
Chapter 7
Deep Learning

In the sequel, we introduce deep learning models. In this chapter these deep
learning models will be based on fully-connected feed-forward neural networks. We
present these networks as an extension of GLMs. These networks perform feature
engineering themselves. We discuss how networks achieve this, and we explain how
networks are used for predictive modeling. There is a vastly growing literature on
deep learning with networks, the classical reference is the book of Goodfellow et
al. [166], but also the numerous tutorials around the open-source deep learning
libraries TensorFlow [2], Keras [77] or PyTorch [296] give an excellent overview
of the state-of-the-art in this field.

7.1 Deep Learning and Representation Learning

In Chap. 5 on GLMs, we have been modeling the mean structure of the responses
Y , given features x, by the following regression function, see (5.6),

x �→ μ(x) = Eθ(x) [Y ] = g−1〈β, x〉. (7.1)

The crucial assumption has been that the regression function (7.1) provides a
reasonable functional description of the expected value Eθ(x)[Y ] of datum (Y, x).
As described in Sect. 5.2.2, this typically requires manual feature engineering of x,
bringing feature information into the right structural form.

In contrast to manual feature engineering, deep learning aims at performing an
automated feature engineering within the statistical model by massaging infor-
mation through different transformations. Deep learning uses a finite sequence of
functions (z(m))1≤m≤d , called layers,

z(m) : {1} × R
qm−1 → {1} × R

qm,
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of (fixed) dimensions qm ∈ N, 1 ≤ m ≤ d , and initialization q0 = q being the
dimension of the (raw) feature information x ∈ X ⊂ {1} × R

q . Each of these
layers presents a new representation of the features, that is, after layer m we have a
qm-dimensional representation of the raw feature x ∈ X

z(m:1)(x)
def.=

(
z(m) ◦ · · · ◦ z(1)

)
(x) ∈ {1} × R

qm. (7.2)

Note that the first component is always identically equal to 1. For this reason we
call the representation z(m:1)(x) ∈ {1} × R

qm of x to be qm-dimensional.
Deep learning now assumes that we have d ∈ N appropriate transformations

(layers) z(m), 1 ≤ m ≤ d , such that z(d :1)(x) provides a suitable qd -dimensional
representation of the raw feature x ∈ X , that then enters a GLM

μ(x) = Eθ(x) [Y ] = g−1〈β, z(d :1)(x)〉, (7.3)

with link function g : M → R and regression parameter β ∈ R
qd+1. This

regression architecture is called a feed-forward network of depth d ∈ N because
information x is processed in a directed acyclic (feed-forward) path through the d

layers z(1), . . . , z(d) before entering the final GLM.
Each layer z(m) involves parameters. Successful deep learning simultaneously

fits these parameters as well as the regression parameter β to the available learning
data L so that we obtain an optimal predictive model on the test data T . That is,
the learned model should optimally generalize to unseen data, we refer to Chap. 4
on predictive modeling. Thus, the process of optimal representation learning is also
part of the model fitting procedure. In contrast to GLMs, the resulting log-likelihood
functions are non-concave in their parameters because, typically, each layer involves
non-linear transformations. This makes model fitting a challenge. State-of-the-art
model fitting in deep learning uses variants of the gradient descent algorithm which
we have already met in Sect. 6.2.4.

Remark 7.1 Representation learning x �→ z(d :1)(x) is closely related to Mercer’s
kernel [272]. If we have a portfolio with features x1, . . . , xn, we obtain a Mercer’s
kernel by considering the matrix

K = (K(xi , xj )
)

1≤i,j≤n
=
(〈

z(d :1)(xi ), z
(d :1)(xj )

〉)
1≤i,j≤n

∈ R
n×n. (7.4)

In many regression problems it can be shown that one can equivalently work
with the design matrix Z = (z(d :1)(x1), . . . , z

(d :1)(xn))

 ∈ R

n×(qd+1) or with
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Mercer’s kernel K ∈ R
n×n. Mercer’s kernel does not require the full knowledge

of the learned representations z(d :1)(xi ), but it suffices to know the discrepancies
between z(d :1)(xi ) and z(d :1)(xj ) measured by the scalar products K(xi , xj ). This
is also closely related to the cosine similarity in word embeddings, see (10.11). This
approach then results in replacing the search for an optimal representation learning
by a search of the optimal Mercer’s kernel for the given data; this is called the kernel
trick in machine learning.

7.2 Generic Feed-Forward Neural Networks

Feed-forward neural (FN) networks use special layers z(m) in (7.2)–(7.3), whose
components are called neurons. This is discussed and studied in detail in this section.

7.2.1 Construction of Feed-Forward Neural Networks

FN networks are regression functions of type (7.3) where each neuron z
(m)
j , 1 ≤

j ≤ qm, of the layers z(m) = (1, z
(m)
1 , . . . , z

(m)
qm

)
, 1 ≤ m ≤ d , has the structure of

a GLM; the first component z(m)
0 = 1 always plays the role of the intercept and does

not need any modeling.
A first important choice is the activation function φ : R → R which plays the

role of the inverse link function g−1. To perform non-linear representation learning,
this activation function should be non-linear, too. The most popular choices of
activation functions are listed in Table 7.1.

The first three examples in Table 7.1 are smooth functions with simple deriva-
tives, see the last column of Table 7.1. Having simple derivatives is an advantage in
gradient descent algorithms for model fitting. The derivative of the ReLU activation
function for x �= 0 is given by the step function activation, and in 0 one typically
considers a sub-gradient. We briefly comment on these activation functions.

Table 7.1 Popular choices of non-linear activation functions and their derivatives; the last two
examples are not strictly monotone

Activation function Derivative

Sigmoid (logistic) activation φ(x) = (1 + e−x )−1 φ′ = φ(1 − φ)

Hyperbolic tangent activation φ(x) = tanh(x) φ′ = 1 − φ2

Exponential activation φ(x) = exp(x) φ′ = φ

Step function activation φ(x) = 1{x≥0}
Rectified linear unit (ReLU) activation φ(x) = x1{x≥0}
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Fig. 7.1 Hyperbolic tangent
activation function
x �→ tanh(wx) ∈ (−1, 1) for
(fixed) weights
w ∈ {1/5, 1, 5} and
x ∈ (−10, 10)
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• We are mainly going to use the hyperbolic tangent activation function

x �→ tanh(x) = ex − e−x

ex + e−x
= 2

(
1 + e−2x

)−1 − 1 ∈ (−1, 1).

Figure 7.1 illustrates the hyperbolic tangent activation function.
The hyperbolic tangent activation function is anti-symmetric w.r.t. the origin

with range (−1, 1). This anti-symmetry and boundedness is an advantage in
fitting deep FN network architectures. For this reason we usually prefer the
hyperbolic tangent over other activation functions.

• The sigmoid activation function corresponds to the logistic function that was
used in the Bernoulli and the categorical EFs, see Sects. 2.1.2 and 5.7. The sig-
moid activation function can be obtained from the hyperbolic tangent activation
function by setting φ(x) = (tanh(x/2) + 1)/2.

• The step function activation is not really used in applications. However, it allows
for nice interpretations, and it links FN networks to the theory of regression and
classification trees (CARTs); see Breiman et al. [54] for CARTs.

• The exponential activation function is a nice differentiable choice whenever the
range should be one-sided bounded.

• The ReLU activation function is also called hinge function or ramp function. This
is the preferred choice in the machine learning community. However, typically,
we will not use it because in our experience it is less robust in fitting compared to
the hyperbolic tangent activation function. This may be for two reasons, firstly,
the ReLU activation is unbounded, and secondly, it is identically equal to zero
for x < 0, which implies that there is no sensitivity in negative choices of x.
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A FN layer with activation function φ is a mapping

z(m) : {1} × R
qm−1 → {1} × R

qm (7.5)

z �→ z(m)(z) =
(

1, z
(m)
1 (z), . . . , z(m)

qm
(z)
)


,

having neurons for 1 ≤ j ≤ qm

z
(m)
j (z) = φ〈w(m)

j , z〉 = φ

(
qm−1∑
l=0

w
(m)
l,j zl

)
, (7.6)

with given network weights w
(m)
j = (w

(m)
l,j )0≤l≤qm−1 ∈ R

qm−1+1.

Interpretation Every neuron z �→ z
(m)
j (z) describes a GLM regression function

with link function φ−1 and regression parameter w
(m)
j ∈ R

qm−1+1 for features
z ∈ {1} × R

qm−1 . These GLM regression functions can be interpreted as data
compression, i.e., in each neuron the qm−1-dimensional feature z is projected to
a real number 〈w(m)

j , z〉 ∈ R which is then (non-linearly) activated by φ. Since
this leads to a substantial loss of information, we perform this procedure of data
compression qm times in FN layer z(m), so that each neuron in (z

(m)
j (z))1≤j≤qm

represents a different projection of input z. Choosing suitable weights w
(m)
j will

allow us to extract the crucial feature information from z to receive good explanatory
variables for the regression task at hand.

A FN network of depth d ∈ N is obtained by composing d FN layers
z(1), . . . , z(d) to receive the mapping

z(d :1) : {1} × R
q0=q → {1} × R

qd (7.7)

x �→ z(d :1)(x) =
(
z(d) ◦ · · · ◦ z(1)

)
(x).

Choosing a strictly monotone and smooth link function g and a regression
parameter β ∈ R

qd+1 we receive the FN network regression function

x ∈ X �→ μ(x) = g−1〈β, z(d :1)(x)〉. (7.8)
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Fig. 7.2 FN network of depth d = 3, with number of neurons (q1, q2, q3) = (20, 15, 10) and
input dimension q0 = 40. This gives us a network parameter ϑ ∈ R

r of dimension r = 1′306

This FN network regression function (7.8) has a network parameter ϑ =
(w

(1)
1 , . . . ,w

(d)
qd

,β)
 ∈ R
r of dimension

r =
d∑

m=1

qm(qm−1 + 1) + (qd + 1).

In Fig. 7.2 we illustrate a FN network of depth d = 3, FN layers of dimensions
(q1, q2, q3) = (20, 15, 10) and input dimension q0 = 40.1 This gives us a network
parameter ϑ ∈ R

r of dimension r = 1′306. On the left-hand side we have the raw
features x ∈ X ⊂ {1}×R

q0, these are processed through the three FN layers, where
the black circles illustrate the neurons z

(m)
j . The third FN layer z(3) has dimension

1 Figures 7.2 and 7.9 are similar to Figure 1 in [122], and all FN network plots have been created
with modified versions of the plot functions of the R package neuralnet [144].
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q3 = 10 providing the learned representation z(3:1)(x) ∈ {1} × R
q3 of x. This is

used in the final GLM step (7.8) in the green box of Fig. 7.2.

Remarks 7.2

• One distinguishes between FN networks of depth d = 1, called shallow
networks, and FN networks of depth d > 1, called deep networks. In this
sense, deep learning means that we learn suitable feature representations through
multiple FN layers d > 1. We come back to this in Sect. 7.2.2, below. Remark
that some people would only call a network deep if d � 1, here d > 1 will be
chosen for the definition of deep (which is also a precise definition).

• There are two ways of receiving a GLM. If we have a (trivial) FN network of
depth d = 0, this naturally corresponds to a GLM, see Fig. 7.2. In that case, one
works with the original features x ∈ X in (7.8). The second way of receiving a
GLM is given by choosing the identity function as activation function φ(x) = x.
This implies that x �→ z(d :1)(x) = Ax is a linear function for some matrix
A ∈ R

(qd+1)×(q+1) and, henceforth, we receive a GLM.
• Under the above interpretation of the representation learning structure (7.7), we

may also give a different intuition for the FN layers. Typically, we expect that
the first FN layers decompose feature information x into bits and pieces, which
are then recomposed in a suitable way for the prediction task. In this sense, we
typically choose a larger dimension for the early FN layers otherwise we may
lose too much information already from the very beginning.

• The neural network introduced in (7.7) is called FN network because the signals
propagate from one layer to the next (directed acyclic graph). If the network
has loops it is called a recurrent neural (RN) network. RN networks have been
applied very successfully in image and speech recognition, for instance, long
short-term memory (LSTM) networks are very useful for time-series analysis.
We study RN networks in Chap. 8, below. A third type of neural networks
are convolutional neural (CN) networks which are very successfully applied
to image recognition because they are capable to detect similar structures at
different places in images, i.e., CN networks learn local representations. We will
discuss CN network architectures in Chap. 9, below.

• The generic FN network architecture (7.8) can be complemented by drop-
out layers, normalization layers, skip connections, embedding layers, etc. Such
layers are special purpose layers, for instance, taking care of over-fitting. We
introduce and discuss these below.

• The regression function (7.8) has a one-dimensional output for regression mod-
eling. Of course, categorical classification can be done completely analogously
by choosing a link function g suitable for classification, see Sect. 5.7. A similar
approach also works if, for instance, we want to model simultaneously the mean
and the dispersion of the data with a two-dimensional output function g−1.
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7.2.2 Universality Theorems

The use of FN networks for representation learning is motivated by the so-called
universality theorems which say that any compactly supported continuous (regres-
sion) function can be approximated arbitrarily well by a suitably large FN network.
As such, we can understand the FN network framework as an approximation tool
which, of course, is useful far beyond statistical modeling. In Chapter 12 we give
some proofs of selected universality statements to illustrate the flavor of such results.
In particular, Cybenko [86], Hornik et al. [192], Hornik [191], Leshno et al. [247],
Park–Sandberg [293, 294], Petrushev [302] and Isenbeck–Rüschendorf [198] have
shown (under mild conditions on the activation function) that shallow FN networks
can approximate any compactly supported continuous function arbitrarily well (in
supremum norm or in L2-norm), if we allow for an arbitrary number of neurons q1 ∈
N in the single FN layer. Roughly speaking, such a result for shallow FN networks
holds true if and only if the chosen activation function is non-polynomial, see
Leshno et al. [247]. Such results are proved either by algebraic methods of Stone–
Weierstrass type or by Wiener–Tauberian denseness type arguments. Moreover,
approximation results are studied in Barron [25, 26], Yukich et al. [399], Makavoz
[262], Pinkus [303] and Döhler–Rüschendorf [108].

The above stated universality theorems say that shallow FN networks are
sufficient from an approximation point of view. Nevertheless, we will mainly
use deep (multiple layers) FN networks, below. These have better convergence
properties to given function classes because they more easily promote interactions
in feature components compared to shallow ones. Such questions have been studied,
e.g., by Elbrächter et al. [120], Kidger–Lyons [215], Lu et al. [260] or Cheridito et
al. [75]. For instance, Elbrächter et al. [120] compare finite-depth wide networks
to finite-width deep networks (under the choice of the ReLU activation function),
and they conclude that for many function classes deep networks lead to exponential
approximation rates, whereas shallow networks only provide polynomial approxi-
mation rates at the same number of network parameters. This motivates to consider
sufficiently deep FN networks for representation learning because these typically
have a better approximation capacity compared to shallow ones.

We motivate this by two simple examples. For this motivation we use the step
function activation φ(x) = 1{x≥0} ∈ {0, 1}. If we have the step function activation,
each neuron partitions Rqm−1 along a hyperplane, i.e.,

z �→ z
(m)
j (z) = φ〈w(m)

j , z〉 = 1{∑qm−1
l=1 w

(m)
l,j zl ≥ −w

(m)
0,j

} ∈ {0, 1}. (7.9)

For a shallow FN network we can study the question of the maximal complexity
of the resulting partition of the feature space X ⊂ {1} × R

q0 when considering q1
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neurons (7.9) in the single FN layer z(1). Zaslavsky [400] proved that q1 hyperplanes
can partition the Euclidean space Rq0 in at most

min{q0,q1}∑
j=0

(
q1

j

)
disjoint sets. (7.10)

This number (7.10) can be seen as a maximal upper complexity bound for shallow
FN networks with step function activation. It grows exponentially for q1 ≤ q0, and
it slows down to a polynomial growth for q1 > q0. Thus, the complexity of shallow
FN networks grows comparably slow as the width q1 of the network exceeds q0, and
therefore we often need a huge network to receive a good approximation.

This result (7.10) should be contrasted to Theorem 4 in Montúfar et al. [280] who
give a lower bound on the complexity of regression functions of deep FN networks
(under the ReLU activation function). Assume qm ≥ q0 for all 1 ≤ m ≤ d . The
maximal complexity is bounded below by

(
d−1∏
m=1

⌊
qm

q0

⌋q0
)

q0∑
j=0

(
qd

j

)
disjoint linear regions. (7.11)

If we choose as an example a FN network with fixed width qm = 4 for all m ≥ 1
and an input of dimension q0 = 2, we receive from (7.11) a lower bound of

4d−1
((

4

0

)
+
(

4

1

)
+
(

4

2

))
= 11

4
exp{dlog(4)}.

Thus, we have an exponential growth in depth d → ∞. This contrasts the
polynomial complexity growth (7.10) of shallow FN networks.

Example 7.3 (Shallow vs. Deep Networks: Partitions) We give a second more
explicit example that compares shallow and deep FN networks. Choose q0 = 2
and assume we want to describe a regression function

μ : R2 → R, x �→ μ(x).

If we think of a tool box of basis functions to build regression function μ we may
want to choose indicator functions x �→ χA(x) ∈ {0, 1} for arbitrary rectangles A =
[x−

1 , x+
1 ) × [x−

2 , x+
2 ) ⊂ R

2. We show that we can easily construct such indicator
functions χA(x) for given rectangles A ⊂ R

2 with FN networks of depth d = 2, but
not with shallow FN networks.

For illustrative purposes, we fix a square A = [−1/2, 1/2)×[−1/2, 1/2) ⊂ R
2,

and we want to construct χA(x) with a network of depth d = 2. This indicator
function χA is illustrated in Fig. 7.3.
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Fig. 7.3 Indicator function
χA(x) for square
A = [−1/2, 1/2) ×
[−1/2, 1/2) ⊂ R

2
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We choose the step function activation for φ and a first FN layer with q1 = 4
neurons

x �→ z(1)(x) =
(

1, z
(1)
1 (x), . . . , z

(1)
4 (x)

)


= (1,1{x1≥−1/2},1{x2≥−1/2},1{x1≥1/2},1{x2≥1/2}
)
 ∈ {1} × {0, 1}4.

This FN layer has a network parameter, see also (7.9),

(
w

(1)
1 , . . . ,w

(1)
4

)
=
⎛
⎝
⎛
⎝

1/2
1
0

⎞
⎠ ,

⎛
⎝

1/2
0
1

⎞
⎠ ,

⎛
⎝

−1/2
1
0

⎞
⎠ ,

⎛
⎝

−1/2
0
1

⎞
⎠
⎞
⎠ , (7.12)

having dimension q1(q0 + 1) = 12. For the second FN layer with q2 = 4 neurons
we choose the step function activation and

z �→ z(2)(z) =
(

1, z
(2)
1 (z), . . . , z

(2)
4 (z)

)


= (1,1{z1+z2≥3/2},1{z2+z3≥3/2},1{z1+z4≥3/2},1{z3+z4≥3/2}
)


.

This FN layer has a network parameter

(
w

(2)
1 , . . . ,w

(2)
4

)
=

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

−3/2
1
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,

⎛
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having dimension q2(q1 + 1) = 20. For the output layer we choose the identity link
g(x) = x, and the regression parameter β = (0, 1,−1,−1, 1)
 ∈ R

5. As a result,
we obtain

χA(x) =
〈
β, z(2:1)(x)

〉
. (7.13)

That is, this network of depth d = 2, number of neurons (q1, q2) = (4, 4), step
function activation and identity link can perfectly replicate the indicator function for
the square A = [−1/2, 1/2) × [−1/2, 1/2), see Fig. 7.3. This network has r = 37
parameters.

We now consider a shallow FN network with q1 neurons. The resulting regression
function with identity link is given by

x �→
〈
β, z(1:1)(x)

〉
=
〈
β, (1, z

(1)
1 (x), . . . , z(1)

q1
(x))


〉

=
〈
β,

(
1,1{〈

w
(1)
1 ,x

〉
≥0
}, . . . ,1{〈

w
(1)
q1 ,x

〉
≥0
}
)
〉

,

where we have used the step function activation φ(x) = 1{x≥0}. As in (7.9),
each of these neurons leads to a partition of the space R

2 with a straight line.
Importantly these straight lines go across the entire feature space, and, there-
fore, we cannot exactly construct the indicator function of Fig. 7.3 with a shal-
low FN network. This can nicely be seen in Fig. 7.4 (lhs), where we con-
sider a shallow FN network with q1 = 4 neurons, weights (7.12), and β =
(0, 1/2, 1/2,−1/2,−1/2)
.

However, from the universality theorems we know that shallow FN networks
can approximate any compactly supported (continuous) function arbitrarily well
for sufficiently large q1. In this example we can introduce additional neurons and
let the resulting hyperplanes rotate around the origin. In Fig. 7.4 (middle, rhs) we
show this for q1 = 8 and q1 = 64 neurons. We observe that this allows us to
approximate a circle, see Fig. 7.4 (rhs), and having circles of different sizes at

shallow FN network q1=4
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shallow FN network q1=8 shallow FN network q1=64

Fig. 7.4 Shallow FN networks with q1 = 4 (lhs), q1 = 8 (middle) and q1 = 64 (rhs)
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different locations will allow us to approximate the square A considered above.
However, of course, this is a much less efficient way compared to the deep FN
network (7.13).

Intuitively speaking, shallow FN networks act like additions where we add more
and more separating hyperplanes for q1 → ∞ (superposition of basis functions).
In contrast to that, going deep allows us to not only use additions but to also use
multiplications (composition of basis functions). This is the reason, why we can
easily construct the indicator function χA in the deep case (where we multiply
zero’s along the boundary of A), but not in the shallow case. �

7.2.3 Gradient Descent Methods

We describe gradient descent methods in this section. These are used to fit FN
networks. Gradient descent algorithms have already been used in Sect. 6.2.4 for
fitting LASSO regularized regression models. We will give the full methodological
part here, without relying on Sect. 6.2.4.

Plain Vanilla Gradient Descent Algorithm

Assume we have independent instances (Yi, xi ), 1 ≤ i ≤ n, that follow the same
member of the EDF. We choose a regression function

xi �→ μ(xi ) = μϑ (xi ) = Eθ(xi )[Yi] = g−1
〈
β, z(d :1)(xi )

〉
,

for a strictly monotone and smooth link function g, and a FN network z(d :1) with
network parameter ϑ ∈ R

r . We assume that the chosen activation function φ is
differentiable. We highlight in the notation that the mean functional μϑ (·) depends
on the network parameter ϑ . The canonical parameter of the response Yi is given
by θ(xi ) = h(μϑ (xi )) ∈ �, where h = (κ ′)−1 is the canonical link and κ the
cumulant function of the chosen member of the EDF. This gives us (under constant
dispersion ϕ) the log-likelihood function, for given data Y = (Y1, . . . , Yn)


,

ϑ �→ �Y (ϑ) =
n∑

i=1

vi

ϕ

[
Yih(μϑ (xi )) − κ (h(μϑ (xi )))

]
+ a(Yi; vi/ϕ).

The deviance loss function in this model is given by, see (4.9) and (4.8),

D(Y ,ϑ) = 2

n

n∑
i=1

vi

ϕ

(
Yih (Yi) − κ (h (Yi)) − Yih (μϑ (xi )) + κ (h (μϑ (xi )))

)
≥ 0.

(7.14)
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The MLE of ϑ is found by either maximizing the log-likelihood function or by
minimizing the deviance loss function in ϑ . This problem cannot be solved in
general because of complexity. Typically, the deviance loss function is non-convex
in ϑ and it may have many local minimums. This is one of the reasons, why we
are less ambitious here, and why we just try to find a network parameter ϑ̂ which
provides a “small” deviance loss D(Y , ϑ̂) for the given data Y . We discuss this
further, below, in fact, this is a crucial point in FN network fitting that is related to
in-sample over-fitting and, therefore, this point will require a broader discussion.

