layer

year
t

Fig. 8.9 LSTM architecture used to forecast ε
(p)
t for t > t1
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LSTM cell updates for t − τ ≤ s ≤ t − 1

(
xs, z

[LSTM]
s−1 , cs−1

)
�→

(
z[LSTM]
s , cs

)
= zLSTM

(
xs , z

[LSTM]
s−1 , cs−1

)
.

This LSTM recursion to process the time-series xt−τ :t−1 gives us the LSTM output
z
[LSTM]
t−1 ∈ R

q1 , and it involves 4(q0 + 1 + q1)q1 = 4(2 + 15)15 = 1′020 network
parameters for the input dimension q0 = 1 and the output dimension q1 = 15.

For the categorical country code c and the binary gender g we choose two-
dimensional embedding layers, see (7.31),

c �→ eC(c) ∈ R
2 and g �→ eG(g) ∈ R

2,

these embedding maps give us 2(8 + 2) = 20 embedding weights. Finally, we
concatenate the LSTM output z

[LSTM]
t−1 ∈ R

15, the embeddings eC(c), eG(g) ∈ R
2

and the continuous calendar year variable t ∈ R and process this vector through a
shallow FN network with q2 = 10 neurons, see lines 18–20 of Listing 8.1. This FN
layer gives us (q1 + 2 + 2 + 1 + 1)q2 = (15 + 2 + 2 + 1 + 1)10 = 210 parameters.
Together with the output parameter of dimension q2 + 1 = 11, we receive 1’261
network parameters to be fitted, which seems quite a lot.

To fit this model we have 8 · 2 = 16 populations, and for each population we
have the observations k̂

(p)
t for the calendar years 1950 ≤ t ≤ 2003. Considering

the increments ε
(p)
t and a lookback period of τ = 3 calendar years gives us 2003 −

1950 − τ = 50 observations, rows in (8.19), per population p, thus, we have in total
800 observations. For the gradient descent fitting and the early stopping we choose a
training to validation split of 8 : 2. As loss function we choose the squared error loss
function. This implicitly implies that we assume that the increments Yt = ε

(p)
t are

Gaussian distributed, or in other words, minimizing the squared error loss function
means maximizing the Gaussian log-likelihood function. We then fit this model to
the data using early stopping as described in (7.27). We analyze this fitted model.
Figure 8.10 provides the learned embeddings for the country codes c. These learned
embeddings have some similarity with the European map.
The final step is the extrapolation k̂t , t > t1. These updates need to be done
recursively. We initialize for t = t1 + 1 the time-series feature

xt1+1−τ :t1 = (ε
(p)
t1+1−τ , . . . , ε

(p)
t1

)
 ∈ R
τ . (8.20)

Using the feature information (t1 + 1, c, g, xt1+1−τ :t1) allows us to forecast the next

increment Yt1+1 = ε
(p)

t1+1 by Ŷt1+1, using the fitted LSTM architecture of Fig. 8.9.
Thus, this LSTM network allows us to perform a one-period-ahead forecast to
receive

k̂t1+1 = k̂t1 + Ŷt1+1. (8.21)
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Fig. 8.10 Learned country
embeddings for forecasting
(̂kt )t
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This update (8.21) needs to be iterated recursively. For the next period t = t1 + 2
we set for the time-series feature

xt1+2−τ :t1+1 = (ε
(p)
t1+2−τ , . . . , ε

(p)
t1

, Ŷt1+1)

 ∈ R

τ , (8.22)

which gives us the next predictions Ŷt1+2 and k̂t1+2, etc.

In Fig. 8.11 we present the extrapolation of (ε
(p)
t )t for Belgium females and males.

The blue curve shows the observed increments (ε
(p)
t )1951≤t≤2003 and the LSTM fit-

ted (in-sample) values (Ŷt )1954≤t≤2003 are in red color. Firstly, we observe a negative

correlation (zig-zag behavior) in both the blue observations (ε
(p)
t )1951≤t≤2003 and

in their red estimated means (Ŷt )1954≤t≤2003. Thus, the LSTM finds this negative
correlation (and it does not propose i.i.d. residuals). Secondly, the volatility in the
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Fig. 8.11 LSTM network extrapolation (Ŷt )t>t1 for Belgium (BE) females and males
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red curve is smaller than in the blue curve, the former relates to expected values and
the latter to observations of the random variables (which should be more volatile).
The light-blue color shows the random walk with drift extrapolation (which is just a
horizontal straight line at level δ̂MLE

p , see (8.18)). The orange color shows the LSTM
extrapolation using the recursive one-period-ahead updates (8.20)–(8.22), which has
a zig-zag behavior that vanishes over time. This vanishing behavior is critical and is
going to be discussed next.

There is one issue with this recursive one-period-ahead updating algorithm. This
updating algorithm is not fully consistent in how the data is being used. The original
LSTM architecture calibration is based on the feature components ε

(p)
t , see (8.20).

Since these increments are not known for the later periods t > t1, we replace
their unknown values by the predictors, see (8.22). The subtle point here is that
the predictors are on the level of expected values, and not on the level of random
variables. Thus, Ŷt is typically less volatile than ε

(p)
t , but in (8.22) we pretend

that we can use these predictors as a one-to-one replacement. A more consistent
way would be to simulate/bootstrap ε

(p)
t from N (Ŷt , σ

2) so that the extrapolation
receives the same volatility as the original process. For simplicity we refrain from
doing so, but Fig. 8.11 indicates that this would be a necessary step because the
volatility in the orange curve is going to vanish after the calendar year 2003, i.e., the
zig-zag behavior vanishes, which is clearly not appropriate.
The LSTM extrapolation of (̂kt )t is shown in Fig. 8.12. We observe quite some
similarity to the random walk with drift extrapolation in Fig. 8.8, and, indeed, the
random walk with drift seems to work very well (though the auto-correlation has not
been specified correctly). Note that Fig. 8.8 is based on the individual extrapolations
in p, whereas in Fig. 8.12 we have a common model for all populations.
Table 8.1 shows how often one model outperforms the other one (out-of-sample
on calendar years 2004 ≤ t ≤ 2018 and per gender). On the male populations of
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Fig. 8.12 LSTM network extrapolation of (̂kt )t for different countries and genders
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Table 8.1 Comparison of the out-of-sample mean squared error losses for the calendar years
2004 ≤ t ≤ 2018: the numbers show how often one approach outperforms the other one on
each gender

Female Male

Random walk with drift 5/8 4/8

LSTM architecture 3/8 4/8

the 8 European countries both models outperform the other one 4 times, whereas
for the female population the random walk with drift gives 5 times the better out-of-
sample prediction. Of course, this seems disappointing for the LSTM approach. This
observation is quite common, namely, that the deep learning approach outperforms
the classical methods on complex problems. However, on simple problems, as the
one here, we should go for a classical (simpler) model like a random walk with drift
or an ARIMA model.

8.4.2 Direct LSTM Mortality Forecasting

The previous section has been relying on the LC mortality model and only the
extrapolation of the time-series (̂kt )t has been based on a RN network architecture.
In this section we aim at directly processing the raw mortality rates Mx,t =
Dx,t/ex,t through a network, thus, we perform the representation learning directly
on the raw data. We therefore use a simplified version of the network architecture
proposed in Perla et al. [301].

As input to the network we use the raw mortality rates Mx,t . We choose a
lookback period of τ = 5 years and we define the time-series feature information to
forecast the mortality in calendar year t by

xt−τ :t−1 = (xt−τ , . . . ,xt−1) = (
Mx,s

)
x0≤x≤x1,t−τ≤s≤t−1 ∈ R

(x1−x0+1)×τ = R
100×5.

(8.23)

Thus, we directly process the raw mortality rates (simultaneously for all ages x)
through the network architecture; in the corresponding R code we need to input the
transposed features x


t−τ :t−1 ∈ R
5×100, see line 1 of Listing 8.2.

We choose a shallow LSTM network (d = 1) and drop the upper index m = 1
in (8.15). This gives us the LSTM cell updates for t − τ ≤ s ≤ t − 1

(
xs, z

[LSTM]
s−1 , cs−1

)
�→

(
z[LSTM]
s , cs

)
= zLSTM

(
xs , z

[LSTM]
s−1 , cs−1

)
.