For the moment, we just try to find a network parameter ϑ̂ that provides a
small deviance loss D(Y , ϑ̂) for the given data Y . Gradient descent algorithms
suggest that we try to step-wise locally improve our current position by changing the
network parameter into the direction of the maximal local decrease of the deviance
loss function. By assumption, our deviance loss function is differentiable in ϑ . This
allows us to consider the following first order Taylor expansion in ϑ

D(Y , ϑ̃) = D(Y ,ϑ)+∇ϑD(Y ,ϑ)

(
ϑ̃ − ϑ

)+o
(‖ϑ̃ − ϑ‖2

)
as ‖ϑ̃ −ϑ‖2 → 0.

This shows that the locally optimal change ϑ �→ ϑ̃ points into the opposite direction
of the gradient of the deviance loss function. This motivates the following gradient
descent step.

Assume that at algorithmic time t ∈ N we have a network parameter ϑ(t) ∈
R

r . Choose a suitable learning rate �t+1 > 0, and consider the gradient
descent update

ϑ(t) �→ ϑ(t+1) = ϑ (t) − �t+1∇ϑD(Y ,ϑ (t)). (7.15)

This gradient descent update gives us the new (smaller) deviance loss at
algorithmic time t + 1

D(Y ,ϑ (t+1)) = D(Y ,ϑ(t))−�t+1

∥∥∥∇ϑD(Y ,ϑ (t))

∥∥∥
2

2
+o (�t+1) for �t+1 ↓ 0.

Under suitably tempered learning rates (�t )t≥1, this algorithm will converge to a
local minimum of the deviance loss function as t → ∞ (supposed that we do not
get trapped in a saddlepoint).

Remarks 7.4 We give a couple of (preliminary) remarks on the gradient descent
algorithm (7.15), more explanation, further derivations, and variants of the gradient
descent algorithm will be discussed below.
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• In the applications we will early stop the gradient descent algorithm before
reaching a local minimum (to prevent from over-fitting). This is going to be
discussed in the next paragraphs.

• Fine-tuning the learning rate (�t )t is important, in particular, there is a trade-off
between smaller and bigger learning rates: they need to be sufficiently small so
that the first order Taylor expansion is still a valid approximation, and they should
be sufficiently big otherwise the convergence of the algorithm will be very slow
because it needs many iterations.

• The gradient descent algorithm is a first order algorithm, and one is tempted to
study higher order approximations, e.g., leading to the Newton–Raphson algo-
rithm. Unfortunately, higher order derivatives are computationally not feasible if
the size n of the data Y = (Y1, . . . , Yn)


 and the dimension r of the network
parameter ϑ are large. In fact, even the calculation of the first order derivatives
may be challenging and, therefore, stochastic gradient descent methods are
considered below. Nevertheless, it is beneficial to have a notion of a second order
term. Momentum-based methods originate from approximating the second order
terms, these will be studied in (7.19)–(7.20), below.

• The gradient descent step (7.15) solves an unconstraint local optimization.
Similarly to (6.15)–(6.16) we could change the gradient descent algorithm to
a constraint optimization problem, e.g., involving a LASSO constraint that can
be solved with the generalized projection operator (6.17).

Gradient Calculation via Back-Propagation

Fast gradient descent algorithms essentially rely on fast gradient calculations of the
deviance loss function. Under the EDF setup we have gradient w.r.t. ϑ

∇ϑD(Y ,ϑ) = 2

n

n∑
i=1

vi

ϕ

(
μϑ (xi ) − Yi

)
h′ (μϑ (xi )) ∇ϑμϑ (xi ) (7.16)

= 2

n

n∑
i=1

vi

ϕ

μϑ (xi ) − Yi

V (μϑ (xi ))

1

g′(μϑ (xi ))
∇ϑ

〈
β, z(d :1)(xi )

〉
,

where the last step uses the variance function V (·) of the chosen EDF, we also refer
to (5.9). The main difficulty is the calculation of the gradient

∇ϑ

〈
β, z(d :1)(x)

〉
= ∇ϑ

〈
β,
(
z(d) ◦ · · · ◦ z(1)

)
(x)
〉
,

w.r.t. the network parameter ϑ = (w
(1)
1 , . . . ,w

(d)
qd

,β)
 ∈ R
r , and where each

FN layer z(m) involves the weights W(m) = (w
(m)
1 , . . . ,w

(m)
qm ) ∈ R

(qm−1+1)×qm .
The workhorse for these gradient calculations is the back-propagation method
of Rumelhart et al. [324]. Basically, the back-propagation method is a clever



7.2 Generic Feed-Forward Neural Networks 281

reparametrization of the problem so that the gradients can be calculated more easily.
We therefore modify the weight matrices W(m) by dropping the first row containing
the intercept parameters w

(m)
0,j , 1 ≤ j ≤ qm. Define for 1 ≤ m ≤ d + 1

W(m)
(−0) =

(
w

(m)
jm−1,jm

)
1≤jm−1≤qm−1; 1≤jm≤qm

∈ R
qm−1×qm,

where w
(m)
jm−1,jm

denotes component jm−1 of w
(m)
jm

, and where we set qd+1 = 1

(output dimension) and w
(d+1)
jd ,1 = βjd for 0 ≤ jd ≤ qd .

Proposition 7.5 (Back-Propagation for the Hyperbolic Tangent Activation)
Choose a FN network of depth d ∈ N and with hyperbolic tangent activation
function φ(x) = tanh(x).

• Define recursively

– initialize qd+1 = 1 and δ(d+1)(x) = 1 ∈ R
qd+1;

– iterate for d ≥ m ≥ 1

δ(m)(x) = diag

(
1 −

(
z
(m:1)
jm

(x)
)2
)

1≤jm≤qm

W(m+1)
(−0) δ(m+1)(x) ∈ R

qm.

• We obtain for 0 ≤ m ≤ d

⎛
⎝∂〈β, z(d :1)(x)〉

∂w
(m+1)
jm,jm+1

⎞
⎠

0≤jm≤qm; 1≤jm+1≤qm+1

= z(m:1)(x) δ(m+1)(x)
 ∈ R
(qm+1)×qm+1,

where z(0:1)(x) = x ∈ R
q0+1 and w

(d+1)
1 = β ∈ R

qd+1.

Proof of Proposition 7.5 Choose 1 ≤ m ≤ d and define for the neurons 1 ≤ jm ≤
qm the variables

ζ
(m)
jm

(x) =
〈
w

(m)
jm

, z(m−1:1)(x)
〉
.

The learned representation in the m-th FN layer is obtained by activating these
variables

z(m:1)(x) =
(

1, φ
(
ζ

(m)
1 (x)

)
, . . . , φ

(
ζ (m)
qm

(x)
))
 ∈ R

qm+1.

For the output we define

ζ
(d+1)
1 (x) = 〈β, z(d :1)(x)〉.
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The main idea is to calculate the derivatives of 〈β, z(d :1)(x)〉 w.r.t. these new
variables ζ

(m)
j (x).

Initialization for m = d+1 This provides for m = d+1 and 1 ≤ jd+1 ≤ qd+1 = 1

∂〈β, z(d :1)(x)〉
∂ζ

(d+1)
1 (x)

= 1 = δ
(d+1)
1 (x).

Recursion form < d+1 Next, we calculate the derivatives w.r.t. ζ (d)
jd

(x), for m = d

and 1 ≤ jd ≤ qd . They are given by (note qd+1 = 1)

∂〈β, z(d :1)(x)〉
∂ζ

(d)
jd

(x)
= ∂〈β, z(d :1)(x)〉

∂ζ
(d+1)
1 (x)

∂ζ
(d+1)
1 (x)

∂ζ
(d)
jd

(x)

= δ
(d+1)
1 (x) βjd φ′(ζ (d)

jd
(x)) (7.17)

= δ
(d+1)
1 (x) w

(d+1)
jd ,1

(
1 − (z

(d :1)
jd

(x))2
)

= δ
(d)
jd

(x),

where we have used w
(d+1)
jd ,1 = βjd and for the hyperbolic tangent activation function

φ′ = 1 − φ2. Continuing recursively for d > m ≥ 1 and 1 ≤ jm ≤ qm we obtain

∂〈β, z(d :1)(x)〉
∂ζ

(m)
jm

(x)
=

qm+1∑
jm+1=1

∂〈β, z(d :1)(x)〉
∂ζ

(m+1)
jm+1

(x)

∂ζ
(m+1)
jm+1

(x)

∂ζ
(m)
jm

(x)

=
qm+1∑

jm+1=1

δ
(m+1)
jm+1

(x) w
(m+1)
jm,jm+1

(
1 − (z

(m:1)
jm

(x))2
)

= δ
(m)
jm

(x).

Thus, the vectors δ(m)(x) = (δ
(m)
1 (x), . . . , δ

(m)
qm

(x))
 are calculated recursively in
d ≥ m ≥ 1 with initialization δ(d+1)(x) = 1 and the recursion

δ(m)(x) = diag
(

1 − (z
(m:1)
jm

(x))2
)

1≤jm≤qm

W(m+1)
(−0)

δ(m+1)(x) ∈ R
qm.

Finally, we need to show how these derivatives are related to the original
derivatives in the gradient descent method. We have for 0 ≤ jd ≤ qd and jd+1 = 1

∂〈β, z(d :1)(x)〉
∂βjd

= ∂〈β, z(d :1)(x)〉
∂ζ

(d+1)
1 (x)

∂ζ
(d+1)
1 (x)

∂βjd

= δ
(d+1)
jd+1

(x) z
(d :1)
jd

(x).
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For 1 ≤ m < d , and 0 ≤ jm ≤ qm and 1 ≤ jm+1 ≤ qm+1 we have

∂〈β, z(d :1)(x)〉
∂w

(m+1)
jm,jm+1

= ∂〈β, z(d :1)(x)〉
∂ζ

(m+1)
jm+1

(x)

∂ζ
(m+1)
jm+1

(x)

∂w
(m+1)
jm,jm+1

= δ
(m+1)
jm+1

(x) z
(m:1)
jm

(x).

For m = 0, and 0 ≤ l ≤ q0 and 1 ≤ j1 ≤ q1 we have

∂〈β, z(d :1)(x)〉
∂w

(1)
l,j1

= ∂〈β, z(d :1)(x)〉
∂ζ

(1)
j1

(x)

∂ζ
(1)
j1

(x)

∂w
(1)
l,j1

= δ
(1)
j1

(x) xl.

This completes the proof of Proposition 7.5. ��

Remark 7.6 Proposition 7.5 gives the back-propagation method for the hyperbolic
tangent activation function which has derivative φ′ = 1 − φ2. This becomes visible
in the definition of δ(m)(x) where we consider the diagonal matrix

diag

(
1 −

(
z
(m:1)
jm

(x)
)2
)

1≤jm≤qm

.

For a general differentiable activation function φ this needs to be replaced by,
see (7.17),

diag
(
φ′ 〈w(m)

jm
, z(m−1:1)(x)

〉)
1≤jm≤qm

.

In the case of the sigmoid activation function this gives us, see also Table 7.1,

diag
(
z
(m:1)
jm

(x)
(

1 − z
(m:1)
jm

(x)
))

1≤jm≤qm

.

Plain vanilla gradient descent algorithm for FN networks

1. Choose an initial network parameter ϑ(0) ∈ R
r .

2. Iterate for t ≥ 0 until a stopping criterion is met:

(a) Calculate the gradient ∇ϑD(Y ,ϑ) in network parameter ϑ = ϑ(t)

using (7.16) and the back-propagation method of Proposition 7.5 (for the
hyperbolic tangent activation function).

(b) Make the gradient descent step for a suitable learning rate �t+1 > 0

ϑ (t) �→ ϑ (t+1) = ϑ(t) − �t+1∇ϑD(Y ,ϑ (t)).
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Remark 7.7 The initialization ϑ(0) ∈ R
r of the gradient descent algorithm needs

some care. A FN network has many symmetries, for instance, we can permute
neurons within a FN layer and we receive the same predictive model. For this
reason, the initial network weights W(m) = (w

(m)
1 , . . . ,w

(m)
qm ) ∈ R

(qm−1+1)×qm ,
1 ≤ m ≤ d , should not be chosen with identical components because this will
result in a saddlepoint of the corresponding objective function, and gradient descent
will not work. For this reason, these weights are initialized randomly either using a
uniform or a Gaussian distribution. The former is related to the glorot_uniform
initializer in keras,2 see (16) in Glorot–Bengio [160]. This initializer scales the
support of the uniform distribution with the sizes of the FN layers that are connected
by the corresponding weights w

(m)
j .

For the output parameter we usually set as initial value β(0) = (β̂
(0)
0 , 0, . . . , 0)
 ∈

R
qd+1, where β̂

(0)
0 is the MLE in the corresponding null model (not considering any

features) and transformed to the chosen link g. This choice implies that the gradient
descent algorithm starts in the null model, and any decrease in deviance loss can be
seen as an improved in-sample loss of using the FN network regression structure
over the null model.

Stochastic Gradient Descent

The gradient in (7.16) has two parts. We have a vector

v(Y ) =
(

vi

ϕ

(
μϑ (xi ) − Yi

) 1

V (μϑ (xi ))

1

g′(μϑ (xi ))

)


1≤i≤n

∈ R
n,

and we have a matrix

M =
(
∇ϑ

〈
β, z(d :1)(x1)

〉
, . . . ,∇ϑ

〈
β, z(d :1)(xn)

〉)
∈ R

r×n.

The gradient of the deviance loss function is obtained by the matrix multiplication

∇ϑD(Y ,ϑ) = 2

n
M v(Y ).

Matrix multiplication can be very slow in numerical implementations if the
sample size n is large. For this reason, one typically uses the stochastic gradient
descent (SGD) method that does not consider the entire data Y = (Y1, . . . , Yn)



simultaneously.

2 For our examples we use the R library keras [77] which is an API to TensorFlow [2].
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For the SGD method one chooses a fixed batch size b ∈ N, and one randomly
partitions the entire data Y into (mini-)batches Y 1, . . . ,Y �n/b� of approximately the
same size b (up to cardinality). Each gradient descent update

ϑ (t) �→ ϑ(t+1) = ϑ (t) − �t+1∇ϑD(Y s ,ϑ
(t)),

is then only based on the observations Y s in the corresponding batch 1 ≤ s ≤ �n/b�.
Typically, one sequentially visits all batches, and screening each batch once is called
an epoch. Thus, if we run the SGD algorithm over K epochs on batches of size
b ≤ n, then we perform K�n/b� gradient descent steps.

Choosing batches of size b reduces the complexity of the matrix multiplication
from n to b, and, henceforth, leads to much faster run times in one gradient
descent step. On the other hand, batches should have a minimal size so that the
gradient descent updates are not too erratic, i.e., if the batches are too small, the
randomness in the data may point too often into a (completely) wrong direction for
the optimal gradient descent step. For this reason, optimal batch sizes should be
chosen carefully. For instance, if we study a low frequency claims count problem,
say, with an expected frequency of λ = 10%, we can determine confidence bounds
for parameter estimation. This will provide an estimate of a minimal batch size b

for a reliable parameter estimate.
To have a few erratic steps in SGD, however, can also be beneficial, as long

as there are not too many of those. Sometimes, the algorithm gets trapped in
saddlepoints or in flat areas of the objective function (vanishing gradient problem).
If this is the case, an erratic step may be beneficial because it may perturb the
algorithm out of its bottleneck. In fact, often SGD has a better performance than the
plain vanilla gradient descent algorithm that is based on the entire data Y because
of these noisy contributions.

Momentum-Based Gradient Descent Methods

The gradient descent method only considers a first order Taylor expansion and one is
tempted to consider higher order terms to improve the approximation. For instance,
Newton’s method uses a second order Taylor term by updating

ϑ(t) �→ ϑ (t+1) = ϑ(t) −
(
∇2

ϑD(Y ,ϑ (t))
)−1 ∇ϑD(Y ,ϑ (t)). (7.18)

In many practical applications this calculation is not feasible as the Hessian
∇2

ϑD(Y ,ϑ(t)) cannot be calculated in a reasonable amount of time. Another
(simple) way of considering the changes in the gradients is the momentum-based
gradient descent method of Rumelhart et al. [324]. This is inspired by mechanics in
physics and it is achieved by considering the gradients over several iterations of the
algorithm (with exponentially decaying weights). Choose a momentum coefficient
ν ∈ [0, 1) and define the initial speed v(0) = 0 ∈ R

r .
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Replace the gradient descent update (7.15) by

v(t) �→ v(t+1) = νv(t) − �t+1∇ϑD(Y ,ϑ (t)), (7.19)

ϑ (t) �→ ϑ (t+1) = ϑ (t) + v(t+1). (7.20)

For ν = 0 we have the plain vanilla gradient descent method, for ν > 0 we also
memorize the previous gradients (with exponentially decaying weights). Typically
this leads to better convergence properties.

Nesterov [284] has noticed that for convex functions the gradient descent updates
may have a zig-zag behavior. Therefore, he proposed the so-called Nesterov-
accelerated version

v(t) �→ v(t+1) = νv(t) − �t+1∇ϑD(Y ,ϑ(t) + νv(t)),

ϑ(t) �→ ϑ (t+1) = ϑ(t) + v(t+1). (7.21)

Thus, the calculation of the momentum v(t+1) uses a look-ahead ϑ (t) + νv(t) in
the gradient calculation (anticipating part of the next step). This provides for the

update (7.21) the following equivalent versions, under reparametrization ϑ̃
(t) =

ϑ(t) + νv(t),

ϑ(t+1) = ϑ (t) +
(
νv(t) − �t+1∇ϑD(Y ,ϑ (t) + νv(t))

)

= ϑ (t) +
(
νv(t) − �t+1∇ϑD(Y , ϑ̃

(t)
)
)

(7.22)

= ϑ̃
(t) +

(
νv(t+1) − �t+1∇ϑD(Y , ϑ̃

(t)
)
)

− νv(t+1).

For the Nesterov accelerated update we can also study, we use the last line of (7.22),

v(t) �→ v(t+1) = νv(t) − �t+1∇ϑD(Y , ϑ̃
(t)

),

ϑ̃
(t) �→ ϑ̃

(t+1) = ϑ̃
(t) +

(
νv(t+1) − �t+1∇ϑD(Y , ϑ̃

(t)
)
)

. (7.23)

Compared to (7.19)–(7.20), we just shift the index by 1 in the momentum v(t) in
the round brackets of (7.23). The typical way how the Nesterov-acceleration is
formulated is, yet, another equivalent formulation, namely, only in terms of ϑ (t) and

ϑ̃
(t)

. From the second line of (7.22) and (7.21) we have the updates

ϑ (t+1) = ϑ̃
(t) − �t+1∇ϑD(Y , ϑ̃

(t)
),

ϑ̃
(t+1) = ϑ (t+1) + ν

(
ϑ(t+1) − ϑ (t)

)
. (7.24)
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Typically, one chooses the momentum coefficient ν in (7.24) time-dependent by
setting νt = t/(t + 3).

In our applications we will use the R interface to the keras library [77].
This library has a couple of standard momentum-based gradient descent methods
implemented which use pre-defined learning rates and momentum coefficients. In
our analysis we are mainly relying on the variants rmsprop and the Nesterov-
accelerated version of adam, called nadam. Therefore, we briefly describe these
three variants, and for more information we refer to Sections 8.3 and 8.5 in
Goodfellow et al. [166].

Predefined Gradient Descent Methods
• rmsprop stands for ‘root mean square propagation’, and its origin can be

found in a lecture of Hinton et al. [187]. Denote by � the Hadamard product
that computes the component-wise products of two matrices. Choose a weight
α ∈ (0, 1) and calculate the accumulated squared gradients, set r(0) = 0 ∈ R

r ,

r(t) �→ r(t+1) = αr(t) + (1 − α)
(
∇ϑD(Y ,ϑ(t)) � ∇ϑD(Y ,ϑ(t))

)
∈ R

r .

The sequence (r(t))t≥1 memorizes the (squared) magnitudes of the components
of the gradients ∇ϑD(Y ,ϑ(t)), t ≥ 1. This is done individually for each
component because we may have directional differences in magnitudes (and
momentum). In contrast to (7.19), r(t) does not model the speed, but rather an
inverse weight. This then motivates the gradient descent update

ϑ(t) �→ ϑ (t+1) = ϑ (t) − �√
ε + r(t+1)

� ∇ϑD(Y ,ϑ (t)),

where the square-root is taken component-wise, for a global decay rate � > 0,
and for a small positive constant ε > 0 to ensure that everything is well-defined.

• adam stands for ‘adaptive moment’ estimation, and it has been proposed by
Kingma–Ba [216]. The momentum is determined by the first two moments in
adam, namely, we set v(0) = r(0) = 0 ∈ R

r and we consider

v(t) �→ v(t+1) = νv(t) + (1 − ν)∇ϑD(Y ,ϑ (t)), (7.25)

r(t) �→ r(t+1) = αr(t) + (1 − α)
(
∇ϑD(Y ,ϑ (t)) � ∇ϑD(Y ,ϑ(t))

)
, (7.26)

for given weights ν, α ∈ (0, 1). Similar to Bayesian credibility theory, v(t)

and r(t) are biased because these two processes have been initialized in zero.
Therefore, they are rescaled by 1/(1 − νt ) and 1/(1 − αt ), respectively. This
gives us the gradient descent update

ϑ(t) �→ ϑ (t+1) = ϑ(t) − �

ε +
√

r(t+1)

1−αt

� v(t+1)

1 − νt
,
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where the square-root is taken component-wise, for a global decay rate � > 0,
and for a small positive constant ε > 0 to ensure that everything is well-defined.

• nadam is the Nesterov-accelerated [284] version of adam. Similarly as when
going from (7.19)–(7.20) to (7.23), the acceleration is obtained by a shift of 1 in
the velocity parameter, thus, consider the Nesterov-accelerated adam update

ϑ(t) �→ ϑ (t+1) = ϑ(t) − �

ε +
√

r(t+1)

1−αt

� νv(t+1) + (1 − ν)∇ϑD(Y ,ϑ(t))

1 − νt
,

using (7.25) and (7.26).

Maximum Likelihood Estimation and Over-fitting

As explained above, we model the mean of the datum (Y, x) by a deep FN network

x �→ μ(x) = μϑ (x) = Eθ(x)[Y ] = g−1
〈
β, z(d :1)(x)

〉
,

for a network parameter ϑ ∈ R
r . MLE of this network parameter requires solving

for given data Y

ϑ̂
MLE = arg min

ϑ

D(Y ,ϑ).

In Fig. 7.5 we give a schematic figure of a loss surface ϑ �→ D(Y ,ϑ) for a (low-
dimensional) example ϑ ∈ R

2. The two plots show the same loss surface from two
different angles. This loss surface has three (local) minimums (red color), and the

smallest one (global minimum) gives the MLE ϑ̂
MLE

.
In general, this global minimum cannot be found for more complex network

architectures because the loss surface typically has a complicated structure for high-
dimensional parameter spaces. Is this a problem in FN network fitting? Not really!
We are going to explain why. The universality theorems in Sect. 7.2.2 state that more
complex FN networks have an excellent approximation capacity. If we translate
this to our statistical modeling problem it means that the observations Y can be
approximated arbitrarily well by sufficiently complex FN networks. In particular,

for a given complex network architecture, the MLE ϑ̂
MLE

will provide the optimal
fit of this architecture to the data Y , and, as a result, this network does not only
reflect the systematic effects in the data but also the noisy part. This behavior is
called (in-sample) over-fitting to the learning data L. It implies that such statistical
models typically have a poor generalization to unseen (out-of-sample) test data T ;
this is illustrated by the red color in Fig. 7.6. For this reason, in general, we are

not interested in finding the MLE ϑ̂
MLE

of ϑ in FN network regression modeling,
but we would like to find a parameter estimate ϑ̂ that (only) extracts the systematic
effects from the learning data L. This is illustrated by the different colors in Figs. 7.5



7.2 Generic Feed-Forward Neural Networks 289

theta1

theta2

D
(Y

,theta)

loss surface (view 1)

theta1

theta2

loss surface (view 2)

Fig. 7.5 Schematic figure of a loss surface ϑ �→ D(Y ,ϑ) from two different angles for a two-
dimensional parameter ϑ ∈ R
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and 7.6, where we assume: (a) red color provides models with a poor generalization
power due to over-fitting, (b) blue color provides models with a poor generalization
power, too, because these parametrizations do not explain the systematic effects in
the data at all (called under-fitting), and (c) green color gives good parametrizations
that explain the systematic effects in the data and generalize well to unseen data.
Thus, the aim is to find parametrizations that are in the green area of Fig. 7.5.
This green area emphasizes that we lose the notion of uniqueness because there
are infinitely many models in the green area that have a comparable generalization
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power. Next we explain how we can exploit the gradient descent algorithm to make
it useful for finding parametrizations in the green area.

Remark 7.8 The loss surface considerations in Fig. 7.5 are based on a fixed network
architecture. Recent research promotes the so-called Graph HyperNetwork (GHN)
that is a (hyper-)network which tries to find the optimal network architecture and
its parametrization by an additional network, we refer to Zhang et al. [402] and
Knyazev et al. [219].

Regularization Through Early Stopping

As stated above, if we run the gradient descent algorithm with properly tempered
learning rates it will converge to a local minimum of the loss function, which means
that the resulting FN network over-fits to the learning data. For this reason we need
to early stop the gradient descent algorithm beforehand. Coming back to Fig. 7.5,
typically, we start the gradient descent algorithm somewhere in the blue area of
the loss surface (supposed that the red area is a sparse set on the loss surface).
Visually speaking, the gradient descent algorithm then walks down the valley (green,
yellow and red area) by exploiting locally optimal steps. Since at the early stage of
the algorithm the systematic effects play a dominant role over the noisy part, the
gradient descent algorithm learns these systematic effects at this first stage (blue
area in Fig. 7.5). When the algorithm arrives at the green area the noisy part in the
data starts to increasingly influence the model calibration (gradient descent steps),
and, henceforth, at this stage the algorithm should be stopped, and the learned
parameter should be selected for predictive modeling. This early stopping is an
implicit way of regularization, because it implies that we stop the parameter fitting
before the parameters start to learn very individual features of the (noisy) data (and
take extreme values).

This early stopping point is determined by doing an out-of-sample analysis. This
requires the learning data L to be further split into training data U and validation
data V . The training data U is used for gradient descent parameter learning, and
the validation data V is used for tracking the over-fitting by an instantaneous (out-
of-sample) validation analysis. This partition is illustrated in Fig. 7.7, which also
highlights that the validation data V is disjoint from the test data T , the latter only
being used in the final step for comparing different statistical models (e.g., a GLM
vs. a FN network). That is, model comparison is done in a proper out-of-sample
manner on T , and each of these models is only fit on U and V . Thus, for FN network
fitting with early stopping we need a reasonable amount of data that can be split into
3 sufficiently large data sets so that each is suitable for its purpose.

For early stopping we partition the learning data L into training data U and
validation data V . The plain vanilla gradient descent algorithm can then be changed
as follows.
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Fig. 7.7 Partition of entire data D (lhs) into learning data L and test data T (middle), and into
training data U , validation data V and test data T (rhs)

Plain vanilla gradient descent algorithm with early stopping

1. Choose an initial network parameter ϑ(0) ∈ R
r .

2. Iterate for t ≥ 0 until the early stopping criterion is met:

(a) Calculate the gradient ∇ϑD(U,ϑ) in network parameter ϑ = ϑ(t) on the
training data U using (7.16) and the back-propagation method of Proposi-
tion 7.5 (for the hyperbolic tangent activation function).

(b) Make the gradient descent step for a suitable learning rate �t+1 > 0

ϑ (t) �→ ϑ (t+1) = ϑ(t) − �t+1∇ϑD(U,ϑ (t)).

(c) Calculate the validation loss D(V,ϑ(t)) on the validation data V .
(d) Stop the algorithm if the validation loss increases, i.e., if

D(V,ϑ (t)) > D(V,ϑ(t−1)), (7.27)

and return the learned parameter (estimate) ϑ̂ = ϑ(t−1).

In applications we use the SGD algorithm that can also have erratic steps because
not all random (mini-)batches are necessarily typical representations of the data.
In such cases we should use more sophisticated stopping criteria than (7.27), for
instance, early stop if the validation loss increases five times in a row.
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Fig. 7.8 Training loss
D(U ,ϑ (t)) vs. validation loss
D(V,ϑ(t)) over different
iterations t ≥ 0 of the SGD
algorithm
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Figure 7.8 provides an example of the application of the SGD algorithm on
training data U and validation data V . The training loss is in blue color and the
validation loss in green color. We observe that the validation loss has its minimum
after 52 epochs (orange vertical line), and hence the fitting algorithm should be
stopped at this point. We give a couple of remarks concerning Fig. 7.8:

• The learning data L exactly corresponds to the claims frequency data of
Sect. 5.2.4, see also Table 5.2. We take 10% as validation data which gives
|U | = 549′185 and |V | = 61′021. For the SGD algorithm we use batches of size
10′000 which implies that one epoch corresponds to �549′185/10′000� = 54
gradient descent steps. For batches of size 10′000 we expect an approximate
estimation precision on an average frequency of λ̄ = 7.36% in the Poisson model
of

⎡
⎣λ̄ − 2

√
λ̄

10′000v̄
, λ̄ + 2

√
λ̄

10′000v̄

⎤
⎦ = [6.62%, 8.11%],

with an average exposure v̄ = 0.5283 on our learning data, we also refer to
Example 3.22.

• The FN network architecture used in Fig. 7.8 is the one shown in Fig. 7.2
using one-hot encoding for categorical variables, see Sect. 7.3.1, below, and the
responses are modeled by a Poisson distribution.

• The training loss D(U,ϑ (t)), blue curve in Fig. 7.8, is a bit wiggly which comes
from the fact that we use a SGD where not every batch leads to the optimal
decrease in loss. Remark that the loss figures in the graph correspond to average
losses over an entire epoch, i.e., in our case an average over 54 SGD steps. Also
remark that the y-scale does not show the Poisson deviance loss: we use the loss
figures provided by keras [77] and these figures drop all terms of the deviance
loss that are not relevant for parameter estimation.
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We close this section with remarks.

Remarks 7.9

• We perform early stopping because otherwise a complex FN network would
in-sample over-fit to the learning data. At this stage, one could be tempted to
choose a smaller network to prevent from over-fitting. In general, this is not a
sensible thing to do because the network needs sufficient flexibility to be able to
be fitted to the data. That is, we need some redundancy in the model to be able to
successfully apply the SGD algorithm, otherwise the algorithm may get trapped
in saddlepoints or bottlenecks. Thus, the chosen network architecture should be
above the bound of a necessary minimal complexity, and different architectures
above this bound will provide similar accuracy (without a clear winner).

• The chosen network will contain certain elements of randomness, and different
runs of the SGD algorithm will provide different solutions. Firstly, the initializa-
tion ϑ (0) ∈ R

r of the algorithm is chosen at random, and since we early stop
the algorithm and because we do not have a unique optimal point, the chosen
solution will depend on this random initialization. Secondly, the split between
training and validation data is done at random, and thirdly the partitioning of the
training data into mini-batches is done at random. All these random elements
make the early stopped SGD solution non-unique.

• Early stopping implies that the chosen network parameter estimate ϑ̂ does not
correspond to a solution of the score equations and, henceforth, asymptotic
results about MLEs do not apply, see Theorem 3.28.

7.3 Feed-Forward Neural Network Examples

7.3.1 Feature Pre-processing

Similarly to GLMs, we also need to pre-process the feature components in FN
network regression modeling. The former Sect. 5.2.2 for GLMs has been called
‘feature engineering’ because we need to bring the feature components into an
appropriate functional form w.r.t. the given regression task. The present section is
called ‘feature pre-processing’ because we do not need to engineer the features for
FN networks. We only need to bring them into a suitable (tabular) form to enter the
network, and the network will then do an automated feature engineering through
representation learning.

Categorical Feature Components: One-Hot Encoding

The categorical features have been treated by dummy coding within GLMs. Dummy
coding provides full rank design matrices. For FN network regression modeling the
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Table 7.2 One-hot encoding
example mapping the K = 11
levels (colors) to the unit
vectors of the 11-dimensional
Euclidean space R

11 showing
the resulting encoding vectors
x


j as row vectors

a1 = white 1 0 0 0 0 0 0 0 0 0 0

a2 = yellow 0 1 0 0 0 0 0 0 0 0 0

a3 = orange 0 0 1 0 0 0 0 0 0 0 0

a4 = red 0 0 0 1 0 0 0 0 0 0 0

a5 = magenta 0 0 0 0 1 0 0 0 0 0 0

a6 = violet 0 0 0 0 0 1 0 0 0 0 0

a7 = blue 0 0 0 0 0 0 1 0 0 0 0

a8 = cyan 0 0 0 0 0 0 0 1 0 0 0

a9 = green 0 0 0 0 0 0 0 0 1 0 0

a10 = beige 0 0 0 0 0 0 0 0 0 1 0

a11 = brown 0 0 0 0 0 0 0 0 0 0 1

full rank property is not important because, anyway, we neither have a single (local)
minimum in the objective function, nor do we want to calculate the MLE of the
network parameter. Typically, in FN network regression modeling one uses one-
hot encoding for the categorical variables that encodes every level by a unit vector.
Assume the raw feature component x̃j is a categorical variable taking K different
levels {a1, . . . , aK }. One-hot encoding is obtained by the embedding map

x̃j �→ xj = (1{̃xj=a1}, . . . ,1{̃xj =aK })
 ∈ {0, 1}K. (7.28)

An explicit example is given in Table 7.2 which should be compared to Table 5.1.

Continuous Feature Components

The continuous feature components do not need any pre-processing but they can
directly enter the FN network which will take care of representation learning.
However, an efficient use of gradient descent methods typically requires that all
feature components live on a similar scale and that they are roughly uniformly
spread across their domains. This makes gradient descent steps more efficient in
exploiting the relevant directions.

One possibility is to use the MinMaxScaler. Let x−
j and x+

j be the minimal and
maximal possible feature values of the continuous feature component xj , i.e., xj ∈
[x−

j , x+
j ]. We transform this continuous feature component to unit scale for all data

1 ≤ i ≤ n by

xi,j �→ xMM
i,j = 2

xi,j − x−
j

x+
j − x−

j

− 1 ∈ [−1, 1]. (7.29)

The resulting feature values (xMM
i,j )1≤i≤n should roughly be uniformly spread

across the interval [−1, 1]. If this is not the case, for instance, because we have
outliers in the feature values, we may first transform them non-linearly to get
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more uniformly spread values. For example, we consider the Density of the car
frequency example on the log scale.

An alternative to the MinMaxScaler is to consider normalization with the
empirical mean x̄j and the empirical standard deviation σ̂j over all data xi,j . That
is,

xi,j �→ xsd
i,j = xi,j − x̄j

σ̂j

. (7.30)

It depends on the application whether the MinMaxScaler or normalization with
the empirical mean and standard deviation works better. Important in applications
is that we use exactly the same values for the normalization of training data U ,
validation data V and test data T , to make the same network applicable to all
these data sets. For notational convenience we will drop the upper index in xMM

i,j

or xsd
i,j , respectively, and we throughout assume that all feature components are

appropriately pre-processed.

7.3.2 Lab: Poisson FN Network for Car Insurance Frequencies

We present a first FN network example applied to the French MTPL claim frequency
data studied in Sect. 5.2.4. We assume that the claim counts Ni are independent and
Poisson distributed with claim count density (5.26), where we replace the GLM
regression function x �→ exp〈β, x〉 by a FN network regression function

x ∈ X �→ μ(x) = exp〈β, z(d :1)(x)〉.

We use a FN network of depth d = 3 having number of neurons (q1, q2, q3) =
(20, 15, 10) and using the hyperbolic tangent activation function. We pre-process
the categorical variables VehBrand and Region by one-hot encoding pro-
viding input dimensions 11 and 22, respectively. The binary variable VehGas
is encoded as 0–1. Because of scarcity of data we right-censor the continuous
variables VehAge at 20, DrivAge at 90 and BonusMalus at 150, and we
transform Density to the log scale. We then apply to each of these (modified)
continuous variables Area, VehPower, VehAge, DrivAge, BonusMalus and
log(Density) a MinMaxScaler. This provides us with an input dimension q0 =
11 + 22 + 1 + 6 = 40. The resulting FN network is illustrated in Fig. 7.2, with
the one-hot encoded variables VehBrand in orange color and Region in magenta
color. It has a network parameter ϑ ∈ R

r of dimension r = 1′306.
This network is implemented in R using the library keras [77]. The code is

provided in Listing 7.1 and the resulting network architecture is summarized in
Listing 7.2. This network is now fitted to the data. We use a batch size of 10’000,
we use the nadam version of SGD, we use 10% of the learning data L as validation
data V and the remaining 90% as training data U . We then run the corresponding
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Listing 7.1 FN network of depth d = 3 using the R library keras [77]

1 library(keras)
2 #
3 Design = layer_input(shape = c(40), dtype = ’float32’, name = ’Design’)
4 Vol = layer_input(shape = c(1), dtype = ’float32’, name = ’Vol’)
5 #
6 Network = Design %>%
7 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
8 layer_dense(units=15, activation=’tanh’, name=’FNLayer2’) %>%
9 layer_dense(units=10, activation=’tanh’, name=’FNLayer3’) %>%

10 layer_dense(units=1, activation=’exponential’, name=’Network’,
11 weights=list(array(0, dim=c(10,1)), array(log(lambda0), dim=c(1))))
12 #
13 Response = list(Network, Vol) %>% layer_multiply(name=’Multiply’)
14 #
15 model = keras_model(inputs = c(Design, Vol), outputs = c(Response))
16 #
17 summary(model)

Listing 7.2 FN network illustrated in Fig. 7.2

1 Layer (type) Output Shape Param # Connected to
2 ==================================================================
3 Design (InputLayer) (None, 40) 0
4 __________________________________________________________________
5 FNLayer1 (Dense) (None, 20) 820 Design[0][0]
6 __________________________________________________________________
7 FNLayer2 (Dense) (None, 15) 315 FNLayer1[0][0]
8 __________________________________________________________________
9 FNLayer3 (Dense) (None, 10) 160 FNLayer2[0][0]

10 __________________________________________________________________
11 Network (Dense) (None, 1) 11 FNLayer3[0][0]
12 __________________________________________________________________
13 Vol (InputLayer) (None, 1) 0
14 __________________________________________________________________
15 Multiply (Multiply) (None, 1) 0 Network[0][0]
16 Vol[0][0]
17 ==================================================================
18 Total params: 1,306
19 Trainable params: 1,306
20 Non-trainable params: 0

Listing 7.3 Fitting a FN network using the R library keras [77]

1 path0 <- "path_for_callback"
2 CBs <- callback_model_checkpoint(path0, monitor = "val_loss", verbose = 0,
3 save_best_only = TRUE, save_weights_only = TRUE)
4 #
5 model %>% compile(loss = ’poisson’, optimizer = ’nadam’)
6 fit <- model %>% fit(list(Xlearn, Vlearn), Ylearn, validation_split=0.1,
7 batch_size=10000, epochs=1000, verbose=0, callbacks=CBs)
8 #
9 load_model_weights_hdf5(model, path0)
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Table 7.3 Run times, number of parameters, in-sample and out-of-sample deviance losses (units
are in 10−2) and in-sample average frequency of the Poisson null model, model Poisson GLM3 of
Table 5.5 and the FN network model (with one-hot encoding of the categorical variables)

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15 s 50 24.084 24.102 7.36%

One-hot FN (q1, q2, q3) = (20, 15, 10) 51 s 1’306 23.757 23.885 6.96%

SGD algorithm and we retrieve the network with the lowest validation loss using
a callback. This is illustrated in Listing 7.3. The fitting performance on the
training and validation data is illustrated in Fig. 7.8, and we retrieve the network
calibration after the 52th epoch because it has the lowest validation loss. The results
are presented in Table 7.3.

From the results of Table 7.3 we conclude that the FN network outperforms
model Poisson GLM3 (out-of-sample) since it has a (clearly) lower out-of-sample
deviance loss on the test data T . This may indicate that there is an interaction
between the feature components that has not been captured in the GLM. The run
time of 51s corresponds to the run time until the minimal validation loss is reached,
of course, in practice we need to continue beyond this minimal validation loss to
ensure that we have really found the minimum. Finally, and importantly, we observe
that this early stopped FN network calibration does not meet the balance property
because the resulting average frequency of this fitted model of 6.96% is below the
empirical frequency of 7.36%. This is a major deficiency of this FN network fitting
approach, and this is going to be discussed further in Sect. 7.4.2, below.

We can perform a detailed analysis about different batch sizes, variants of SGD
methods, run times, etc. We briefly summarize our findings; this summary is also
based on the findings in Ferrario et al. [127]. We have fitted this model on batches
of sizes 2’000, 5’000, 10’000 and 20’000, and it seems that a batch size around
5’000 has the best performance, both concerning out-of-sample performance and
run time to reach the minimal validation loss. Comparing the different optimizers
rmsprop, adam and nadam, a clear preference can be given to nadam: the
resulting prediction accuracy is similar in all three optimizers (they all reach the
green area in Fig. 7.5), but nadam reaches this optimal point in half of the time
compared to rmsprop and adam.

We conclude by highlighting that different initial points ϑ (0) of the SGD
algorithm will give different network calibrations, and differences can be consid-
erable. This is discussed in Sect. 7.4.4, below. Moreover, we could explore different
network architectures, more simple ones, more complex ones, different activation
functions, etc. The results of these different architectures will not be essentially
different from our results, as long as the networks are above a minimal complexity
bound. This closes our first example on FN networks and this example is the
benchmark for refined versions that are presented in the subsequent sections.
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7.4 Special Features in Networks

7.4.1 Special Purpose Layers

So far, our networks consist of stacked FN layers, and information is passed in a
directed acyclic feed-forward path from one to the next FN layer. In this section we
discuss special purpose layers that perform a specific task in a FN network. These
include embedding layers, drop-out layers and normalization layers. These modules
should be seen as add-ons to the FN layers. Besides these add-ons, there are also
recurrent layers and convolutional layers. These two types of layers are going to be
discussed in own chapters, below, because their importance goes beyond just being
add-ons to the FN layers.

Embedding Layers for Categorical Feature Components

The categorical feature components have been treated either by dummy coding or
by one-hot encoding, and this has resulted in numerous network parameters in the
first FN layer, see Fig. 7.2. Natural language processing (NLP) treats categorical
feature components differently, namely, it embeds categorical feature components
(or words in NLP) into a Euclidean space R

b of a small dimension b. This small
dimension b is a hyper-parameter that has to be selected by the modeler, and which,
typically, is selected much smaller than the total number of levels of the categorical
feature. This embedding technique is quite common in NLP, see Bengio et al. [27–
29], but it goes beyond NLP applications, see Guo–Berkhahn [176], and it has been
introduced to the actuarial community by Richman [312, 313] and the tutorial of
Schelldorfer–Wüthrich [329].

We assume the same set-up as in dummy coding (5.21) and in one-hot encod-
ing (7.28), namely, that we have a raw categorical feature component x̃j taking K

different levels {a1, . . . , aK }. In one-hot encoding these K levels are mapped to the
K unit vectors of the Euclidean space RK , and consequently all levels have the same
mutual Euclidean distance. This does not seem to be the best way of comparing the
different levels because in our regression analysis we would like to identify the
levels that are more similar w.r.t. the regression task and, thus, these should cluster.
For an embedding layer one chooses a Euclidean space R

b of a dimension b < K ,
typically being (much) smaller than K . One then considers the embedding map

e : {a1, . . . , aK } → R
b, ak �→ e(ak)

def.= e(k). (7.31)

That is, every level ak receives a vector representation e(k) ∈ R
b which is

lower dimensional than its one-hot encoding counterpart in R
K . Proximity of the

representations e(k) and e(k′) in R
b, i.e., of two levels ak and ak′ , should be related

to similarity w.r.t. the regression task at hand. Such an embedding involves K
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Fig. 7.9 (lhs) One-hot encoding with q0 = 40, and (rhs) embedding layers for VehBrand and
Region with embedding dimension b = 2 and q0 = 11; the remaining network architecture is
identical with (q1, q2, q3) = (20, 15, 10) for depth d = 3

vectors e(k) ∈ R
b of dimension b, thus, it involves Kb parameters, called embedding

weights.
In network modeling, these embedding weights e(1), . . . , e(K) can also be learned

during gradient descent training. Basically, it just means that for the categorical
variables we add an additional embedding layer before the first FN layer z(1), i.e.,
we increase the depth of the network by 1 for the categorical feature components
(by a layer that is not fully connected). This is illustrated in Fig. 7.9 (rhs) for
the French MTPL insurance example of Sect. 7.3.2. The graph on the left-hand
side shows the network if we apply one-hot encoding to the categorical variables
VehBrand and Region; this results in a network parameter of dimension r =
1′306. The graph on the right-hand side first embeds VehBrand and Region
into two 2-dimensional spaces, illustrated by the orange and magenta circles. These
embeddings are concatenated with the remaining feature components, which then
provides a new dimension q0 = 7 + 2 + 2 = 11 in that example. This results in a
network parameter of dimension r = 726 + 22 + 44 = 792, where 22 + 44 = 66
stands for the 2-dimensional embedding weights of the 11 VehBrands and the 22
French Regions, see Listing 7.5.

Example 7.10 (Embedding Layers for Categorical Features) We revisit the exam-
ple of Sect. 7.3.2, but we replace one-hot encoding of the categorical variables by
embedding layers of dimension b = 2. The corresponding R code is given in
Listing 7.4 and the resulting model is illustrated in Listing 7.5 and Fig. 7.9 (rhs).