This LSTM recursion to process the time-series xt−τ :t−1 gives us the LSTM output
z
[LSTM]
t−1 ∈ R

q1 , see lines 14–15 of Listing 8.2. It involves 4(q0 + 1 + q1)q1 =
4(100 + 1 + 20)20 = 9′680 network parameters for the input dimension q0 = 100
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input
xt−τ :t−1

LSTM cell
of depth d = 1

concatenation
into a shallow
linear decoder

output
(̂Yx,t)0≤x≤99

country
c

embedding
layer

gender
g

embedding
layer

Fig. 8.13 LSTM architecture used to process the raw mortality rates (Mx,t )x,t

and the output dimension q1 = 20. Many statisticians would probably stop at this
point with this approach, as it seems highly over-parametrized. Let’s see what we
get.

For the categorical country code c and the binary gender g we choose two one-
dimensional embeddings, see (7.31),

c �→ eC(c) ∈ R and g �→ eG(g) ∈ R. (8.24)

These embeddings give us 8 + 2 = 10 embedding weights. Figure 8.13 shows
the LSTM cell in orange color and the embeddings in yellow color (in the colored
version).
The LSTM output and the two embeddings are then concatenated to a learned
representation zt−1 = (z

[LSTM]
t−1 , eC(c), eG(g))
 ∈ R

q1×1×1 = R
22. The 22-

dimensional learned representation zt−1 encodes the 500-dimensional input
xt−τ :t−1 ∈ R

100×5 and the two categorical variables c and g. The last step
is to decode this representation zt−1 ∈ R

22 to predict the log-mortality rates
(Yx,t )0≤x≤99 = (log Mx,t )0≤x≤99 ∈ R

100, simultaneously for all ages x. This
decoding is obtained by the code on lines 17–19 of Listing 8.2; this reads as

zt−1 �→
(
β0

x + βC
x eC(c) + βG

x eG(g) +
〈
βx, z

[LSTM]
t−1

〉)
0≤x≤99

. (8.25)

This decoding involves another (1 + 22)100 = 2′300 parameters (β0
x , βG

x , βC
x ,

βx)0≤x≤99. Thus, altogether this LSTM network has r = 11′990 parameters.
Summarizing: the above architecture follows the philosophy of the auto-encoder

of Sect. 7.5. A high-dimensional observation (xt−τ :t−1, c, g) is encoded to a low-
dimensional bottleneck activation zt−1 ∈ R

22, which is then decoded by (8.25)
to give the forecast (Ŷx,t )0≤x≤99 for the log-mortality rates. It is not precisely an
auto-encoder because the response is different from the input, as we forecast the
log-mortality rates in the next calendar year t based on the information zt−1 that
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Listing 8.2 LSTM architecture to directly process the raw mortality rates (Mx,t )x,t

1 TS = layer_input(shape=c(lookback,100), dtype=’float32’, name=’TS’)
2 Country = layer_input(shape=c(1), dtype=’int32’, name=’Country’)
3 Gender = layer_input(shape=c(1), dtype=’int32’, name=’Gender’)
4 Time = layer_input(shape=c(1), dtype=’float32’, name=’Time’)
5 #
6 CountryEmb = Country %>%
7 layer_embedding(input_dim=8,output_dim=1,input_length=1,name=’CountryEmb’) %>%
8 layer_flatten(name=’Country_flat’)
9 #

10 GenderEmb = Gender %>%
11 layer_embedding(input_dim=2,output_dim=1,input_length=1,name=’GenderEmb’) %>%
12 layer_flatten(name=’Gender_flat’)
13 #
14 LSTM = TS %>%
15 layer_lstm(units=20,activation=’linear’,recurrent_activation=’sigmoid’,
16 name=’LSTM’)
17 #
18 Output = list(LSTM,CountryEmb,GenderEmb) %>% layer_concatenate() %>%
19 layer_dense(units=100, activation=’linear’, name=’scalarproduct’) %>%
20 layer_reshape(c(1,100), name = ’Output’)
21 #
22 model = keras_model(inputs = list(TS, Country, Gender),
23 outputs = c(Output))

is available at the end of the previous calendar year t − 1. In contrast to the LC
mortality model, we no longer rely on the two-step approach by first fitting the
parameters with a SVD, and performing a random walk with drift extrapolation.
This encoder-decoder network performs both steps simultaneously.