Apart from replacing one-hot encoding by embedding layers, we use exactly
the same FN network architecture as in Sect. 7.3.2 and we apply the same fitting
strategy in terms of batch sizes, optimizer and early stopping strategy. The results
are presented in Table 7.4.
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Listing 7.4 FN network of depth d = 3 using embedding layers

1 Design = layer_input(shape = c(7), dtype = ’float32’, name = ’Design’)
2 VehBrand = layer_input(shape = c(1), dtype = ’int32’, name = ’VehBrand’)
3 Region = layer_input(shape = c(1), dtype = ’int32’, name = ’Region’)
4 Vol = layer_input(shape = c(1), dtype = ’float32’, name = ’Vol’)
5 #
6 BrandEmb = VehBrand %>%
7 layer_embedding(input_dim=11,output_dim=2,input_length=1,name=’BrandEmb’) %>%
8 layer_flatten(name=’Brand_flat’)
9 RegionEmb = Region %>%

10 layer_embedding(input_dim=22,output_dim=2,input_length=1,name=’RegionEmb’) %>%
11 layer_flatten(name=’Region_flat’)
12 #
13 Network = list(Design,BrandEmb,RegionEmb) %>% layer_concatenate(name=’concate’) %>%
14 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
15 layer_dense(units=15, activation=’tanh’, name=’FNLayer2’) %>%
16 layer_dense(units=10, activation=’tanh’, name=’FNLayer3’) %>%
17 layer_dense(units=1, activation=’exponential’, name=’Network’,
18 weights=list(array(0, dim=c(10,1)), array(log(lambda0), dim=c(1))))
19 #
20 Response = list(Network, Vol) %>% layer_multiply(name=’Multiply’)
21 #
22 model = keras_model(inputs = c(Design, VehBrand, Region, Vol),
23 outputs = c(Response))

Table 7.4 Run times, number of parameters, in-sample and out-of-sample deviance losses (units
are in 10−2) and in-sample average frequency of the Poisson null model, model Poisson GLM3 of
Table 5.5 and the FN network models (with one-hot encoding and embedding layers of dimension
b = 2, respectively)

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15 s 50 24.084 24.102 7.36%

One-hot FN (q1, q2, q3) = (20, 15, 10) 51 s 1’306 23.757 23.885 6.96%

Embed FN (q1, q2, q3) = (20, 15, 10) 120 s 792 23.694 23.820 7.24%

A first remark is that the model calibration takes longer using embedding layers
compared to one-hot encoding. The main reason for this is that having an embedding
layer increases the depth of the network by one layer, as can be seen from Fig. 7.9.
Therefore, the back-propagation takes more time, and the convergence is slower
requiring more gradient descent steps. We have less over-fitting as can be seen from
Fig. 7.10. The final fitted model has a slightly better out-of-sample performance
compared to the one-hot encoding one. However, this slight improvement in the
performance should not be overstated because, as explained in Remarks 7.9, there
are a couple of elements of randomness involved in SGD fitting, and choosing
a different seed may change the results. We remark that the balance property is
not fulfilled because the average frequency of the fitted model does not meet the
empirical frequency, see the last column of Table 7.4; we come back to this in
Sect. 7.4.2, below.
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Listing 7.5 Summary of FN network of Fig. 7.9 (rhs) using embedding layers of dimension b = 2

1 Layer (type) Output Shape Param # Connected to
2 ==============================================================================
3 VehBrand (InputLayer) (None, 1) 0
4 ______________________________________________________________________________
5 Region (InputLayer) (None, 1) 0
6 ______________________________________________________________________________
7 BrandEmb (Embedding) (None, 1, 2) 22 VehBrand[0][0]
8 ______________________________________________________________________________
9 RegionEmb (Embedding) (None, 1, 2) 44 Region[0][0]

10 ______________________________________________________________________________
11 Design (InputLayer) (None, 7) 0
12 ______________________________________________________________________________
13 Brand_flat (Flatten) (None, 2) 0 BrandEmb[0][0]
14 ______________________________________________________________________________
15 Region_flat (Flatten) (None, 2) 0 RegionEmb[0][0]
16 ______________________________________________________________________________
17 concate (Concatenate) (None, 11) 0 Design[0][0]
18 Brand_flat[0][0]
19 Region_flat[0][0]
20 ______________________________________________________________________________
21 FNLayer1 (Dense) (None, 20) 240 concate[0][0]
22 ______________________________________________________________________________
23 FNLayer2 (Dense) (None, 15) 315 FNLayer1[0][0]
24 ______________________________________________________________________________
25 FNLayer3 (Dense) (None, 10) 160 FNLayer2[0][0]
26 ______________________________________________________________________________
27 Network (Dense) (None, 1) 11 FNLayer3[0][0]
28 ______________________________________________________________________________
29 Vol (InputLayer) (None, 1) 0
30 ______________________________________________________________________________
31 Multiply (Multiply) (None, 1) 0 Network[0][0]
32 Vol[0][0]
33 ==============================================================================
34 Total params: 792
35 Trainable params: 792
36 Non-trainable params: 0

Fig. 7.10 Training loss
D(U ,ϑ (t)) vs. validation loss
D(V,ϑ(t)) over different
iterations t ≥ 0 of the SGD
algorithm in the deep FN
network with embedding
layers for categorical
variables

0 200 400 600 800 1000

0.
15

4
0.

15
5

0.
15

6
0.

15
7

0.
15

8
0.

15
9

0.
16

0

stochastic gradient descent algorithm

training epochs

(m
od

ifi
ed

) 
de

vi
an

ce
 lo

ss

training loss
validation loss
minimal validation loss



302 7 Deep Learning

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

2−dimensional embedding of VehBrand

dimension 1

di
m

en
si

on
 2

B1B2
B3

B4
B5

B6

B10

B11

B12

B13
B14

B1/B2  Renault, Nissan, Citroen
B3     Volkswagen, Audi, Skoda, Seat
B4/B5  Opel, General Motors, Ford
B6     Fiat
B10/B11  Mercedes, Chrysler, BMW
B12   Japanese cars (except Nissan)
B13/B14  other cars

−0.2 −0.1 0.0 0.1 0.2 0.3

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

2−dimensional embedding of Region

dimension 1
di

m
en

si
on

 2

R11

R21

R22

R23

R24

R25

R26

R31

R41

R42

R43

R52R53R54 R72

R73

R74

R82

R83

R91

R93

R94

Fig. 7.11 Embedding weights eVehBrand ∈ R
2 and eRegion ∈ R

2 of the categorical variables
VehBrand and Region for embedding dimension b = 2

A major advantage of using embedding layers for the categorical variables is that
we receive a continuous representation of nominal variables, where proximity can be
interpreted as similarity for the regression task at hand. This is nicely illustrated in
Fig. 7.11 which shows the resulting 2-dimensional embeddings eVehBrand ∈ R

2 and
eRegion ∈ R

2 of the categorical variables VehBrand and Region. The Region
embedding eRegion ∈ R

2 shows surprising similarities with the French map, for
instance, Paris region R11 is adjacent to R23, R22, R21, R26, R24 (which is also
the case in the French map), the Isle of Corsica R94 and the South of France R93,
R91 and R73 are well separated from other regions, etc. Similar observations can
be made for the embedding of VehBrand, Japanese cars B12 are far apart from the
other cars, cars B1, B2, B3 and B6 (Renault, Nissan, Citroen, Volkswagen, Audi,
Skoda, Seat and Fiat) cluster, etc. �

Drop-Out Layers and Regularization

Above, over-fitting to the learning data has been taken care of by early stopping. In
view of Sect. 6.2 one could also use regularization. This can easily be obtained by
replacing (7.14), for instance, by the following Lp-regularized counterpart

ϑ �→ 2

n

n∑
i=1

vi

ϕ

(
Yih (Yi)−κ (h (Yi))−Yih (μϑ (xi ))+κ (h (μϑ (xi )))

)
+λ ‖ϑ−‖p

p ,

for some p ≥ 1, regularization parameter λ > 0 and where the reduced network
parameter ϑ− ∈ R

r−1 excludes the intercept parameter β0 of the output layer,
we also refer to (6.4) in the context of GLMs. For grouped penalty terms we
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refer to (6.21). The difficulty with this approach is the tuning of the regularization
parameter(s) λ: run time is one issue, suitable grouping is another issue, and non-
uniqueness of the optimal network a further one that can substantially distort the
selection of reasonable regularization parameters.

A more popular method to prevent from over-fitting individual neurons in a FN
layer to a certain task are so-called drop-out layers. A drop-out layer is an additional
layer between FN layers that removes at random during gradient descent training
neurons from the network, i.e., in each gradient descent step, any of the earmarked
neurons is offset independently from the others with a fixed probability δ ∈ (0, 1).
This random removal will imply that the composite of the remaining neurons needs
to be sufficiently well balanced to take over the role of the dropped-out neurons.
Therefore, a single neuron cannot be over-trained to a certain task because it needs
to be able play several different roles. Drop-out has been introduced by Srivastava
et al. [345] and Wager et al. [373].

Listing 7.6 FN network of depth d = 3 using a drop-out layer, ridge regularization and a
normalization layer

1 Network = list(Design,BrandEmb,RegionEmb) %>%
2 layer_concatenate(name=’concate’) %>%
3 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
4 layer_dropout (rate = 0.01) %>%
5 layer_dense(units=15, kernel_regularizer=regularizer_l2(0.0001),
6 activation=’tanh’, name=’FNLayer2’) %>%
7 layer_batch_normalization() %>%
8 layer_dense(units=10, activation=’tanh’, name=’FNLayer3’) %>%
9 layer_dense(units=1, activation=’exponential’, name=’Network’,

10 weights=list(array(0, dim=c(10,1)), array(log(lambda0), dim=c(1))))

Listing 7.6 gives an example, where we add a drop-out layer with a drop-out
probability of δ = 0.01 after the first FN layer, and in the second FN layer we apply
ridge regularization to the weights (w

(2)
1,1, . . . , w

(2)
q1,q2), i.e., excluding the intercepts

w
(2)
0,j , 1 ≤ j ≤ q2. Both the drop-out layer and regularization are only used during

the gradient descent fitting, and these network features are disabled during the
prediction.

Drop-out is closely related to ridge regularization as the following linear
Gaussian regression example shows; this consideration is taken from Section 18.6
of Efron–Hastie [117]. Assume we have a linear regression problem with square
loss function

D(Y ,β) = 1

2

n∑
i=1

(Yi − 〈β, xi〉)2 .

We assume in this Gaussian case that the observations and the features are
standardized, see Sect. 6.2.4. This means that

∑n
i=1 Yi = 0,

∑n
i=1 xi,j = 0 and
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n−1∑n
i=1 x2

i,j = 1, for all 1 ≤ j ≤ q . This standardization implies that we can
omit the intercept parameter β0 because its MLE is equal to 0.

We introduce i.i.d. drop-out random variables Ii,j for 1 ≤ i ≤ n and 1 ≤ j ≤ q

with (1 − δ)Ii,j being Bernoulli distributed with probability 1 − δ ∈ (0, 1). This
scaling implies E[Ii,j ] = 1. Using these Bernoulli random variables we modify the
above square loss function to

DI (Y ,β) = 1

2

n∑
i=1

⎛
⎝Yi −

q∑
j=1

βj Ii,j xi,j

⎞
⎠

2

,

i.e., every individual component xi,j can drop out independently of the others.
Gaussian MLE requires to set the gradient of DI (Y ,β) w.r.t. β ∈ R

q equal to
zero. The average score equation is given by (we average over the drop-out random
variables Ii,j )

Eδ

[∇βDI (Y ,β)
∣∣Y ] = −X
Y + X
Xβ + δ

1 − δ
diag

(
n∑

i=1

x2
i,1, . . . ,

n∑
i=1

x2
i,q

)
β

= −X
Y + X
Xβ + δn

1 − δ
β

!= 0,

where we have used the normalization of the columns of the design matrix X ∈
R

n×q (we drop the intercept column). This is ridge regression in the linear Gaussian
case with a regularization parameter λ = δ/(2(1 − δ)) > 0 for δ ∈ (0, 1), see (6.9).

Normalization Layers

In (7.29) and (7.30) we have discussed that the continuous feature components
should be pre-processed so that all components live on the same scale, otherwise the
gradient descent fitting may not be efficient. A similar phenomenon may occur with
the learned representations z(m:1)(xi ) in the FN layers 1 ≤ m ≤ d . In particular, this
is the case if we choose an unbounded activation function φ. For this reason, it can
be advantageous to rescale the components z

(m:1)
j (xi ), 1 ≤ j ≤ qm, in a given FN

layer back to the same scale. To achieve this, a normalization step (7.30) is applied
to every neuron z

(m:1)
j (xi ) over the given cases i in the considered (mini-)batch. This

involves two more parameters (for the empirical mean and the empirical standard
deviation) in each neuron of the corresponding FN layer. Note, however, that all
these operations are of a linear nature. Therefore, they do not affect the predictive
model (i.e., these operations cancel in the scalar products in (7.6)), but they may
improve the performance of the gradient descent algorithm.

The code in Listing 7.6 uses a normalization layer on line 6. In our applications,
it has not been necessary to use these normalization layers, as it has not led to better
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run times in SGD algorithms; note that our networks are not very deep and they use
the symmetric and bounded hyperbolic tangent activation function.

7.4.2 The Balance Property in Neural Networks

We have seen in Table 7.4 that our FN network outperforms the GLM for claim
frequency prediction in terms of a lower out-of-sample loss. We interpret this as
follows. Feature engineering has not been done in the most optimal way for the
GLM because the FN network finds modeling structure that is not present in the
selected GLM. As a consequence, the FN network provides a better generalization
to unseen data, i.e., we can better predict new data on a granular level with the FN
network. However, having a more precise model on an individual policy level does
not necessarily imply that the model also performs better on a global portfolio level.
In our example we see that we may have smaller errors on an individual policy level,
but these smaller errors do not aggregate to a more precise model in the average
portfolio frequency. In our case, we have a misspecification of the average portfolio
frequency, see the last column of Table 7.4. This is a major deficiency in insurance
pricing because it may result in a misspecification of the overall price level, and this
requires a correction. We call this correction bias regularization.

Simple Bias Regularization

The straightforward correction is to adjust the intercept parameter β0 ∈ R

accordingly. That is, compare the empirical mean

μ̄ =
∑n

i=1 viYi∑n
i=1 vi

,

to the model average of the fitted FN network

μ̂ =
∑n

i=1 viμϑ̂ (xi )∑n
i=1 vi

,

where ϑ̂ = (ŵ
(1)
1 , . . . , ŵ

(d)
qd

, β̂)
 ∈ R
r is the learned network parameter from the

(early stopped) SGD algorithm. The output of this fitted model reads as

xi �→ μϑ̂ (xi ) = g−1
〈
β̂, ẑ(d :1)(xi )

〉
= g−1

⎛
⎝β̂0 +

qd∑
j=1

β̂j ẑ
(d :1)
j (xi )

⎞
⎠ ,
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where the hat in ẑ(d :1) indicates that we use the estimated weights ŵ
(m)
l , 1 ≤ l ≤ qm,

1 ≤ m ≤ d , in the FN layers. The balance property can be rectified by replacing β̂0

by the solution ̂̂β0 of the following identity

n∑
i=1

viYi
!=

n∑
i=1

vig
−1

⎛
⎝̂̂β0 +

qd∑
j=1

β̂j ẑ
(d :1)
j (xi )

⎞
⎠ .

Since g−1 is continuous and strictly monotone, there is a unique solution to this
requirement supposed that the range of g−1 covers the support of the Yi’s. If we
work with the log-link g(·) = log(·), this can easily be solved and we obtain

̂̂β0 = β̂0 + log

(
μ̄

μ̂

)
.

Sophisticated Bias Regularization Under the Canonical Link Choice

If we work with the canonical link g = h = (κ ′)−1, we can do better because the
MLE of such a GLM automatically provides the balance property, see Corollary 5.7.
Choose the SGD learned network parameter ϑ̂ = (ŵ

(1)
1 , . . . , ŵ

(d)
qd

, β̂)
 ∈ R
r .

Denote by ẑ(d :1) the fitted network architecture that is based on the estimated
weights ŵ

(1)
1 , . . . , ŵ

(d)
qd

. This allows us to study the learned representations of the
raw features x1, . . . , xn in the last FN layer. We denote these learned representations
by

ẑ1 = ẑ(d :1)(x1), . . . , ẑn = ẑ(d :1)(xn) ∈ {1} × R
qd . (7.32)

These learned representations can be used as new features to explain the response
Y . We define the feature engineered design matrix by

X̂ = (̂z1, . . . , ẑn)

 ∈ R

n×(qd+1).

Based on this new design matrix X̂ we can run a classical GLM receiving a unique

MLE β̂
MLE ∈ R

qd+1 supposed that this design matrix has a full rank qd + 1 ≤ n,
see Proposition 5.1. Since we work with the canonical link, this re-calibrated FN
network will automatically satisfy the balance property, and the resulting regression
function reads as

x �→ μ̂(x) = h−1
〈
β̂

MLE
, ẑ(d :1)(x)

〉
. (7.33)
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This is the proposal of Wüthrich [390]. We give some remarks.

Remarks 7.11

• This additional MLE step for the output parameter β ∈ R
qd+1 may lead to

over-fitting. In that case one might choose a lower dimensional last FN layer.
Alternatively, one might explore a more early stopping rule in SGD.

• Wüthrich [390] also explores other bias correction methods like regularization
using shrinkage. In combination with regression trees one can achieve averages
on pre-defined sub-portfolios. We will not further explore these other approaches
because they are less robust and more difficult in the applications.

Example 7.12 (Balance Property in Networks) We apply this additional MLE step
to the two FN networks of Table 7.4. Note that in these two examples we consider
a Poisson model using the canonical link for g, thus, the resulting adjusted
network (7.33) will automatically satisfy the balance property, see Corollary 5.7.

Listing 7.7 Balance property adjustment (7.33)

1 glm.formula <- function(nn){
2 string <- "yy ~ X1"
3 if (nn>1){for (ll in 2:nn){ string <- paste(string, "+X",ll, sep="")}}
4 string
5 }
6 #
7 zz <- keras_model(inputs=model$input,
8 outputs=get_layer(model, ’FNLayer3’)$output)
9 xx.learn <- data.frame(zz %>% predict(list(Xlearn, Vlearn)))

10 q3 <- ncol(xx.learn)
11 xx.learn$yy <- Ylearn
12 xx.learn$Exposure <- learn$Exposure
13 #
14 glm1 <- glm(as.formula(glm.formula(q3)),
15 data=xx.learn, offset=log(Exposure), family=poisson())
16
17 #
18 w1 <- get_weights(model)
19 w1[[7]] <- array(glm1$coefficients[2:(q3+1)], dim=c(q3,1))
20 w1[[8]] <- array(glm1$coefficients[1], dim=c(1))
21 set_weights(model, w1)

In Listing 7.7 we illustrate the necessary code that has to be added to List-
ings 7.1–7.3. On lines 7–8 of Listing 7.7 we retrieve the learned representa-
tions (7.32) which are used as the new features in the Poisson GLM on lines 13–14.
The resulting MLE β̂

MLE ∈ R
qd+1 is imputed to the network parameter ϑ̂ on

lines 17–20. Table 7.5 shows the performance of the resulting bias regularized FN
networks.

Firstly, we observe from the last column of Table 7.5 that, indeed, the bias
regularization step (7.33) provides the balance property. In general, in-sample losses

(have to) decrease because β̂
MLE

is (in-sample) more optimal than the early stopped
SGD solution β̂. Out-of-sample this leads to a small improvement in the one-
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Table 7.5 Run times, number of parameters, in-sample and out-of-sample deviance losses (units
are in 10−2) and in-sample average frequency of the Poisson null model, model Poisson GLM3 of
Table 5.5 and the FN network models (with one-hot encoding and embedding layers of dimension
b = 2, respectively), and their bias regularized counterparts

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15 s 50 24.084 24.102 7.36%

One-hot FN (q1, q2, q3) = (20, 15, 10) 51 s 1’306 23.757 23.885 6.96%

Embed FN (q1, q2, q3) = (20, 15, 10) 120 s 792 23.694 23.820 7.24%

One-hot FN bias regularized +4 s 1’306 23.742 23.878 7.36%

Embed FN bias regularized +4 s 792 23.690 23.824 7.36%

hot encoded variant and a small worsening in the embedding variant, i.e., the
latter slightly over-fits in this additional MLE step. However, these differences are
comparably small so that we do not further worry about the over-fitting, here. This
closes this example. �

Auto-Calibration for Bias Regularization

We present another approach of correcting for the potential failure of the balance
property. This method does not depend on a particular type of regression model,
i.e., it can be applied to any regression model. This proposal goes back to Denuit et
al. [97], and it is based on the notion of auto-calibration introduced by Patton [297]
and Krüger–Ziegel [227]. We first describe auto-calibration and its implications.

Definition 7.13 The random variable Z is an auto-calibrated forecast of random
variable Y if E[Y |Z] = Z, a.s.

If the response Y is described by the features X = x, we consider the conditional
mean of Y , given X,

μ(X) = E [Y |X] .

This conditional mean μ(X) is an auto-calibrated forecast for the response Y . Use
the tower property and note that σ(μ(X)) ⊂ σ(X) to receive, a.s.,

E [Y |μ(X)] = E [E [Y | X]|μ(X)] = E [μ(X)|μ(X)] = μ(X).

For the further understanding of auto-calibration and forecast dominance, we
introduce the concept of convex order; forecast dominance has been introduced in
Definition 4.20.
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Definition 7.14 (Convex Order) A random variable Z1 is bigger in convex order
than a random variable Z2, write Z1 �cx Z2, if E[�(Z1)] ≥ E[�(Z2)], for all
convex functions � for which the expectations exist.

By Strassen’s theorem [346], Z1 �cx Z2 if and only if there exist random variables

Z′
1 and Z′

2 with Z1
(d)= Z′

1 and Z2
(d)= Z′

2 and E[Z′
1|Z′

2] = Z′
2, a.s. In particular,

the convex order Z1 �cx Z2 implies that Var(Z1) ≥ Var(Z2) and E[Z1] = E[Z2].
The latter follows from Strassen’s theorem and the tower property, and the former
follows from the latter and the convex order by using the explicit choice �(x) = x2.
Thus, the random variable Z1 is more volatile than Z2, both having the same mean.
The following theorem shows that this additional volatility is a favorable property
in terms of forecast dominance under auto-calibration.

Theorem 7.15 (Krüger–Ziegel [227, Theorem 3.1], Without Proof) Assume that
μ̂1 and μ̂2 are auto-calibrated forecasts for the random variable Y . Predictor μ̂1
forecast dominates μ̂2 if and only if μ̂1 �cx μ̂2.

Recall that forecast dominance of μ̂1 over μ̂2 was defined as follows, see Defini-
tion 4.20,

E
[
Dψ(Y, μ̂1)

] ≤ E
[
Dψ(Y, μ̂2)

]
,

for all Bregman divergences Dψ . Strassen’s theorem tells us that μ̂1 is more volatile
than μ̂2 (both being auto-calibrated and unbiased for E[Y ]) and this additional
volatility implies that the former auto-calibrated predictor can better follow Y . This
provides the superior forecast dominance of μ̂1 over μ̂2. This relation is most easily
understood by the following example. Consider (Y,X) as above. Assume that the
feature X̃ is a sub-variable of the feature X by dropping some of the components
of X. Naturally, we have σ(X̃) ⊂ σ(X), and both sets of information provide auto-
calibrated forecasts

μ(X) = E [Y |X] and μ(X̃) = E
[
Y
∣∣X̃ ] .

The tower property and Jensen’s inequality give for any convex function � (subject
to existence)

E [�(μ(X))] = E [� (E [Y |X])] = E
[
E
[
� (E [Y |X])

∣∣X̃] ]

≥ E
[
�
(
E
[
E [Y |X]

∣∣X̃])] = E
[
�
(
E
[
Y
∣∣X̃] )] = E

[
�
(
μ(X̃)

)]
.

Thus, we have μ(X) �cx μ(X̃) which implies forecast dominance of μ(X) over
μ(X̃). This makes perfect sense in view of σ(X̃) ⊂ σ(X). Basically, this describes
the construction of a F-martingale using an integrable random variable Y and a
filtration F on the underlying probability space (�,A,P). This martingale sequence
provides forecast dominance with increasing information sets described by the
filtration F.
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We now turn our attention to the balance property and the unbiasedness of
predictors, this follows Denuit et al. [97]. Assume we have any predictor μ̂(x) of
Y , for instance, this can be any FN network predictor μϑ̂ (x) coming from an early
stopped SGD algorithm. We define its balance-corrected version by

μ̂BC(x) = E [Y |μ̂(x)] . (7.34)

Proposition 7.16 (Wüthrich [391, Proposition 4.6], Without Proof) The
balance-corrected predictor μ̂BC(X) is an auto-calibrated forecast for Y .

Remarks 7.17 (Expected Deviance Generalization Loss) We return to the decom-
position of the expected deviance GL given in Theorem 4.7, but we add the features
X = x, now. The expected deviance GL of a predictor μ̂(X) under the unit deviance
d then reads as

Eθ [d (Y, μ̂(X))] = Eθ [d (Y, μ)]

+ 2
(
μh(μ) − κ(h(μ)) − Eθ [Yh (μ̂(X))] + Eθ [κ (h (μ̂(X)))]

)
,

where μ = Eθ [Y ] is the unconditional mean of Y (averaging also over the feature
distribution of X). Note that this formula differs from (4.13) because Y and h(μ̂(X))

are no longer independent if we include the features X. The term Eθ [d (Y, μ)] is
called the entropy which is driven by the stochastic nature of the random variable
Y . This is the irreducible risk if no feature information is available.

In statistical modeling one considers different decompositions of the expected
deviance GL, we refer to Fissler et al. [129]. Namely, introducing the features X

we can reduce the expected deviance GL compared to the unconditional mean μ in
terms of forecast dominance. This allows us to decouple as follows for the prediction
μ(X) = Eθ [Y |X]

Eθ [d (Y, μ̂(X))] = Eθ [d (Y, μ)] −
(
Eθ [d (Y, μ)] − Eθ [d (Y, μ(X))]

)

+
(
Eθ [d (Y, μ̂(X))] − Eθ [d (Y, μ(X))]

)
.

This expresses the expected deviance GL of the predictor μ̂(X) as the entropy (first
term), the conditional resolution (second term) and the conditional calibration (third
term). The conditional resolution describes the information gain in terms of forecast
dominance knowing the feature X, and the conditional calibration describes how
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well we estimate μ(X). The conditional resolution is positive because μ(X) �cx μ

and the unit deviance d(Y, ·) is a convex function, see Lemma 2.22. The conditional
calibration is also positive, this can be seen by considering the deviance GL,
conditional on X.

We can reformulate this expected deviance GL in terms of the auto-calibration
property

Eθ [d (Y, μ̂(X))] = Eθ [d (Y, μ)] −
(
Eθ [d (Y, μ)] − Eθ [d (Y, μ̂BC(X))]

)

+
(
Eθ [d (Y, μ̂(X))] − Eθ [d (Y, μ̂BC(X))]

)
.

The first term is the entropy, the second term is called the auto-resolution and the
third term describes the auto-calibration. If we have an auto-calibrated forecast
μ̂(X) then the last term vanishes because it is equal to its balance-corrected version
μ̂BC(X). Again these two latter terms are positive, for the auto-calibration this can
be seen by considering the deviance GL, conditioned on μ̂(X).

To rectify the balance property we directly focus on (7.34), and we estimate
this conditional expectation. That is, the balance correction can be achieved by an
additional regression step directly estimating the balance-corrected version μ̂BC(x)

in (7.34). This additional regression step differs from (7.33) as it does not use the
learned representations ẑ(d :1)(x) in the last FN layer (7.32), but it uses the learned
representations in the output layer. That is, consider the learned features

ẑ�
1 = (1, μϑ̂ (x1))


, . . . , ẑ�
n = (1, μϑ̂ (xn))


 ∈ {1} × R,

and perform an additional linear regression step for the response Y using the design
matrix

X̂ = (̂z�
1, . . . , ẑ

�
n

)
 ∈ R
n×2.

This additional linear regression step gives us an estimate

β̂ =
(
X̂
V X̂

)−1
X̂
V Y ∈ R

2, (7.35)

with diagonal weight matrix V = diag(vi)1≤i≤n. The balance property is then
restored by estimating the balance-corrected means μ̂BC(xi ) by

̂̂μBC(xi ) = β̂0 + β̂1μϑ̂ (xi ), (7.36)

for 1 ≤ i ≤ n. Note that this can be done for any regression model since we do not
rely on the network architecture in this step.



312 7 Deep Learning

Remarks 7.18

• Balance correction (7.36) may lead to some conflict in range if the dual (mean)
parameter space M is (one-sided) bounded. Moreover, it does not consider the
deviance loss of the response Y , but it rather underlies a Gaussian model by
using the weighted square loss function for finding (the Gaussian MLE) β̂ ∈ R

2.
Alternatively, we could consider the canonical link h that belongs to the chosen
EDF. This then allows us to study the regression problem on the canonical scale
by setting for the learned representations

ẑθ
1 = (1, h(μϑ̂ (x1))

)

, . . . , ẑθ

n = (1, h(μϑ̂ (xn))
)
 ∈ {1} × �. (7.37)

The latter motivates the consideration of a GLM under the chosen EDF

xi �→ h (μ̂BC(xi )) = 〈β, ẑθ
i 〉 = β0 + β1h(μϑ̂ (xi )), (7.38)

for regression parameter β ∈ R
2. The choice of the canonical link and the

inclusion of an intercept will provide the balance property when estimating β

with MLE, see Corollary 5.7. If the mean estimates μϑ̂ (xi ) involve the canonical
link h, (7.38) reads as

xi �→ h (μ̂BC(xi )) = 〈β, ẑθ
i 〉 = β0 + β1

〈
β̂, ẑ(d :1)(xi )

〉
,

the latter scalar product is the output activation received from the FN net-
work. From this we see that the estimated balance-corrected calibration on the
canonical scale will give us a non-optimal (in-sample) estimation step compared
to (7.33), if we work with the canonical link h.

• Denuit et al. [97] give a proposal to break down the global balance to a local
version using a suitable kernel function, this will be further discussed in the next
Example 7.19.

Example 7.19 (Auto-calibration in Networks) We apply this additional auto-
calibration step (7.34) to the FN network with embedding layers that does not
satisfy the balance property, i.e., having an average frequency of 7.24% < 7.36%,
see Tables 7.4 and 7.5. We start by analyzing the auto-calibration property (7.34) of
this network predictor vμϑ̂ (x) by studying an empirical version of

z �→ vμ̂BC(x) = E
[
vY
∣∣vμϑ̂ (x) = z

]
. (7.39)

This empirical version is obtained from the R library locfit [254] that allows us
to consider a local polynomial regression fit of degree deg=2, and we use a nearest
neighbor fraction of alpha=0.05, the code is provided in Listing 7.8. We use the
exposure v scaled version in (7.39) since the balance property should hold on that
scale, see Corollary 5.7. The claim counts are given by N = vY , and the exposure
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v is integrated as an offset into the FN network regression function, see line 20 of
Listing 7.4.

Listing 7.8 Empirical auto-calibration using the R library locfit [254]

1 z <- learn$pred
2 mu.BC <- predict(locfit(learn$N ~ learn$pred, alpha=0.05, deg=2), newdata=z)

Figure 7.12 (lhs) shows the empirical auto-calibration of (7.39) using the R
code of Listing 7.8. If the auto-calibration would hold exactly, then the black
dots should lie on the red diagonal line. We observe a very good match, which
indicates that the auto-calibration property holds quite accurately for our network
predictor (v, x) �→ vμϑ̂ (x). For very small expectations Eθ(x)[N] we slightly
underestimate, and for bigger expectations we slightly overestimate. The blue line
shows the empirical density of the predictors viμϑ̂ (xi ), 1 ≤ i ≤ n, highlighting
heavy-tailedness and that the underestimation in the right tail will not substantially
contribute to the balance property as these are only very few insurance policies.

We explore the Gaussian balance correction (7.35) considering a linear regression
model with weighted square loss function. We receive the estimate β̂ = (9 ·
10−4, 1.005)
, thus, μϑ̂ (x) only gets very gently distorted, see (7.36). The results of
this balance-corrected version ̂̂μBC(x) are given on line ‘embed FN Gauss balance-
corrected’ in Table 7.6. We observe that this approach is rather competitive leading
to a slightly better model (out-of-sample). Figure 7.12 (rhs) shows the resulting
(empirical) auto-calibration plot which is still not fully in line with Proposition 7.16;
this empirical plot may be distorted by the exposures, by the fact that it is an
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Fig. 7.12 (lhs) Empirical auto-calibration (7.39), the blue line shows the empirical density of the
predictors viμϑ̂ (xi ), 1 ≤ i ≤ n; (rhs) balance-corrected version using the weighted Gaussian
correction (7.35)
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Table 7.6 Run times, number of parameters, in-sample and out-of-sample deviance losses (units
are in 10−2) and in-sample average frequency of the Poisson null model, model Poisson GLM3
of Table 5.5, the FN network model (with embedding layers of dimension b = 2), and their bias
regularized and balance-corrected counterparts, the local correction uses a GAM with 2.6 degrees
of freedom in the cubic spline part

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15 s 50 24.084 24.102 7.36%

Embed FN (q1, q2, q3) = (20, 15, 10) 120 s 792 23.694 23.820 7.24%

Embed FN bias regularized +4 s 792 23.690 23.824 7.36%

Embed FN Gauss balance-corrected – 792 + 2 23.692 23.819 7.36%

Embed FN locally balance-corrected – 792 + 3.6 23.692 23.818 7.36%

empirical plot fitted with locfit, and by fact that a linear Gaussian correction
estimate may not be fully suitable.

Denuit et al. [97] propose a local balance correction that is very much in the
spirit of the local polynomial regression fit with locfit. However, when using
locfit we did not pay any attention to the balance property. Therefore, we
proceed slightly differently, here. In formula (7.37) we give the network predictors
on the canonical scale. This equips us with the data (Yi , vi , ẑ

θ
i )1≤i≤n. To perform

a local balance correction we fit a generalized additive model (GAM) to this data,
using the canonical link, the Poisson deviance loss function, the observations Yi ,
the exposures vi and the feature information ẑθ

i ; for GAMs we refer to Hastie–
Tibshirani [181, 182], Wood [384] and Chapter 3 in Wüthrich–Buser [392], in
particular, we proceed as in Example 3.4 of the latter reference.

The GAM regression fit on the canonical scale is illustrated in Fig. 7.13 (lhs).
We essentially receive a straight line which says that the auto-calibration property is
already well satisfied by the FN network predictor μϑ̂ . In fact, it is not completely
a straight line, but GCV provides an optimal model with 2.6 effective degrees of
freedom in the natural cubic spline part. This local (GAM) balance correction leads
to another small model improvement (out-of-sample), see last line of Table 7.6.

Conclusion The balance property adjustment and the bias regularization are crucial
in ensuring that the predictive model is on the right (price) level. We have pre-
sented three sophisticated methods of balance property adjustments: the additional
GLM step under the canonical link choice (7.33), the model-free global Gaussian
correction (7.35)–(7.36), and the local balance correction using a GAM under the
canonical link choice. In our example, the results of the three different approaches
are rather similar. In the sequel, we use the additional GLM step solution (7.33), the
reason being that under this approach we can rely on one single regression model
that directly predicts the claims. The other two approaches need two steps to get the
predictions, which requires the storage of two models. �
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Fig. 7.13 (lhs) GAM fit on the canonical scale having 2.6 effective degrees of freedom (red shows
the estimated confidence bounds); (rhs) balance-corrected version using the local GAM correction

7.4.3 Boosting Regression Models with Network Features

From Table 7.5 we conclude that the FN networks find systematic structure in the
data that is not present in model Poisson GLM3, thus, the feature engineering for
the GLM can be improved. Unfortunately, FN networks neither directly build on
GLMs nor do they highlight the weaknesses of GLMs. In this section we discuss
a proposal presented in Wüthrich–Merz [394] and Schelldorfer–Wüthrich [329]
of combining two regression approaches. We are going to boost a GLM with FN
network features. Typically, boosting is applied within the framework of regression
trees. It goes back to the work of Valiant [362], Kearns–Valiant [209, 210], Schapire
[328], Freund [139] and Freund–Schapire [140]. The idea behind boosting is to
analyze the residuals of a given regression model with a second regression model
to see whether this second regression model can still find systematic effects in the
residuals which have not been discovered by the first one.

We start from the GLM studied in Chap. 5, and we boost this GLM with a FN
network. Assume that both regression models act on the same feature space X ⊂
{1} × R

q0 . The GLM provides a regression function for link function g and GLM
parameter βGLM ∈ R

q0+1

x �→ μGLM(x) = g−1
〈
βGLM, x

〉
.

Recall that this GLM can be interpreted as a FN network of depth 0, see
Remarks 7.2. Next, we choose a FN network of depth d ≥ 1 with the same link
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function g as the GLM

x �→ μFN(x) = g−1
〈
βFN, z(d :1)(x)

〉
,

having a network parameter ϑ = (w
(1)
1 , . . . ,w

(d)
qd

,βFN)
 ∈ R
r . In particular, we

have the FN output parameter βFN ∈ R
qd+1, we refer to Fig. 7.2.

We blend these two regression models by combining their regression func-
tions

x �→ μ(x) = g−1
{〈

βGLM, x
〉
+
〈
βFN, z(d :1)(x)

〉}
, (7.40)

with parameter � = (βGLM,ϑ)
 = (βGLM,w
(1)
1 , . . . ,w

(d)
qd

,βFN)
 ∈
R

q0+1+r .

An example is provided in Fig. 7.14. It shows the FN network using embedding
layers for the categorical variables, see also Fig. 7.9 (rhs), and we add a GLM (in
green color) that directly links the input x to the response variable. In machine
learning this green connection is called a skip connection because it skips the FN
layers.

Remarks 7.20

• Skip connections are a popular tool in network modeling, and they can be applied
to any FN layers, i.e., a skip connection can, for instance, be added to skip the
first FN layer. There are two benefits from skip connections. Firstly, they allow
for more modeling flexibility, in (7.40) we directly combine a linear function

Fig. 7.14 Illustration of the
combined regression
function (7.40) using a GLM
(in a skip connection) and a
FN network

RegEmb

Density

VehGas

VehBrEmb

Bonus

DrivAge

VehAge

Power

Area

skip connection

Y
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(coming from the GLM) with a non-linear one (coming form the FN network).
This has the flavor of a Taylor expansion to combine terms of different orders.
Secondly, skip connections can also be beneficial for gradient descent fitting
because the inputs have a more direct link to the outputs, and the network only
builds the functional form around the function in the skip connection.

• There are numerous variants of (7.40). A straightforward one is to choose a
weight α ∈ (0, 1) and consider the regression function

x �→ μ(x) = g−1
{
α
〈
βGLM, x

〉
+ (1 − α)

〈
βFN, z(d :1)(x)

〉}
. (7.41)

The weight α can be interpreted as the credibility assigned to the GLM.
• Regression function (7.40) considers two intercepts βGLM

0 and βFN
0 . If we do not

consider the credibility version (7.41), one of the two intercepts is redundant.
• This approach also allows us to learn systematic effects across different insurance

portfolios. If we have three insurance portfolios living on the same feature space
and if χ ∈ {1, 2, 3} indicates which insurance portfolio we consider, we can
modify the regression function (7.40) to

(x, χ) �→ μ(x, χ) = g−1

⎧
⎨
⎩

3∑
j=1

〈
βGLM

j , x
〉
1{χ=j} +

〈
βFN, z(d :1)(x, χ)

〉
⎫
⎬
⎭ .

The indicator 1{χ=j} chooses the GLM that belongs to the corresponding
insurance portfolio χ ∈ {1, 2, 3} with the (individual) GLM parameter βGLM

χ .
The FN network term makes them related, i.e., the GLMs of the different
insurance portfolios interact (jointly learn) via the FN network module. This is
the approach used in Gabrielli et al. [149] to improve the chain-ladder reserving
method by learning across different claims reserving triangles.

The regression function (7.40) gives the structural form of the combined
regression model, but there is a second important ingredient proposed by Wüthrich–
Merz [394]. Namely, the gradient descent algorithm (7.15) for model fitting can be
started in an initial network parameter �(0) ∈ R

q0+1+r that corresponds to the MLE

of the GLM. Denote by β̂
GLM

the MLE of the GLM part, only.

Choose the initial value of the gradient descent algorithm for the fitting of the
combined regression model (7.40)

�(0) =
(
β̂

GLM
,w

(1)
1 , . . . ,w(d)

qd
,βFN ≡ 0

)
 ∈ R
q0+1+r , (7.42)

that is, initially, no signals traverse the FN network part because we set βFN ≡
0.
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Remarks 7.21

• Using the initialization (7.42), the gradient descent algorithm starts exactly in
the optimal GLM. The algorithm then tries to improve this GLM w.r.t. the given
loss function using the additional FN network features. If the loss substantially
reduces during the gradient descent training, the GLM misses systematic struc-
ture and it can be improved, otherwise the GLM is already good (enough).

• We can declare the MLE β̂
GLM

to be non-trainable. In that case the original
GLM always remains in the combined regression model and it acts as an offset.

If we declare the MLE β̂
GLM

to be non-trainable, we could choose a trainable
credibility weight α ∈ (0, 1), see (7.41), which gradually reduces the influence
of the GLM (if necessary).

Implementation of the general combined regression model (7.40) can be a bit
cumbersome, see Listing 4 in Gabrielli et al. [149], but things can substantially
be simplified by declaring the GLM part in (7.40) as being non-trainable, i.e.,

estimating βGLM by β̂
GLM

in the GLM, and then freeze this parameter. In view

of (7.40) this simply means that we add an offset oi = 〈β̂GLM
, xi〉 to the FN

network that is treated as a prior difference between the different data points, we
refer to Sect. 5.2.3.

Example 7.22 (Combined GLM and FN Network) We revisit the French MTPL
claim frequency GLM of Sect. 5.3.4, and we boost model Poisson GLM3 with FN
network features. For the FN architecture we use the structure depicted in Fig. 7.14,
i.e., a FN network of depth d = 3 having (q1, q2, q3) = (20, 15, 10) neurons, and
using embedding layers of dimension b = 2 for the categorical feature components.
Moreover, we declare the GLM part to be non-trainable which allows us to use the
GLM as an offset in the FN network. Moreover, we apply bias regularization (7.33)
to receive the balance property.

The results are presented in Table 7.7. A first observation is that using model
Poisson GLM3 as an offset reduces the run time of gradient descent fitting because
we start the algorithm already in a reasonable model. Secondly, as expected, the

Table 7.7 Run times, number of parameters, in-sample and out-of-sample deviance losses (units
are in 10−2) and in-sample average frequency of the Poisson null model, model Poisson GLM3 of
Table 5.5, the FN network model (with embedding layers of dimension b = 2), and the combined
regression model GLM3+FN, see (7.40)

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15 s 50 24.084 24.102 7.36%

Embed FN (q1, q2, q3) = (20, 15, 10) 120 s 792 23.694 23.820 7.24%

Embed FN bias regularized +4 s 792 23.690 23.824 7.36%

Combined GLM+FN (20, 15, 10) +53 s 50 + 792 23.772 23.834 7.24%

Combined GLM+FN bias regularized +4 s 50 + 792 23.765 23.830 7.36%
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FN features decrease the loss of model Poisson GLM3, this indicates that there
are systematic effects that are not captured by the GLM. The final combined and
regularized model has roughly the same out-of-sample loss as the corresponding
FN network, showing that this approach can be beneficial in run times, and the
predictive power is similar to a pure FN network. �

Example 7.23 (Improving Model Poisson GLM3) In this example we would like to
explore the deficiencies of model Poisson GLM3 by boosting it with FN network
features. We do this in a systematic way by only considering two (continuous)
features components at a time in the FN network. That is, we consider the combined
approach (7.40) with initialization (7.42), but as feature information for the network
part, we only consider two components at a time. For instance, we start with the
features (1,Area,VehPower) ∈ {1}×R

2 for the network part, and the remaining
feature information is ignored in this step. This way we can test whether the
marginal modeling of Area and VehPower is suitable in model Poisson GLM3,
and whether a pairwise interaction in these two components is missing. We train
this FN network starting from model Poisson GLM3 (and keeping this GLM part
frozen). The decrease in the out-of-sample loss during the gradient descent training
is shown in Fig. 7.15 (top-left). We observe that the loss remains rather constant over
100 training epochs. This tells us that the pair (Area,VehPower) is appropriately
considered in model Poisson GLM3.

Figure 7.15 gives all pairwise plots of the continuous feature components Area,
VehPower, VehAge, DrivAge, BonusMalus, Density, the scale on the y-
axis is identical in all plots. We observe that only the plots including the variable
BonusMalus provide a bigger decrease in loss (in blue color in the colored
version). This indicates that mainly this feature component is not modeled optimally
in model Poisson GLM3, because boosting with a FN network finds systematic
structure here that improves the loss of model Poisson GLM3. In model Poisson
GLM3, the variable BonusMalus has been modeled log-linearly with an interac-
tion term with DrivAge and (DrivAge)2, see (5.35). Table 7.8 shows the result
if we add a FN network feature (7.40) for the pair (DrivAge,BonusMalus)

to model Poisson GLM3. Indeed, we see that the resulting combined GLM-FN
network model has the same GL as the full FN network approach. Thus, we
conclude that model Poisson GLM3 performs fairly well and only the modeling
of the pair (DrivAge,BonusMalus) should be improved. �

7.4.4 Network Ensemble Learning

Ensemble learning is a popular way of expressing that one takes an average over
different predictors. There are many established methods that belong to the family of
ensemble learning, e.g., there is boostrap aggregating (called bagging) introduced
by Breiman [51], there are random forests, and there is boosting. Random forests
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Fig. 7.15 Exploring all pairwise interactions: out-of-sample losses over 100 gradient descent
epochs for all pairs of the continuous feature components Area, VehPower, VehAge,
DrivAge, BonusMalus, Density (the scale on the y-axis is identical in all plots)

and boosting are mainly based on classification and regression trees (CARTs) and
they belong to the most powerful machine learning methods for tabular data. These
methods combine a family of predictors to a more powerful predictor. The present
section is inspired by the bagging method of Breiman [51], and we perform network
aggregating (called nagging).

Stochastic Gradient Descent Fitting of Networks

We have described that network calibration involves several elements of random-
ness. This in combination with early stopping leads to the non-uniqueness of
reasonably good networks for prediction and pricing. We have discussed this based
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Table 7.8 Run times, number of parameters, in-sample and out-of-sample deviance losses (units
are in 10−2) and in-sample average frequency of the Poisson null model, model Poisson GLM3
of Table 5.5, model Poisson GLM3 with additional FN features for (DrivAge, BonusMalus),
the FN network model (with embedding layers of dimension b = 2), and the combined regression
model GLM3+FN, see (7.40)

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15 s 50 24.084 24.102 7.36%

GLM3 +FN(DrivAge,BonusMalus) – 50 + 792 23.804 23.805 7.36%

Embed FN bias regularized 124 s 792 23.690 23.824 7.36%

Combined GLM+FN bias regularized 72 s 50 + 792 23.765 23.830 7.36%

on Fig. 7.5, namely, for a given network architecture we have a continuum of
comparably good models (w.r.t. the chosen objective function) that lie in the green
area of Fig. 7.5. One SGD calibration picks one specific model from this green area,
we also refer to Remarks 7.9. Of course, this is very unsatisfactory in insurance
pricing because it implies that the selection of a price for an insurance policy has
a substantial element of subjectivity (that cannot be explained to the customer).
Naturally, we would like to combine models in the green area of Fig. 7.5, for
instance, by performing some sort of integration over the models in the green area.
Intuitively, this should lead to a very powerful predictive model because it diversifies
the weaknesses of each individual model. This is exactly what we discuss in this
section. Before doing so, we would first like to understand the different single
calibrations of a given network architecture.

We consider the MTPL data of Example 7.12. We model this data with a Poisson
FN network using embedding layers for the categorical features and using bias
regularization (7.33) to guarantee the balance property to hold. For the FN network
architecture we choose depth d = 3 with (q1, q2, q3) = (20, 15, 10) FN neurons;
this setup gives us the results on the last line of Table 7.5. We now repeat this
procedure M = 1′600 times, using exactly the same FN network architecture, the
same early stopping strategy, the same SGD method and the same batch size. We
only change the seeds of the starting point ϑ(0) ∈ R

r of the SGD algorithm, the
partitioning of the learning data L into training data U and validation data V , see
Fig. 7.7, and the partitioning of the training data into the (mini-)batches.