We fit this network architecture to the available data. We have r = 11′990
network parameters. Based on a lookback period of τ = 5 years, we have 2003 −
1950−τ+1 = 49 observations per population p = (c, g). Thus, we have in total 784
observations

(
xt−τ :t−1, c, g, (Yx,t )0≤x≤99

)
. We fit this network using the nadam

version of the gradient descent algorithm. We choose a training to validation split of
8 : 2 and we explore 10’000 gradient descent epochs. A crucial observation is that
the algorithm converges rather slowly and it does not show any signs of over-fitting,
i.e., there is no strong need for the early stopping. This seems surprising because we
have 11’990 parameters and only 784 observations. There are a couple of important
ingredients that make this work. The features and observations themselves are
high-dimensional, the low-dimensional encoding (compression) leads to a natural
regularization, Moreover, this is combined with linear activation functions, see lines
15 and 19 of Listing 8.2. The gradient descent fitting has a certain inertness, and
it seems that high-dimensional problems on comparably smooth high-dimensional
data do not over-fit to individual components because the gradients are not very
sensitive in the individual partial derivatives (in high dimensions). These high-
dimensional approaches only work if we have sufficiently many populations across
which we can learn, here we have 16 populations, Perla et al. [301] even use 76
populations.
Since every gradient descent fit still involves several elements of randomness,
we consider the nagging predictor (7.44), averaging over 10 fitted networks, see
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Table 8.2 Comparison of the out-of-sample mean squared losses for the calendar years 2004 ≤
t ≤ 2018; the figures are in 10−4

LC female LSTM female LC male LSTM male

Austria AUT 0.765 0.312 2.527 1.169
Belgium BE 0.371 0.311 2.835 0.960
Switzerland CH 0.654 0.478 1.609 1.134
Spain ESP 1.446 0.514 1.742 0.245
France FRA 0.175 1.684 0.333 0.363

Italy ITA 0.179 0.330 0.874 0.320
The Netherlands NL 0.426 0.315 1.978 0.601
Portugal POR 2.097 0.464 1.848 1.239

Sect. 7.4.4. The out-of-sample prediction results on the calendar years 2004 to
2018, i.e., t > t1 = 2004, are presented in Table 8.2. These results verify the
appropriateness of this LSTM approach. It outperforms the LC model on the female
population in 6 out of 8 cases and on the male population on 7 out of 8 cases,
only for the French population this LSTM approach seems to have some difficulties
(compared to the LC model). Note that these are out-of-sample figures because
the LSTM has only been fitted on the data prior to 2004. Moreover, we did not
pre-process the raw mortality rates Mx,t , t ≤ 2003, and the prediction is done
recursively in a one-period-ahead prediction approach, we also refer to (8.22). A
more detailed analysis of the results shows that the LC and the LSTM approaches
have a rather similar behavior for females. For males the LSTM prediction clearly
outperforms the LC model prediction, this out-performance is across different ages
x and different calendar years t ≥ 2004.

The advantage of this LSTM approach is that we can directly predict by
processing the raw data. The disadvantage compared to the LC approach is that the
LSTM network approach is more complex and more time-consuming. Moreover,
unlike in the LC approach, we cannot (easily) assess the prediction uncertainty.
In the LC approach the prediction uncertainty is obtained from assessing the
uncertainty in the extrapolation and the uncertainty in the parameter estimates, e.g.,
using a bootstrap. The LSTM approach is not sufficiently robust (at least not on our
data) to provide any reasonable uncertainty estimates.

We close this section and example by analyzing the functional form of the
decoder (8.25). We observe that this decoder has much similarity with the LC model
assumption (7.63)

Ŷx,t = β0
x + βC

x eC(c) + βG
x eG(g) +

〈
βx, z

[LSTM]
t−1

〉
,

log(μ
(p)
x,t ) = a

(p)
x + b

(p)
x k

(p)
t .

The LC model considers the average force of mortality a
(p)
x ∈ R for each population

p = (c, g) and each age x; the LSTM architecture has the same term β0
x+βC

x eC(c)+
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βG
x eG(g). In the LC model, the change of force of mortality is considered by a

population-dependent term b
(p)
x k

(p)
t , whereas the LSTM architecture has a term

〈βx, z
[LSTM]
t−1 〉. This latter term is also population-dependent because the LSTM cell

directly processes the raw mortality data Mx,t coming from the different populations
p. Note that this is the only time-t-dependent term in the LSTM architecture. We
conclude that the main difference between these two forecast approaches is how the
past mortality observations are processed. Apart from that the general structure is
the same.
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