The resulting 1′600 in-sample and out-of-sample deviance losses are presented
in Fig. 7.16. We observe a considerable variation in these figures. The in-sample
losses vary between 23.616 and 23.815 (mean 23.728), and the corresponding out-
of-sample loss between 23.766 and 23.899 (mean 23.819), units are in 10−2; note
that all network calibrations are bias regularized. The in-sample loss is an average
over n = 610′206 (individual) unit deviance losses, and the out-of-sample an
average over T = 67′801 unit deviance losses, see also Definition 4.24. Therefore,
we expect an even much bigger variation on individual insurance policies. We are
going to analyze this in more detail in this section.
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Fig. 7.16 Boxplots over 1′600 network calibrations only differing in the seeds for the SGD
algorithm and the partitioning of the learning data: (lhs) in-sample losses on L and (rhs) out-
of-sample losses on T , the horizontal lines show the calibration chosen in Table 7.5; units are in
10−2

Before doing so, we would like to understand whether there is some dependence
between the in-sample and the out-of-sample losses over the M = 1′600 runs of
the SGD algorithm with different seeds. In Fig. 7.17 we provide a scatter plot of
the out-of-sample losses vs. the in-sample losses. This plot is complemented by
a cubic spline regression (in orange color). From this plot we conclude that the
models with very small in-sample losses tend to over-fit, and the models with large
in-sample losses tend to under-fit (always using the same early stopping rule). In
view of these results we conclude that the chosen early stopping rule is sensible
because on average it tends to provide the model with the smallest out-of-sample
loss on T . Recall that we do not use T during the SGD fitting, but only the learning
data L that is split into the training data U and the validation data V for exercising
the early stopping, see Fig. 7.7.

Fig. 7.17 Scatter plot of
out-of-sample losses
vs. in-sample losses for
different seeds, the orange
line gives a fitted cubic
spline, and the cyan lines
show the empirical means;
units are in 10−2
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Next, we study the estimated prices on the test data (out-of-sample)

T =
{
(Y

†
t = N

†
t /v

†
t , x

†
t , v

†
t ) : t = 1, . . . , T = 67′801

}
.

For each run of the SGD algorithm we receive a different (early stopped) network
parameter estimate ϑ̂

m ∈ R
r , 1 ≤ m ≤ M = 1′600. Using these parameter

estimates we receive the estimated network regression functions, for 1 ≤ m ≤ M ,

x �→ μ̂m(x) = μ
ϑ̂

m(x),

using the FN network of Listing 7.4 with network parameter ϑ̂
m

. Thus, for the out-
of-sample policies 1 ≤ t ≤ T we receive the expected frequencies

x
†
t �→ μ̂m

t = μ̂m
(
x

†
t

)
= μ

ϑ̂
m

(
x

†
t

)
.

Since we choose the seeds of the SGD runs at random we may (and will) assume
that we have independence between the prices (μ̂m

t )t∈T of the different runs 1 ≤
m ≤ M of the SGD algorithm. This allows us to estimate the average price and the
coefficient of variation of these prices of a fixed insurance policy t over the different
SGD runs

μ̄
(1:M)
t = 1

M

M∑
m=1

μ̂m
t and Vcot = 1

μ̄
(1:M)
t

√√√√ 1

M − 1

M∑
m=1

(
μ̂m

t − μ̄
(1:M)
t

)2
.

(7.43)
These (out-of-sample) coefficients of variation are illustrated in Fig. 7.18. We
observe a considerable variation on some policies. The average coefficient of
variation is roughly 10% (orange horizontal line, lhs). The maximal coefficient of
variation is about 40%, thus, for this policy the individual prices μ̂m

t of the different

SGD runs 1 ≤ m ≤ M fluctuate considerably around μ̄
(1:M)
t . This now explains

why we choose M = 1′600 SGD runs, namely, the averaging in (7.43) reduces the
coefficient of variation on this policy to 40%/

√
M = 40%/40 = 1%, note that we

have independence between the different SGD runs. Thus, by averaging we receive
an acceptable influence of the variation of the individual SGD fittings.

Listing 7.9 shows the 10 policies (out-of-sample) with the largest coefficients
of variations Vcot . These polices have in common that they belong to the lowest
BonusMalus level, the drivers are very young, the cars are comparably old and
they have a bigger vehicle power. From a practical point of view we should doubt
these policies, since the information provided may not be correct. New drivers (at
the age of 18) typically enter a bonus-malus scheme at level 100, and only after
several accident-free years these drivers can reach a bonus-malus level of 50. Thus,
policies as in Listing 7.9 should not exist, and our pricing framework has difficulties
to (correctly) handle them. In practice, this needs further investigation because,
obviously, there is a data issue, here.
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Fig. 7.18 Out-of-sample coefficients of variations Vcot on an individual policy level 1 ≤ t ≤ T

over the 1′600 calibrations (lhs) scatter plot against the average estimated frequencies μ̄
(1:M)
t and

(rhs) resulting histogram

Listing 7.9 The 10 policies (out-of-sample) with the largest coefficients of variation

1 Area VehPower VehAge DrivAge BonusMalus VehBrand VehGas Region vco
2 D 8 16 18 50 B11 Regular R53 0.4089006
3 D 9 17 20 50 B11 Regular R24 0.3827665
4 C 8 11 18 50 B5 Regular R24 0.3762306
5 C 9 18 18 50 B5 Regular R24 0.3697370
6 C 7 17 18 50 B1 Regular R24 0.3579979
7 C 9 19 19 50 B5 Regular R24 0.3554879
8 C 6 15 20 50 B1 Regular R93 0.3528679
9 C 7 14 19 50 B1 Regular R53 0.3518279

10 A 11 20 50 50 B13 Regular R74 0.3442184
11 D 5 14 18 50 B3 Diesel R24 0.3403783

Nagging Predictor

The previously observed variations of the prices motivate to average over the
different models (network calibrations). This brings us to bagging introduced by
Breiman [51]. Bagging is based on averaging/aggregating over several ‘indepen-
dent’ predictions; this is done in three steps. In a first step, a model is fitted to the
data L. In a second step, independent bootstrap samples L∗(m) are generated from
this fitted model; the independence has to be understood in a conditional sense,
namely, the different bootstrap samples L∗(m) are independent in m, given the data
L. In the third step, for every bootstrap sample L∗(m) one estimates a model μ̂m,
and averaging (7.43) provides the bagging predictor. Bagging is mainly a variance
reduction technique. Note that if the fitted model of the first step has a bias, then
likely the bootstrap samples L∗(m) are biased, and so is the bagging predictor.
Therefore, bagging does not help to reduce a potential bias. All these results have to
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be understood conditionally on the data L. If this data is atypical for the problem,
so will the bootstrap samples be.

We can perform a similar analysis for the fitted networks, but we do not need to
bootstrap, here, because the various elements of randomness in SGD fitting allow us
to generate independent predictors μ̂m, conditional on the data L. Averaging (7.43)
over these predictors then provides us with the network aggregating (nagging)
predictor μ̄(1:M); we also refer to Dietterich [105] and Richman–Wüthrich [315]
for this aggregation. Thus, we replace the bootstrap step by the different runs of
the SGD algorithm. Both options provide independent predictors μ̂m, conditional
on the data L. However, there is a fundamental difference between bagging and
nagging. Bagging generates new (bootstrap) samples L∗(m) and, thus, bagging also
involves randomness coming from sampling the new observations. Nagging always
acts on the same sample L, and it only refits the model multiple times. Therefore,
the latter will typically introduce less variation. Of course, bagging and nagging can
be combined, and then the full expected GL can be estimated, we come back to this
in Sect. 11.4, below. We do not sample new observations, here, because we would
like to understand the variations implied by the SGD algorithm with early stopping
on the given (fixed) data.

In Fig. 7.18 we have seen that we need nagging over 1′600 network calibrations
so that the maximal coefficient of variation on an individual policy level is below
1% in our MTPL example. In this section we would like to understand the minimal
out-of-sample loss that can be achieved by nagging on the (entire) test data set, and
we would like to analyze its rate of convergence.

For this we define the sequence of nagging predictors

μ̄(1:M)(x) = 1

M

M∑
m=1

μ̂m(x) for M ≥ 1. (7.44)

This allows us to study the out-of-sample losses on T in the Poisson model for
M ≥ 1

D(T , μ̄(1:M)) = 2

T

T∑
t=1

v
†
t

(
μ̄(1:M)(x

†
t ) − Y

†
t − Y

†
t log

(
μ̄(1:M)(x

†
t )

Y
†
t

))
.

Remark 7.24 From Remarks 7.17 we know that the expected deviance GL of
the estimated model is lower bounded by the expected deviance GL of the true
data generating model; the difference is the conditional calibration. Within the
family of Tweedie’s CP models Richman–Wüthrich [315] proved that, indeed,
aggregating decreases monotonically the expected deviance GL of the estimated
model (Proposition 2 of [315]), convergence is established (Proposition 3 of [315]),
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and the speed of convergence is provided using asymptotic normality (Proposition
4 of [315]). For the Gaussian square loss results we refer to Breiman [51] and
Bühlmann–Yu [60].

We revisit Proposition 2 of Richman–Wüthrich [315] which has also been proved
in Proposition 3.1 of Denuit–Trufin [103]. We only consider a single case in the next
proposition and we drop the feature information x (because we can condition on
X = x).

Proposition 7.25 Choose a response Y ∼ f (·; θ, v/ϕ) belonging to Tweedie’s CP
model having a power variance cumulant function κ = κp with power variance
parameter p ∈ [1, 2], see (2.17). Assume μ̂ is an estimator for the mean parameter
μ = κ ′

p(θ) > 0 satisfying ε < μ̂ ≤ p/(p−1)μ, a.s., for some ε ∈ (0, p/(p−1)μ).
Choose i.i.d. copies μ̂m, m ≥ 1, of μ̂ being all independent of Y . We have for all
M ≥ 1

Eθ

[
d
(
Y, μ̂1

)]
≥ Eθ

[
d
(
Y, μ̄(1:M)

)]
≥ Eθ

[
d
(
Y, μ̄(1:M+1)

)]
≥ Eθ [d(Y, μ)] .

Proof of Proposition 7.25 The lower bound on the right-hand side immediately
follows from Theorem 4.19. For an estimate μ̂ > 0 we define the function, we
also refer to (4.18) and we set for the canonical link hp = (κ ′

p)−1,

μ̂ �→ ψp(μ̂) = μhp (μ̂) − κp

(
hp (μ̂)

) =

⎧
⎪⎨
⎪⎩

μlog(μ̂) − μ̂ for p = 1,

μ
μ̂1−p

1−p
− μ̂2−p

2−p
for p ∈ (1, 2),

−μ/μ̂ − log(μ̂) for p = 2.

This is the part of the log-likelihood (and deviance loss) that depends on the
canonical parameter θ̂ = hp(μ̂), and replacing the observation Y by μ. Calculating
the second derivative w.r.t. μ̂ provides for p ∈ [1, 2]

∂2

∂μ̂2 ψp(μ̂) = −pμμ̂−p−1 − (1 − p)μ̂−p = μ̂−(1+p) [−pμ − (1 − p)μ̂] ≤ 0,

the last inequality uses that the square bracket is non-positive, a.s., under our
assumptions on μ̂. Thus, ψp is concave on the interval (0, p/(p − 1)μ). We now
focus on the inequalities for M ≥ 1. Consider the decomposition of the nagging
predictor for M + 1

μ̄(1:M+1) = 1

M + 1

M+1∑
j=1

μ̄(−j), where μ̄(−j) = 1

M

M+1∑
m=1

μ̂m1{m�=j}.
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The predictors μ̄(−j), j ≥ 1, are copies of μ̄(1:M), though not independent ones.
Using the function ψp, the second term on the right-hand side has the same structure
as the estimation risk function (4.14),

Eθ

[
d(Y, μ̄(1:M))

]

= Eθ

[
d(Y, μ̄(1:M+1))

]
+ 2 Eθ

[
Yhp

(
μ̄(1:M+1)

)
− κp

(
hp

(
μ̄(1:M+1)

))]

− 2 Eθ

[
Yhp

(
μ̄(1:M)

)
− κp

(
hp

(
μ̄(1:M)

))]

= Eθ

[
d(Y, μ̄(1:M+1))

]
+ 2

(
E

[
ψp

(
μ̄(1:M+1)

)]
− E

[
ψp

(
μ̄(1:M)

)])

= Eθ

[
d(Y, μ̄(1:M+1))

]
+ 2

⎛
⎝E
⎡
⎣ψp

⎛
⎝ 1

M + 1

M+1∑
j=1

μ̄(−j)

⎞
⎠
⎤
⎦− E

[
ψp

(
μ̄(1:M)

)]⎞
⎠

≥ Eθ

[
d(Y, μ̄(1:M+1))

]
+ 2

⎛
⎝E
⎡
⎣ 1

M + 1

M+1∑
j=1

ψp

(
μ̄(−j)

)
⎤
⎦− E

[
ψp

(
μ̄(1:M)

)]
⎞
⎠

= Eθ

[
d(Y, μ̄(1:M+1))

]
,

the second last step applies Jensen’s inequality to the concave function ψp, and the
last step follows from the fact that μ̄(−j), j ≥ 1, are copies of μ̄(1:M). ��

Remarks 7.26

• Proposition 7.25 says that aggregation works, i.e., aggregating i.i.d. predictors
leads to monotonically decreasing expected deviance GLs. In fact, if μ̂ ≤ 2μ,
a.s., we receive Tweedie’s forecast dominance by aggregating, restricted to the
power variance parameters p ∈ [1, 2], see Definition 4.22.

• The i.i.d. assumption can be relaxed, indeed, it is sufficient that every μ̄(−j)

in the above proof has the same distribution as μ̄(1:M). This does not require
independence between the predictors μ̂m, m ≥ 1, but exchangeability is
sufficient.

• We need the condition ε < μ̂ ≤ p/(p − 1)μ, a.s., to ensure the monotonicity
within Tweedie’s CP models. For the Poisson model p = 1 we can drop the
upper bound, and we only need the lower bound to ensure the existence of the
expected deviance GL. For p ∈ (1, 2] the upper bound is increasingly binding,
in the gamma case p = 2 requiring μ̂ ≤ 2μ, a.s.

• Note that we do not require unbiasedness of μ̂ for μ in Proposition 7.25. Thus,
at this stage, aggregating is a variance reduction technique.
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Fig. 7.19 Out-of-sample
losses D(T , μ̄(1:M)) of the
nagging predictors
(μ̄(1:M)(x

†
t ))1≤t≤T for

1 ≤ M ≤ 40; losses are in
10−2
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• If additionally we have unbiasedness of μ̂ for μ and a uniformly integrable upper
bound on μ̄(1:M), we can use Lebesgue’s dominated convergence theorem and the
law of large numbers to prove

lim
M→∞Eθ

[
d
(
Y, μ̄(1:M)

)]
= Eθ

[
lim

M→∞ d
(
Y, μ̄(1:M)

)]
= Eθ [d(Y, μ)] .

(7.45)

The uniformly integrable upper bound is only needed in the Poisson case p = 1,
because the other cases are covered by ε < μ̂ ≤ p/(p − 1)μ, a.s. Moreover,
asymptotic normality can be established, we refer to Proposition 4 in Richman–
Wüthrich [315].

We come back to our MTPL Poisson claim frequency example and its 1′600
network calibrations illustrated in Fig. 7.17. Figure 7.19 provides the out-of-sample
portfolio losses D(T , μ̄(1:M)) of the resulting nagging predictors (μ̄(1:M)(x

†
t ))1≤t≤T

for 1 ≤ M ≤ 40 in red color, and the corresponding 1 standard deviation confidence
bounds in orange color. The blue horizontal dotted line shows the case M = 1
which exactly refers to the (first) bias regularized FN network μ̂m=1 with embedding
layers given in Table 7.5. Indeed, averaging over multiple networks improves the
predictive model and the out-of-sample loss decreases over the first 2 ≤ M ≤ 10
nagging steps. After the first 10 steps the picture starts to stabilize which indicates
that for this size of portfolio (and this type of problem) we need to average over
roughly 10–20 FN networks to receive optimal predictive models on the portfolio
level. For M → ∞ the out-of-sample loss converges to the green horizontal dotted
line in Fig. 7.19 of 23.783 · 10−2. These numbers are also reported on the last line
of Table 7.9.

Figure 7.20 provides the empirical auto-calibration property (7.39) of the
nagging predictor μ̄(1:1600); this is obtained completely analogously to Fig. 7.12.
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Table 7.9 Run times, number of parameters, in-sample and out-of-sample deviance losses (units
are in 10−2) and in-sample average frequency of the Poisson null model, model Poisson GLM3 of
Table 5.5, the FN network models (with embedding layers of dimension b = 2), and the nagging
predictor for M = 1′600

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15 s 50 24.084 24.102 7.36%

Embed FN bias regularized μ̂m=1 +4 s 792 23.690 23.824 7.36%

Average over 1′600 SGDs (Fig. 7.16) – 792 23.728 23.819 7.36%

Nagging FN μ̄(1:M), M = 1′600 ∞ ‘792’ 23.691 23.783 7.36%

Fig. 7.20 Empirical
auto-calibration (7.39) of the
Poisson nagging predictor,
the blue line shows the
empirical density of
vi μ̄

(1:1600)(xi ), 1 ≤ i ≤ n
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The nagging predictors are (already) bias regularized, and Fig. 7.20 supports that
the auto-calibration property holds rather accurately.

At this stage, we have fully arrived at Breiman’s [53] two modeling cultures
dilemma, see also Sect. 1.1. We have started from a parametric data model, and
in order to boost its predictive performance we have combined such models in
an algorithmic way. Working with many blended networks is not really practical,
therefore, in such situations, a meta model can be fitted to the resulting nagging
predictor.

Meta Model

Since working with M = 1′600 different FN networks is not practical, we fit a meta
model to the nagging predictors μ̄(1:M)(·). This can easily be done by just selecting
an additional FN network and fit this additional network to the working data

D∗ =
{(

μ̄(1:M)(xi ), xi , vi

)
: i = 1, . . . , n

}
∪
{(

μ̄(1:M)(x
†
t ), x

†
t , v

†
t

)
: t = 1, . . . , T

}
.
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Table 7.10 Run times, number of parameters, in-sample and out-of-sample deviance losses (units
are in 10−2) and in-sample average frequency of the Poisson null model, model Poisson GLM3
of Table 5.5, the FN network model (with embedding layers of dimension b = 2), the nagging
predictor, and the meta network model

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15 s 50 24.084 24.102 7.36%

Embed FN bias regularized μ̂m=1 +4 s 792 23.690 23.824 7.36%

Nagging FN μ̄(1:M) ∞ ‘792’ 23.691 23.783 7.36%

Meta FN network μ̂meta – 792 23.714 23.777 7.36%

For this calibration step we can consider all data, since we would like to fit a
regression model as accurately as possible to the entire regression surface formed by
all nagging predictors from the learning and the test data sets L and T . Moreover,
this step should not over-fit since this regression surface of nagging predictors
does not include any noise, but it is on the level of expected values. As network
architecture we choose again the same FN network of depth d = 3. The only
change to the fitting procedure above is replacing the Poisson deviance loss by the
square loss function, since we do not work with the Poisson responses Ni but rather
with their mean estimates μ̄(1:M)(xi ) and μ̄(1:M)(x

†
t ) in this fitting step. Since the

resulting meta network model may still have a bias we apply the bias regularization
step of Listing 7.7 to the Poisson observations with the Poisson deviance loss on the
learning data L (only). The results are presented in Table 7.10.

From these results we observe that in our case the meta network performs
similarly well to the nagging predictor, and it seems to be a very reasonable choice.

Finally, in Fig. 7.21 (lhs) we analyze the resulting frequencies on an individual
policy level on the test data set T . We plot the estimated frequencies μ̂m=1(x

†
t ) of

the first FN network (this corresponds to ‘embed FN bias regularized’ in Table 7.10
with an out-of-sample loss of 23.824) against the nagging predictor μ̄(1:M)(x

†
t )

which averages over M = 1′600 networks. From Fig. 7.21 (lhs) we conclude
that there are quite some differences between these two predictors, this exactly
reflects the variations obtained in Fig. 7.18 (lhs). The nagging predictor removes this
variation by averaging. Figure 7.21 (rhs) compares the nagging predictor μ̄(1:M)(x

†
t )

to the one of the meta model μ̂meta(x
†
t ). This scatter plot shows that the predictors

lie almost perfectly on the diagonal line which suggests that the meta model can be
used as a substitute for the nagging predictor. This completes this claim frequency
modeling example.

Remark 7.27 The meta model concept can also be useful in other situations. For
instance, we can fit a gradient boosting regression model to the observations.
Typically, this is much faster than calculating a nagging predictor (because it directly
focuses on the weaknesses of the existing model). If the gradient boosting model
is based on regression trees, it has the disadvantage that the resulting regression
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Fig. 7.21 Scatter plot of the out-of-sample predictions μ̂m=1(x
†
t ), μ̄(1:M)(x

†
t ) and μ̂meta(x

†
t ) over

all polices 1 ≤ t ≤ T on the test data set T : (lhs) μ̂m=1(x
†
t ) vs. μ̄(1:M)(x

†
t ) and (rhs) μ̂meta(x

†
t )

vs. μ̄(1:M)(x
†
t ); the color scale shows the exposures v

†
t ∈ (0, 1]

function is not continuous, and a non-constant extrapolation might be an issue.
In a second step we can fit a meta FN network model to the former regression
model, lifting the boosting model to a smooth network that allows for a non-constant
extrapolation.

Example 7.28 (Gamma Claim Size Modeling) We revisit the gamma claim size
example of Sect. 5.3.7. The data comprises Swedish motorcycle claim amounts. We
have seen that this claim size data is not heavy-tailed, thus, a gamma distribution
may be a reasonable choice for this data. For the modeling of this data we use the
same normalization is in (5.45), this parametrization does not require the explicit
knowledge of the (constant) shape parameter of the gamma distribution for mean
estimation.

The difficulty with this data is that only 656 insurance policies suffer a claim,
and likely a single FN network will not lead to stable results in this example.
As FN network architecture we again choose a network of depth d = 3 and
with (q1, q2, q3) = (20, 15, 10) neurons. Since the input layer has dimension
q0 = 1 + 6 = 7 we receive a network parameter of dimension r = 626. As loss
function we choose the gamma deviance loss, see Table 4.1. Moreover, we choose
the nadam optimizer, a batch size of 300, a training-validation split of 8:2, and we
retrieve the network calibration with the lowest validation loss with a callback.

Figure 7.22 shows the results of 1′000 different SGD runs (only differing in the
initial seeds and the splits of the training-validation sets as well as the batches).
We see a considerable variation between the different SGD runs, both in in-sample
deviance losses but also in the average estimated claims. Note that we did not bias-
regularize the resulting networks (we work with the log-link here which is not the
canonical one). This is why we receive fluctuating portfolio averages in Fig. 7.22
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Fig. 7.22 Boxplots over 1′000 network calibrations only differing in the seeds for the SGD
algorithm and the partitioning of the learning-validation data: (lhs) in-sample losses on the (entire)
data L and (rhs) average estimated claims
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Fig. 7.23 Coefficients of variations Vcoi on an individual claim level 1 ≤ i ≤ n over the 1′000
calibrations (lhs) scatter plot against the nagging predictor μ̄(1:M)(xi ) and (rhs) histogram

(rhs), the red line illustrates the empirical mean. Obviously, these FN networks are
(on average) positively biased, and they will need a bias correction for the final
prediction.

Figure 7.23 analyzes the variations on an individual claim level by studying
the in-sample version of the coefficient of variation given in (7.43). We see that
these coefficients of variation are bigger than in the claim frequency example, see
Fig. 7.18. Thus, to receive stable results the nagging predictors μ̄(1:M)(xi ) have to be
calculated over many networks. Figure 7.24 confirms that aggregating reduces (in-
sample) losses also in this case. From this figure we also see that the convergence is
slower compared to the MTPL frequency example of Fig. 7.19, of course, because
we have a much smaller claims portfolio.
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Fig. 7.24 In-sample losses
D(L, μ̄(1:M)) of the nagging
predictors (μ̄(1:M)(xi ))1≤i≤n

for 1 ≤ M ≤ 40 on the
motorcycle claim size data
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Table 7.11 Number of parameters, Pearson’s dispersion estimate, MLE dispersion estimate, in-
sample losses and in-sample average claim amounts of the null model (gamma intercept model),
the gamma GLMs and the network nagging predictor; for the GLMs we refer to Table 5.13

# Dispersion In-sample Average

param. ϕ̂P ϕ̂MLE loss on L amount

Gamma null 1 + 1 2.057 1.690 2.085 24’641

Gamma GLM1 9 + 1 1.537 1.426 1.717 25’105

Gamma GLM2 7 + 1 1.544 1.427 1.719 25’130

Gamma FN network nagging 626 + 1 – – 1.478 26’387

Gamma FN network nagging (bias reg) 626 + 1 1.050 1.240 1.465 24’641

Table 7.11 presents the results if we take the nagging predictor over 1′000
different networks. The first observation is that we receive a much smaller in-sample
loss compared to the GLMs, thus, there seems to be much room for improvements in
the GLMs. Secondly, the nagging predictor has a substantial bias. For this reason we
shift the intercept parameter in the output layer so that the portfolio average of the
nagging predictor is equal to the empirical mean, see the last column of Table 7.11.

A main difficulty in this model is the estimation of the dispersion parameter
ϕ > 0 and the shape parameter α = 1/ϕ of the gamma distribution, respectively.
Pearson’s dispersion estimate does not work because we do not know the degrees
of freedom of the nagging predictor, see also (5.49). In Table 7.11 we calculate
Pearson’s dispersion estimate by simply dividing by the number of observations;
this should be understood as a lower bound; this number is highlighted in italic.
Alternatively, we can calculate the MLE, however, this may be rather different from
Pearson’s estimate, as indicated in Table 7.11. Figure 7.25 (lhs) shows the resulting
QQ plot of the nagging predictor if we use the MLE ϕ̂MLE = 1.240, and the right-
hand side shows the same plot for ϕ̂ = 1.050. From these plots it seems that we
should rather go for a smaller dispersion parameter, the MLE being probably too
much dominated by the small claims. This observation should also be understood as
a red flag, as it tells us that the chosen gamma model is not fully suitable. This may
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Fig. 7.25 QQ plots of the nagging predictors against the gamma density with (lhs) ϕ̂MLE = 1.240
and (rhs) ϕ̂ = 1.050
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Fig. 7.26 (lhs) Scatter plot of model Gamma GLM2 predictors against the nagging predictors
μ̄(1:M)(xi ) over all instances 1 ≤ i ≤ n, (rhs) scatter plot of two (independent) nagging predictors

be for various reasons: (1) the dispersion is not constant and should be modeled
policy dependent, (2) the features are not sufficient to explain the observations,
or (3) the gamma distribution is not suitable and should be replaced by another
distribution.

In Fig. 7.26 (lhs) we compare the predictions received from model Gamma
GLM2 against the nagging predictors μ̄(1:M)(xi ) over all instances 1 ≤ i ≤ n.
The scatter plot spreads quite wildly around the diagonal which seriously questions
at least one of the two models. To ensure that this variability between the two models
is not caused by the (complex) FN network architecture, we verify the nagging
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Fig. 7.27 Empirical
auto-calibration (7.39) of the
Gamma FN network nagging
predictor of Table 7.11, the
blue line shows the empirical
density of μ̄(1:M)(xi ),
1 ≤ i ≤ n
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predictor μ̄(1:M), M = 1′000, by computing a second independent one. Indeed,
Fig. 7.26 shows that these two independent nagging predictors come to the same
conclusion on the individual instance level. Thus, the network finds/uses systematic
effects that are not present in model Gamma GLM2. If we perform a pairwise
interaction analysis for boosting the GLM as in Example 7.23, we find that we
should add interactions to the GLM between (VehAge, RiskClass), (VehAge,
BonusClass), (OwnerAge, Area), and (OwnerAge, VehAge); recall that
model Gamma GLM2 neither includes BonusClass nor Gender as supported
by a drop1 backward elimination analysis from model Gamma GLM1. However,
it turns out, here, that we should have BonusClass in the model by letting it
interact with VehAge.

Finally, Fig. 7.27 shows the empirical auto-calibration behavior (7.39) of the
Gamma FN network nagging predictor of Table 7.11. The resulting black dots are
rather volatile which shows that we do not (fully) have the auto-calibration property,
here, but it also expresses that we fit a model on only 656 claims. The prediction
of these claims is highlighted by the blue empirical density given by μ̄(1:M)(xi ),
1 ≤ i ≤ n. On the positive side, the auto-calibration plot shows that we neither
systematically under- nor over-estimate because the black dots fluctuate around the
diagonal red line, only the upper tail seems to under-estimate the true claim size. �

Ensembling over Selected Networks vs. All Networks

Zhou et al. [406] ask the question whether ensembling over ‘selected’ networks is
better than ensembling over all networks. In their proposal they introduce a weighted
averaging scheme over the different network predictors μ̂m, 1 ≤ m ≤ M . We
perform a slightly different analysis here. We are re-using the M = 1′600 SGD
calibrations of the Poisson FN network illustrated in Fig. 7.17. We order these SGD
calibrations w.r.t. their in-sample losses D(L, μ̂m), 1 ≤ m ≤ M , and partition this
ordered sample into three equally sized sets: the first one containing the smallest
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Fig. 7.28 Empirical density
of the in-sample losses
D(L, μ̂m), 1 ≤ m ≤ M , of
Fig. 7.17
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in-sample losses, the second one the middle sized in-sample losses, and the third
one the largest in-sample losses. Figure 7.28 shows the empirical density of these
in-sample losses, and the vertical lines give the partition into the three sets, we call
the resulting (disjoint) index sets Ismall,Imiddle,I large ⊂ {1, . . . ,M}. Remark that
this partition is done fully in-sample, based on the learning data L, only.

We then consider the nagging predictors on each of these index sets separately,
i.e.,

μ̄small(x) = 1

|Ismall|
∑

m∈Ismall

μ̂m(x),

μ̄middle(x) = 1

|Imiddle|
∑

m∈Imiddle

μ̂m(x), (7.46)

μ̄large(x) = 1

|I large|
∑

m∈I large

μ̂m(x).

If we believe into the orange cubic spline in Fig. 7.17, the middle nagging predictor
μ̄middle should out-perform the other two nagging predictors. Indeed, this is the case,
here. We receive the out-of-sample losses (in 10−2) on the three subsets

D(T , μ̄small) = 23.784, D(T , μ̄middle) = 23.272, D(T , μ̄large) = 23.782.

(7.47)

This approach boosts by far any other approach considered, see Table 7.10; note that
this analysis relies on a fully proper in-sample and out-of-sample testing strategy.
Moreover, this also supports our early stopping strategy because, obviously, the
optimal networks are centered around our early stopping rule. How does this result
match Proposition 7.25 saying that the nagging predictor has a monotonically
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Fig. 7.29 Scatter plot of the
nagging predictors
μ̄middle(x

†
t ) and μ̄(1:M)(x

†
t )

over all out-of-sample polices
1 ≤ t ≤ T ; the color scale
shows the sizes of the
exposures v

†
t ∈ (0, 1]

decreasing deviance loss. For the convergence (7.45) we need unbiasedness,
and (7.47) indicates that averaging over all M network calibrations results in biases
on an individual policy level; on the aggregate portfolio level, we have applied the
bias regularization step (7.33), but this does not act on an individual policy level.
The latter would require a local balance correction similar to the GAM approach
presented in Example 7.19.

Figure 7.29 is truly striking! It compares the nagging predictors μ̄(1:M)(x
†
t )

to the ones μ̄middle(x
†
t ) only using the calibrations m ∈ Imiddle, i.e., only using

the calibrations with middle sized in-sample losses. The different colors show the
exposures v

†
t ∈ (0, 1]. We observe that only portfolios with short exposures do not

lie on the diagonal line. Thus, there seems to be an issue with insurance policies
with short exposures. Recall that we model the Poisson claim counts Ni using the
assumption, see (5.27),

Ni ∼ Poi(viμ(xi )). (7.48)

That is, the expected claim count Eθi [Ni] = viμ(xi ) is assumed to scale
proportionally in the exposure vi > 0. Figure 7.29 raises some doubts whether this
is really the case, or at least SGD fitting has some difficulties to assess the expected
frequencies μ(xi ) on the policies i with short exposures vi > 0. We discuss this
further in the next subsection. Table 7.12 gives a summary of our results.

Analysis of Over-dispersion

With all the excitement of Fig. 7.29, the above models do not fit the observations
since the over-dispersion is too large, see the last column of Table 7.12. This has
motivated the study of the negative binomial model in Sect. 5.3.5, the ZIP model in
Sect. 5.3.6, and the hurdle Poisson model in Example 6.19. These models have led
to an improvement in terms of AIC, see Table 6.6. We could go down the same
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Table 7.12 Number of parameters, in-sample and out-of-sample deviance losses (units are in
10−2), in-sample average frequency and (over-)dispersion of the Poisson null model, model Poisson
GLM3 of Table 5.5, the FN network model (with embedding layers of dimension b = 2), the
nagging predictor, the meta network model, and the middle nagging predictor

# In-sample Out-of-sample Aver. Disp.

param. loss on L loss on T freq. ϕ̂P

Poisson null 1 25.213 25.445 7.36% 1.7160

Poisson GLM3 50 24.084 24.102 7.36% 1.6644

Embed FN bias regularized μ̂m=1 792 23.690 23.824 7.36% 1.6812

Nagging FN μ̄(1:M) ‘792’ 23.691 23.783 7.36% 1.6592

Meta FN network μ̂meta 792 23.714 23.777 7.36% 1.6737

Middle nagging FN μ̄middle ‘792’ 23.698 23.272 7.36% 1.6618

route here by substituting the Poisson model. We refrain from doing so, as we
want to further analyze the Poisson model. Suppose we calculate an AIC value for
the Poisson FN network using 792 as the number of parameters involved. In that
case, we receive a value of 191′790, thus, clearly lower than the one of the negative
binomial GLM, and also slightly lower than the one of the hurdle Poisson model,
see Table 6.6. Remark that AIC values within FN networks are not supported by
any theory as we neither use the MLE nor do we have a reasonable evaluation of the
number of parameters involved in networks. Thus, such a value may serve at best as
a rough rule of thumb.

This lower AIC value suggests that we should try to improve the modeling of
the systematic effects by better regression functions. In particular, there may be
more explanatory variables involved that have predictive power. If these explanatory
variables are latent, we can rely on the negative binomial model, as it can be
interpreted as a mixture model averaging over latent variables. In view of Fig. 7.29,
the exposures vi seem to have a predictive power different from proportional scaling,
see (7.48); we also mention some peculiarities of the exposures on page 556. This
motivates to change the FN network regression model such that the exposures are
considered non-proportionally. We choose a FN network that directly models the
mean of the claim counts

(x, v) ∈ X × (0, 1] �→ μ(x, v) = exp
〈
β, z(d :1)(x, v)

〉
> 0, (7.49)

modeling the mean Eϑ [N] = μ(x, v) of the Poisson datum (N, x, v). The expected
frequency is then given by Eϑ [Y ] = Eϑ [N/v] = μ(x, v)/v.

Remark 7.29 At this stage we clearly have to distinguish between statistical
modeling and actuarial modeling. In statistical modeling it makes perfect sense
to choose the regression function (7.49), since including the exposure in a non-
proportional way may increase the predictive power of the model, at least this is
what our data suggests.
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From an actuarial point of view this approach should clearly be doubted. The
typical exposure of car insurance policies is one calendar year, i.e., v = 1, if the
renewals of insurance policies are accounted correctly. Shorter exposures may have
a specific (non-predictable) reason, for example, the policyholder or the insurance
company may terminate an insurance contract after a claim. Thus, if this is possible,
the exposure is a random variable, too, and it clearly has a predictive power for
claims prediction; in that case we lose the properties of the Poisson count process
(having independent and stationary increments).

As a consequence, we should include the exposure proportionally from an
actuarial modeling point of view. Nevertheless we do the modeling exercise based
on the regression function (7.49), here. This will indicate the predictive power of the
exposure, which may be thought of a proxy for another (non-available) explanatory
variable. Moreover, if (7.49) allows for a good Poisson regression model, we have a
simple way of bootstrapping from our data (conditionally on given exposures v).

We would also like to emphasize that if one feature component dominates all
others in terms of the predictive power, then likely there is a leakage of information
through this component, and this needs a more careful analysis.

We implement the FN network regression model (7.49) using again a network
architecture of depth d = 3 with (q1, q2, q3) = (20, 15, 10) neurons. We use
embedding layers for the two categorical variables VehBrand and Region, and
we have 8 continuous/binary feature components. This is one more compared to
Fig. 7.9 (rhs) because we also model the exposure vi as a continuous input to the
network. As a result, the dimension r of the network parameter ϑ ∈ R

r increases
from 792 to 812 (because we have q1 = 20 neurons in the first FN layer). We
calculate the nagging predictor μ̄(1:M) of this network averaging over M = 500
individual (early stopped) FN network calibrations, the results are presented in
Table 7.13.

Table 7.13 Number of parameters, in-sample and out-of-sample deviance losses (units are in
10−2), in-sample average frequency and (over-)dispersion of the Poisson null model, model Poisson
GLM3 of Table 5.5, the FN network models (with embedding layers of dimension b = 2), the
nagging predictors, and the middle nagging predictors excluding and including exposures vi as
continuous network inputs

# In-sample Out-of-sample Aver. Disp.

param. loss on L loss on T freq. ϕ̂P

Poisson null 1 25.213 25.445 7.36% 1.7160

Poisson GLM3 50 24.084 24.102 7.36% 1.6644

Embed FN μ̂m=1 792 23.690 23.824 7.36% 1.6812

Nagging FN μ̄(1:M) ‘792’ 23.691 23.783 7.36% 1.6592

Middle nagging FN μ̄middle ‘792’ 23.698 23.272 7.36% 1.6618

Exposure v: FN μ̂m=1 812 23.358 23.496 7.36% 1.0650

Exposure v: nagging FN μ̄(1:M) ‘812’ 23.299 23.382 7.36% 1.0416

Exposure v: middle nagging FN μ̄middle ‘812’ 23.303 23.299 7.36% 1.0427
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Fig. 7.30 Average frequency
as a function of the exposure
v ∈ (0, 1]: nagging predictors
considering the exposures
proportionally (blue), the
model including exposures
non-proportionally through
the FN network (black) and
observed (red)
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We observe a major improvement when including the exposure v as an input
to the network, i.e., by including the exposure non-proportionally into the mean
estimate. This is true in-sample (we use early stopping here), and in terms of
Pearson’s dispersion estimate; we set r = 812 for the number of parameters in
Pearson’s dispersion estimate (5.30) which may be too big because we do not
perform proper MLE, here. In particular, we receive a dispersion estimate close
to one which, now, is in support of modeling the claim counts by Poisson random
variables (using this regression function). That is, this regression function explains
the systematic effects so that we no longer observe much over-dispersion in the data
relative to the chosen model. However, we would like to remind of Remark 7.29
which needs a careful consideration for the use of this regression model in insurance
practice.

This is also supported by Fig. 7.30 which studies the average frequency as a
function of the exposure v ∈ (0, 1]. The red observed average frequency has a
clear decreasing slope which can be modeled by running the exposure v through the
FN network (black), but not by including it proportionally (blue). From an actuarial
modeling point of view this plot clearly questions the quality of the data, because
there seem to be effects in the exposures that certainly require more investigation.
Unfortunately, we cannot do this here because we do not have additional insight into
this data set. This closes the example.

7.4.5 Identifiability in Feed-Forward Neural Networks

In the previous section we have studied ensembles of FN networks. One may also
aim at directly comparing these networks to each other in terms of the fitted network

parameters ϑ̂
j

over the different calibrations 1 ≤ j ≤ M (of the same FN network
architecture). Such a comparison may, e.g., be useful if one wants to choose a
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prior parameter distribution π for ϑ in a Bayesian setting. Comparing the different

network calibrations ϑ̂
j
, 1 ≤ j ≤ M , of an architecture needs some care because

networks have many symmetries that make the parameters non-identifiable. We
can, for instance, permute the neurons in a FN layer z(m), with the corresponding
permutation of the weights that connect this layer to the previous layer z(m−1) and to
the succeeding layer z(m+1). The resulting predictive model under this permutation
is the same as the original one. For this reason we need to introduce some order in a
FN network to make the parameters identifiable.

Rüger–Ossen [323] have introduced the notion of a fundamental domain for the
network parameter ϑ , and we briefly review this idea. We start with an explicit
example. Assume that the activation function fulfills the anti-symmetry property
−φ(x) = φ(−x) for all x ∈ R, this is the case for the hyperbolic tangent. This
implies several symmetries in the FN network parametrization. E.g., if we consider
the output of a shallow FN network d = 1 with link function g, we can do a sign
switch in a fixed neuron 1 ≤ k ≤ q1

g(μ(x)) = β0 +
q1∑

j=1

βjz
(1:1)
j (x) = β0 +

q1∑
j=1

βj φ
〈
w

(1)
j , x

〉

= β0 +
∑
j �=k

βj φ
〈
w

(1)
j , x

〉
+ (−βk) φ

〈
−w

(1)
k , x

〉
. (7.50)

From this we see that the following two network parameters (we switch signs in all
the parameters that belong to index k)

ϑ = (w
(1)
1 , . . . ,w

(1)
k , . . . ,w(1)

q1
, β0, . . . , βk, . . . , βq1)


 and

ϑ̃ = (w
(1)
1 , . . . ,−w

(1)
k , . . . ,w(1)

q1
, β0, . . . ,−βk, . . . , βq1)




give the same FN network predictions. Beside these sign switches, we can also
permute the enumeration of the neurons in a given FN layer, giving the same
predictions. We discuss Theorem 2 of Rüger–Ossen [323] to solve this identifiability
issue. First, we consider the network weights from the input x to the first FN layer
z(1)(x). Apply the sign switch operation (7.50) to the neurons in the first FN layer
so that all the resulting intercepts w

(1)
0,1, . . . , w

(1)
0,q1

are positive while not changing
the regression function x �→ g(μ(x)). Next, apply a permutation to the indices
1 ≤ j ≤ q1 so that we receive ordered intercepts

w
(1)
0,1 > . . . > w

(1)
0,q1

> 0,

with an unchanged regression function x �→ g(μ(x)). To make these transforma-
tions well-defined we need to assume that all intercepts are non-zero and mutually
different (which we assume for the time-being).
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Then, we move recursively through the FN layers 2 ≤ m ≤ d applying the sign
switch operations and the permutations so that the regression function x �→ g(μ(x))

remains unchanged and such that for all 1 ≤ m ≤ d

w
(m)
0,1 > . . . > w

(m)
0,qm

> 0.

This provides us with a unique representation of every network parameter ϑ ∈ R
r

in the fundamental domain

{
ϑ ∈ R

r ; w
(m)
0,1 > . . . > w

(m)
0,qm

> 0 for all 1 ≤ m ≤ d
}

⊂ R
r , (7.51)

supposed that all intercepts are different from zero and mutually different in the
same FN layers. As stated in Section 2.2 of Rüger–Ossen [323], there may still exist
different parameters in this fundamental domain that provide the same predictive
model, but these are of zero Lebesgue measure. The same applies to the intercepts
w

(m)
0,j being zero or having equal intercepts for different neurons. Basically, this

means that we are fine if we work with absolutely continuous prior distributions
on the fundamental domain when we want to work within a Bayesian setup.

7.5 Auto-encoders

Auto-encoders are tools that aim at reducing the dimension of high-dimensional
data such that the reconstruction error of the original data is small, i.e., such that
the loss of information by the dimension reduction is minimized. The most popular
auto-encoder is the principal components analysis (PCA) which we are going to
present here. The PCA is a linear dimension reduction technique. Bottleneck neural
(BN) networks can be viewed as a non-linear extension of the PCA. This is going
to be discussed in Sect. 7.5.5, below. Dimension reduction techniques belong to the
family of unsupervised learning methods because they do not consider a response
variable, but they aim at finding common structure in the features. Unsupervised
learning methods can roughly be categorized into three classes: dimension reduction
techniques (studied in this section), clustering methods and visualization methods.
For a discussion of clustering and visualization methods we refer to the tutorial of
Rentzmann–Wüthrich [310].
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7.5.1 Standardization of the Data Matrix

Assume we have q-dimensional data points yi ∈ R
q , 1 ≤ i ≤ n. This provides us

with a data matrix

Y = (y1, . . . , yn)

 =

⎛
⎜⎝

y1,1 · · · y1,q

...
. . .

...

yn,1 · · · yn,q

⎞
⎟⎠ ∈ R

n×q .

We assume that each of the q columns of Y measures a quantity in a given unit.
The first column may, for instance, describe the age of a car driver in years, the
second column his body weight in kilograms, etc. That is, each column 1 ≤ j ≤ q

of Y describes a specific quantity, and each row y

i of Y describes these quantities

for a given instance 1 ≤ i ≤ n. Since often the analysis should not depend on
the units of the columns of Y , one centers the columns with the empirical means
ȳj =∑n

i=1 yi,j /n, and one normalizes them with the empirical standard deviations
σ̂j = (

∑n
i=1(yi,j − ȳj )

2/n)1/2, 1 ≤ j ≤ q . This gives the normalized data matrix

⎛
⎜⎜⎝

y1,1−ȳ1
σ̂1

· · · y1,q−ȳq

σ̂q

...
. . .

...
yn,1−ȳ1

σ̂1
· · · yn,q−ȳq

σ̂q

⎞
⎟⎟⎠ ∈ R

n×q . (7.52)

We typically center the data matrix Y , providing
∑n

i=1 yi,j = 0 for all 1 ≤ j ≤ q ,
normalization w.r.t. the standard deviation can be done, but is not always necessary.
Centering implies that we can interpret Y as a q-dimensional empirical distribution
with each component (column) being centered. The covariance matrix of this
(centered) empirical distribution is calculated as

�̂ = 1

n

(
n∑

i=1

yi,j yi,k

)

1≤j,k≤q

= 1

n
Y
Y ∈ R

q×q . (7.53)

This is a covariance matrix, and if the columns of Y are normalized with the
empirical standard deviations σ̂j , 1 ≤ j ≤ q , this is a correlation matrix.

7.5.2 Introduction to Auto-encoders

An auto-encoder encodes a high-dimensional vector y ∈ R
q to a low-dimensional

representation so that the dimension reduction leads to a minimal loss of infor-
mation. A function L(·, ·) : R

q × R
q → R+ is called dissimilarity function if

L(y, y′) = 0 if and only if y = y′.
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An auto-encoder is a pair (�,�) of mappings, for given dimensions p < q ,

� : Rq → R
p and � : Rp → R

q, (7.54)

such that their composition � ◦ � has a small reconstruction error w.r.t. the chosen
dissimilarity function L(·, ·), that is,

y �→ L (y,� ◦ �(y)) is small for all cases y of interest. (7.55)

Note that we want (7.55) for selected cases y, and if they are within a p-dimensional
manifold the auto-encoding will be successful. The first mapping � : Rq → R

p is
called encoder, and the second mapping � : Rp → R

q is called decoder. The object
�(y) ∈ R

p is a p-dimensional encoding (representation) of y ∈ R
q which contains

maximal information of y up to the reconstruction error (7.55).

7.5.3 Principal Components Analysis

PCA gives us a linear auto-encoder (7.54). If the data matrix Y ∈ R
n×q has rank

q , there exist q linearly independent rows of Y that span R
q . PCA determines a

different, very specific basis of Rq . It looks for an orthonormal basis v1, . . . , vq ∈
R

q such that v1 explains the direction of the biggest variability in Y , v2 the direction
of the second biggest variability in Y orthogonal to v1, and so forth. Variability is
understood in the sense of maximal empirical variance under the assumption that
the columns of Y are centered, see (7.52)–(7.53). Such an orthonormal basis can
be found by determining q linearly independent eigenvectors of the symmetric and
positive definite matrix

A = n�̂ = Y
Y ∈ R
q×q .

For this we can solve recursively the following convex Lagrange problems. The first
basis vector v1 ∈ R

q is determined by the solution of3

v1 = arg max
‖w‖2=1

‖Yw‖2
2 = arg max

w
w=1

(
w
Y
Yw

)
, (7.56)

and the j -th basis vector vj ∈ R
q , 2 ≤ j ≤ q , is received recursively by the solution

of

vj = arg max
‖w‖2=1

‖Yw‖2
2 subject to 〈vk,w〉 = 0 for all 1 ≤ k ≤ j−1. (7.57)

3 If the q eigenvalues of A are distinct, the solution to (7.56) and (7.57) is unique up to the sign,
otherwise this requires more care.



7.5 Auto-encoders 345

Singular value decomposition (SVD) gives an alternative way of computing this
orthonormal basis, we refer to Section 14.5.1 in Hastie et al. [183]. The algorithm
of Golub–Van Loan [165] gives an efficient way of performing a SVD. There exist
orthogonal matrices U ∈ R

n×q and V ∈ R
q×q (with U
U = V 
V = 1q ), and

a diagonal matrix � = diag(λ1, . . . , λq) ∈ R
q×q with singular values λ1 ≥ . . . ≥

λq > 0 such that we have the SVD

Y = U�V 
. (7.58)

The matrix U is called left-singular matrix of Y , and the matrix V is called right-
singular matrix of Y . Observe by using the SVD (7.58)

V 
AV = V 
Y 
YV = V 
V �U
U�V 
V = �2 = diag(λ2
1, . . . , λ

2
q ).

That is, the squared singular values (λ2
j )1≤j≤q are the eigenvalues of matrix A, and

the column vectors of the right-singular matrix V = (v1, . . . , vq) (eigenvectors of
A) give an orthonormal basis v1, . . . , vq . This motivates to define the q principal
components of Y by the column vectors of

YV = U� = Udiag(λ1, . . . , λq) (7.59)

= (λ1u1, . . . , λquq

) ∈ R
n×q .

E.g., the first principal component of the instances 1 ≤ i ≤ n is given by Yv1 =
λ1u1 ∈ R

n. Considering the first p ≤ q principal components gives the rank p

matrix

Y p = Udiag(λ1, . . . , λp, 0, . . . , 0)V 
 ∈ R
n×q . (7.60)

The Eckart–Young–Mirsky theorem [114, 279]4 proves that this rank p matrix Y p

minimizes the Frobenius norm relative to Y among all rank p matrices, that is,

Yp ∈ arg min
B∈Rn×q

‖Y − B‖F subject to rank(B) ≤ p, (7.61)

where the Frobenius norm is given by ‖C‖2
F =∑i,j c2

i,j for a matrix C = (ci,j )i,j .
The orthonormal basis v1, . . . , vq ∈ R

q gives the (linear) encoder (projection)

� : Rq → R
p, y �→ �(y) =

(
y
v1, . . . , y


vp

)
 = (v1, . . . , vp)
y.

4 In fact, (7.61) holds for both the Frobenius norm and the spectral norm.
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These gives the first p principal components in (7.59) if we insert the transposed
data matrix Y 
 = (y1, . . . , yn) ∈ R

q×n for y ∈ R
q . The (linear) decoder � is

given by

� : Rp → R
q , z �→ �(z) = (v1, . . . , vp)z.

The following is understood column-wise for the transposed data matrix Y
,

� ◦ �(Y
) = �
(
(v1, . . . , vp)
Y
)

=
(
Y (v1, . . . , vp)(v1, . . . , vp)


)


=
(
Y (v1, . . . , vp, 0, . . . , 0)(v1, . . . , vp, vp+1, . . . , vq)


)


=
(
Udiag(λ1, . . . , λp, 0, . . . , 0)V 
)
 = Y


p .

Thus, � ◦ �(Y
) minimizes the Frobenius reconstruction error (7.61) on the data
matrix Y 
 among all linear maps of rank p. In view of (7.55) we can express the
squared Frobenius reconstruction error as

‖Y − Y p‖2
F =

n∑
i=1

∥∥yi − � ◦ �(yi )
∥∥2

2 =
n∑

i=1

L
(
yi , � ◦ �(yi )

)
, (7.62)

thus, we choose the squared Euclidean distance as the dissimilarity measure, here,
that we minimize simultaneously on all cases yi , 1 ≤ i ≤ n.

Remark 7.30 The PCA gives a linear approximation to the data matrix Y by
minimizing (7.61) and (7.62) for given rank p. This may not be appropriate if the
non-linear terms are dominant. Figure 7.31 (lhs) gives a situation where the PCA
works well; this data has been generated by i.i.d. multivariate Gaussian random
vectors yi ∼ N (0,�). Figure 7.31 (middle) gives a non-linear example where the
PCA does not work well, the data matrix Y ∈ R

n×2 is a column-centered matrix
that builds a circle around the origin.

Another nice example where the PCA fails is Fig. 7.31 (rhs). This figure is
inspired by Shlens [337] and Ruckstuhl [321]. It shows a situation where the level
sets are non-convex, and the principal components point into a completely wrong
direction to explain the structure of the data.
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Fig. 7.31 Two-dimensional PCAs in different situations of the data matrix Y ∈ R
n×2

7.5.4 Lab: Lee–Carter Mortality Model

We use the SVD to fit the most popular stochastic mortality model, the Lee–Carter
(LC) model [238], to (raw) mortality data. The raw mortality data considers for each
calendar year t and each age x the number of people Dx,t who died (in that year t

at age x) divided by the corresponding population exposure ex,t . In practice this
requires some care. Due to migration, often, the exposures ex,t are non-observable
figures and need to be estimated. Moreover, also the death counts Dx,t in year t at
age x can be defined differently, age cohorts are usually defined by the year of birth.
We denote the (observed) raw mortality rates by Mx,t = Dx,t/ex,t . The subsequent
derivations consider the raw log-mortality rates log(Mx,t ), for this reason we assume
that Mx,t > 0 for all calendar years t and ages x. The goal is to model these raw
log-mortality rates (for each country, region, risk group and gender separately).

The LC model defines the force of mortality as

log(μx,t ) = ax + bxkt , (7.63)

where log(μx,t ) is the (deterministic) log-mortality rate in calendar year t for a
person aged x (for a fixed country, region and gender). The individual terms in (7.63)
have the following meaning: ax is the average force of mortality at age x, bx is the
rate of change of the force of mortality broken down to the different ages x, and kt

is the time index describing the change of the force of mortality in calendar year t .
Strictly speaking, we do not have a stochastic model, here, that can explain the

observations Mx,t , but we try to fit a deterministic mortality surface (μx,t )x,t to
these noisy observations (Mx,t )x,t . For this we use the PCA and the Frobenius norm
as the measure of dissimilarity (on the log-scale).

In a first step, we center the raw log-mortality rates for all ages x, i.e., over the
calendar years t ∈ T under consideration. We define the centered raw log-mortality
rates yx,t and the estimate âx of the average force of mortality at age x as follows

Yx,t = log(Mx,t ) − âx = log(Mx,t ) − 1

|T |
∑
s∈T

log(Mx,s), (7.64)
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where the last identity defines the estimate âx . Strictly speaking we have a slight
difference to the centering in Sect. 7.5.1 because we center the rows and not the
columns of the data matrix, here, but the role of rows and columns is exchangeable in
the PCA. The optimal (parameter) values (̂bx)x and (̂kt )t are determined as follows,
see (7.63),

arg min
(bx)x ,(kt )t

∑
x,t

(
Yx,t − bxkt

)2
,

where the sum runs over the years t ∈ T and the ages x0 ≤ x ≤ x1, with x0 and x1
being the lower and upper age boundaries. This can be rewritten as an optimization
problem (7.61)–(7.62). Consider the data matrix Y = (Yx,t )x0≤x≤x1;t∈T ∈ R

n×q ,
and set n = x1 − x0 + 1 and q = |T |. Assume Y has rank q . This allows us to
consider

Y 1 ∈ arg min
B∈Rn×q

‖Y − B‖F subject to rank(B) ≤ 1.

A solution to this problem is given, see (7.60),

Y 1 = Udiag(λ1, 0, . . . , 0)V 
 = (λ1u1) v

1 = (Yv1) v


1 ∈ R
n×q ,

with left-singular matrix U = (u1, . . . ,uq) ∈ R
n×q and right-singular matrix V =

(v1, . . . , vq) ∈ R
q×q of Y . This implies that the first principal component λ1u1 =

Yv1 ∈ R
n gives an estimate for (bx)x0≤x≤x1, and the first column vector v1 ∈ R

q

of V gives an estimate for the time index (kt )t∈T . For parameter identifiability we
normalize

x1∑
x=x0

b̂x = 1 and
∑
t∈T

k̂t = 0, (7.65)

the latter being consistent with the centering of the rows of Y with âx in (7.64).
We fit the LC model to the Swiss mortality data of females and males separately.

The raw log-mortality rates log(Mx,t ) for the years t ∈ T = {1950, . . . , 2016}
and the ages 0 ≤ x ≤ 99 are illustrated in Fig. 7.32; both plots use the same color
scale. This mortality data has been obtained from the Human Mortality Database
(HMD) [195]. In general, we observe a diagonal structure that indicates mortality
improvements over time.
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Fig. 7.32 Raw log-mortality rates log(Mx,t ) for the calendar years 1950 ≤ t ≤ 2016 and the ages
x0 = 0 ≤ x ≤ x1 = 99 of Swiss females (lhs) and Swiss males (rhs); both plots use the same color
scale

Swiss Female Lee−Carter log−mortality rates
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Fig. 7.33 LC fitted log-mortality rates log(μ̂x,t ) for the calendar years 1950 ≤ t ≤ 2016 and the
ages x0 = 0 ≤ x ≤ x1 = 99 of Swiss females (lhs) and Swiss males (rhs); the plots use the same
color scale as Fig. 7.32

Define the fitted log-mortality surface

log(μ̂x,t ) = âx + b̂x k̂t for x0 ≤ x ≤ x1 and t ∈ T .

Figure 7.33 shows the LC fitted log-mortality surface (log(μ̂x,t ))0≤x≤99;t∈T sepa-
rately for Swiss females and Swiss males, the color scale is the same as in Fig. 7.32.
The plots show a huge similarity between the raw log-mortality data and the LC
fitted log-mortality surface which clearly supports the LC model for the Swiss
data. In general, the LC surface is a smoothed version of the raw log-mortality
surface. The main difference in our LC fit concerns the male population for ages
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Fig. 7.34 (lhs) Singular values λj , 1 ≤ j ≤ |T |, of the SVD of the data matrix Y ∈ R
n×|T |, and

(rhs) the reconstruction errors ‖Y − Yp‖2
F for 0 ≤ p ≤ |T |

20 ≤ x ≤ 40 from 1980 to 2000, one explanation of the special pattern in the
observed data during that time is the emergence of HIV.

Figure 7.34 (lhs) shows the singular values λ1 ≥ . . . ≥ λ|T | > 0 for
Swiss females and Swiss males. We observe that the first singular value λ1 by
far dominates the remaining singular values λj , j ≥ 2. Thus, the first principal
component indeed may already be sufficient, and the centered raw log-mortality
data Y can be described by a matrix Y 1 of rank p = 1. Figure 7.34 (rhs) gives
the squared Frobenius reconstruction errors of the approximations Yp of ranks
0 ≤ p ≤ |T |, where Y 0 corresponds to the zero matrix where we do not use any
approximation, but use just the average observed log-mortality rate. We observe that
the first singular value leads by far to the biggest decrease in the reconstruction error,
and the subsequent expansions λj , j ≥ 2, improve it only slightly in each step. This
supports the use of the LC model using a rank p = 1 approximation to the centered
raw log-mortality rates Y . The higher rank PCA within mortality modeling has
been studied in Renshaw–Haberman (RH) [308], and the RH(p) mortality model
considers the rank p approximation Yp to the raw log-mortality rates Y given by

log(μx,t ) = ax + 〈bx, kt 〉,

for bx, kt ∈ R
p.

We have (only) fitted a mortality surface to the raw log-mortality rates on the
rectangle {x0, . . . , x1} × T . This does not allow us to forecast mortality into the
future. Forecasting requires a two step procedure, which, after this first estimation
step, extrapolates the time index (time-series) (̂kt )t∈T beyond the latest observation
point in T . The simplest (meaningful) model for this second (extrapolation) step
is a random walk with drift for the time index process (̂kt )t≥0. Figure 7.35 shows
the estimated two-dimensional process (̂kt )t∈T , i.e., for p = 2, on the rectangle
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Fig. 7.35 Estimated two-dimensional processes (̂kt )t∈T for Swiss females (lhs) and Swiss males
(rhs); these are normalized such that they are centered and such that the components of b̂x add up
to 1

{x0, . . . , x1} × T which needs to be extrapolated to predict within the RH (p = 2)
mortality model. We refrain from doing this step, but extrapolation will be studied
in Sect. 8.4, below.

7.5.5 Bottleneck Neural Network

BN networks have become popular in studying non-linear generalizations of PCA,
we refer to Kramer [225] and Hinton–Salakhutdinov [186]. The BN network
architecture is such that (1) the input dimension q0 is equal to the output dimension
qd+1 of a FN network, and (2) in between there is a FN layer 1 ≤ m ≤ d that has a
very low dimension qm � q0, called the bottleneck. Figure 7.36 (lhs) shows such a
BN network of depth d = 3 and neurons

(q0, q1, q2, q3, q4) = (20, 7, 2, 7, 20).

The input and output neurons have blue color, and the bottleneck of dimension q2 =
2 is shown in red color in Fig. 7.36 (lhs).
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Fig. 7.36 (lhs) BN network of depth d = 3 with (q0, q1, q2, q3, q4) = (20, 7, 2, 7, 20), (middle
and rhs) shallow BN networks with a bottleneck of dimensions 7 and 2, respectively

The motivation is as follows. Assume we have a given dissimilarity function
L(·, ·) : Rq × R

q → R+ that measures the reconstruction error of an auto-encoder
� ◦�(y) ∈ R

q relative to the original input y ∈ R
q , see (7.55). We try to find a BN

network with input and output dimensions q0 = qd+1 = q (we drop the intercepts in
the entire construction) and a bottleneck in layer m having a low dimension qm, such
that the BN network provides a small reconstruction error. Choose a FN network

y ∈ R
q �→ � ◦ �(y) = z(d+1:1)(y) =

(
z(d+1) ◦ z(d) ◦ · · · ◦ z(1)

)
(y) ∈ R

q,

with FN layers for 1 ≤ m ≤ d (excluding intercepts)

z(m) : Rqm−1 → R
qm, z �→ z(m)(z) =

(
φ〈w(m)

1 , z〉, . . . , φ〈w(m)
qm

, z〉
)


,

and having network weights w
(m)
j ∈ R

qm−1 , 1 ≤ j ≤ qm. For the output we choose
the identity function as activation function

z(d+1) : Rqd → R
qd+1, z �→ z(d+1)(z) =

(
〈w(d+1)

1 , z〉, . . . , 〈w(d+1)
qd+1

, z〉
)


,

and having network weights w
(d+1)
j ∈ R

qd , 1 ≤ j ≤ qd+1. The resulting network

parameter ϑ is now fitted to the data matrix Y = (y1, . . . , yn)

 ∈ R

n×q such that
the reconstruction error is minimized over all instances

ϑ̂ = arg min
ϑ∈Rr

n∑
i=1

L
(
yi , � ◦ �(yi )

) = arg min
ϑ∈Rr

n∑
i=1

L
(
yi , z

(d+1:1)(yi )
)

.

We use this fitted network parameter ϑ̂ and denote the resulting FN layers by ẑ(m)

for 1 ≤ m ≤ d + 1.
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This allows us to define the BN encoder, set q = q0 and p = qm,

� : Rq0 → R
qm, y �→ �(y) = ẑ(m:1)(y) =

(
ẑ(m) ◦ · · · ◦ ẑ(1)

)
(y),

(7.66)
and the BN decoder is given by, set qm = p and qd+1 = q ,

� : Rqm → R
qd+1, z �→ �(z) = ẑ(d+1:m+1)(z) =

(
ẑ(d+1) ◦ · · · ◦ ẑ(m+1)

)
(z).

The BN encoder (7.66) gives us a qm-dimensional representation of the data. A
linear rank p representation Y p of Y , see (7.61), can be found by a BN network
architecture that has a minimal FN layer width of dimension p = min1≤j≤d qj , and
with the identity activation function φ(x) = x. Such a BN network is a linear map
of maximal rank p. Using the Euclidean square distance as dissimilarity measure
provides us an optimal network parameter ϑ̂ for this linear map such that we receive
Y


p = ẑ(d+1:1)(Y
). There is one point to be considered, here, why the bottleneck

activations �(y) = ẑ(m:1)(y) ∈ R
p in the linear activation case are not directly

comparable to the principal components (y
v1, . . . , y

vp)
 of the PCA. Namely,

the PCA uses an orthonormal basis v1, . . . , vp whereas the linear BN network case
uses any p-dimensional basis, i.e., to directly bring these two representations in line
we still need a coordinate transformation of the bottleneck activations.

Hinton–Salakhutdinov [186] noticed that the gradient descent fitting of a BN
network needs some care, otherwise we may find a local minimum of the loss
function that has a poor reconstruction performance. In order to implement a more
sophisticated way of SGD fitting we require that the depth d of the network is an
odd number and that the network architecture is symmetric around the central FN
layer (d + 1)/2. This is the case in Fig. 7.36 (lhs). Fitting of this network of depth
d = 3 is now done in three steps:

1. The symmetry around the central FN layer m = 2 allows us to collapse this
central layer by merging layers 1 and 3 (because q1 = q3). Merging these two
layers provides us a shallow BN network with neurons (q0, q1 = q3, qd+1 =
q0) = (20, 7, 20). This shallow BN network is shown in Fig. 7.36 (middle).
In a first step we fit this simpler network to the data Y . This gives us the
preliminary estimates for the network weights w

(1)
1 , . . . ,w

(1)
q1 and w

(4)
1 , . . . ,w

(4)
q4

of the full BN network. From this fitted shallow BN network we receive the
learned representations zi = z(1)(yi ) ∈ R

q1 , 1 ≤ i ≤ n, in the central layer
using the preliminary estimates of the network weights.

2. In the second step we use the learned representations zi ∈ R
q1 , 1 ≤ i ≤ n, to

fit the inner part of the original network (using a suitable dissimilarity function).
This inner part is a shallow network with neurons (q1, q2, q3 = q1) = (7, 2, 7),
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see Fig. 7.36 (rhs). This second step gives us the preliminary estimates for the
network weights w

(2)
1 , . . . ,w

(2)
q2 and w

(3)
1 , . . . ,w

(3)
q3 of the full BN network.

3. In the final step we fit the full BN network on the data Y and use the preliminary
estimates of the weights (of the previous two steps) as initialization of the
gradient descent algorithm.

Example 7.31 (BN Network Mortality Model) We apply this BN network approach
to modify the LC model of Sect. 7.5.4. Hainaut [178] considered such a BN network
application. For computational reasons, Hainaut [178] proposed a calibration
strategy different from Hinton–Salakhutdinov [186]. We use this latter calibration
strategy as it has turned out to work well in our setting.

As BN network architecture we choose a FN network of depth d = 3. The input
and output dimensions are equal to q0 = q4 = 67, this exactly corresponds to
the number of available calendar years 1950 ≤ t ≤ 2016, see Fig. 7.32. Then, we
select a symmetric architecture around the central FN layer m = 2 with q1 = q3 =
20 neurons. That is, in a first step, the 67 calendar years are compressed to a 20-
dimensional representation. For the bottleneck we then explore different numbers
of neurons q2 = p ∈ {1, . . . , 20}. These BN networks are implemented and fitted in
R with the library keras [77]. We have fitted these models separately to the Swiss
female and male populations. The raw log-mortality rates are illustrated in Fig. 7.32,
and for comparability with the LC approach we have centered these log-mortality
rates according to (7.64), and we use the squared Euclidean distance as the objective
function.

Figure 7.37 compares the squared Frobenius reconstruction errors of the linear
LC approximations Yp to their non-linear BN network counterparts with bottle-
necks q2 = p. We observe that the BN figures are clearly smaller saying that a
non-linear auto-encoding provides a better reconstruction, this is true, in particular,
for 2 ≤ q2 < 20. For q2 ≥ 20 the learning with the BN networks seems saturated,
note that the outer layers have q1 = q3 = 20 neurons which limits the learning at
the bottleneck for bigger q2. In view of Fig. 7.37 there seems to be a kink at q2 = 4,

Fig. 7.37 Frobenius
reconstruction errors
‖Y − Yp‖2

F for
1 ≤ p = q2 ≤ 20 in the linear
LC approach and the
non-linear BN approach
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Fig. 7.38 BN network (q1, q2, q3) = (20, 2, 20) fitted log-mortality rates log(μ̂x,t ) for the
calendar years 1950 ≤ t ≤ 2016 and the ages x0 = 0 ≤ x ≤ x1 = 99 of Swiss females
(left) and Swiss males (right); the plots use the same color scale as Fig. 7.32

and an “elbow” criterion says that this is the critical bottleneck size that should not
be exceeded.

The resulting estimated log-mortality surfaces for the bottleneck q2 = 2 are
illustrated in Fig. 7.38. These strongly resemble the raw log-mortality rates in
Fig. 7.32, in particular, for the male population we get a better fit for ages 20 ≤
x ≤ 40 from 1980 to 2000 compared to the LC model. In a further analysis we
should check whether this BN network does not over-fit to the data. We could, e.g.,
explore drop-outs during calibration or smaller FN (compression) layers q1 = q3.

Finally, we analyze the resulting activations at the bottleneck by considering the
BN encoder (7.66). Note that we assume y ∈ R

q in (7.66) with q = |T | being
the rank of the data matrix Y ∈ R

n×q . Thus, the encoder takes a fixed age 0 ≤
x ≤ 99 and encodes the corresponding time-series observation yx ∈ R

|T | by the
bottleneck activations. This parametrization has been inspired by the PCA which
typically considers a data matrix that has more rows than columns. This results in
at most q = rank(Y ) singular values, supposed n ≥ q . However, we can easily
exchange the role of rows and columns, e.g., by transposing all matrices involved.
For mortality forecasting it is advantageous to exchange these roles because we
would like to extrapolate a time-series beyond T . For this reason we set for the input
dimension q0 = q = 100, which provides us with |T | observations y t ∈ R

100. We
then fit the BN encoder (7.66) to receive the bottleneck activations

Y = (yt )t∈T �→ �(Y ) = (�(y t ))t∈T ∈ R
q2×|T |.

Figure 7.39 shows these figures for a bottleneck q2 = 2. We observe that these
bottleneck time-series (�(y t ))t∈T are much more difficult to understand than the
LC/RH ones given in Fig. 7.35. Firstly, we see that we have quite some dependence
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Fig. 7.39 BN network (q1, q2, q3) = (20, 2, 20): bottleneck activations showing �(y t ) ∈ R
2 for

t ∈ T

between the components of the time-series. Secondly, in contrast to the LC/RH case
of Fig. 7.35, there is not one component that dominates. Note that this dominance
has been obtained by scaling the components of (bx)x to add up to 1 (which,
of course, reflects the magnitudes of the singular values). In the non-linear case,
these scales are hidden in the decoder which is more difficult to extract. Thirdly,
the extrapolation may not work if the time-series has a trend and if we use the
hyperbolic tangent activation function that has a bounded range. In general, a trend
extrapolation has to be considered very carefully with FN networks with non-linear
activation functions, and often there is no good solution to this problem within
the FN network framework. We conclude that this approach improves in-sample
mortality surface modeling, but it leaves open the question about forecasting the
future mortality rates because an extrapolation seems more difficult. �

Remark 7.32 The concept of BN networks has also been considered in the actuarial
literature to encode geographic information, see Blier-Wong et al. [39]. Since
geographic information has a natural spatial component, these authors propose
to use a convolutional neural network to encode the spatial information before
processing the learned features through a BN network. The proposed decoder may
have different forms, either it tries to reconstruct the whole (spatial) neighborhood
of a given location or it only tries to reconstruct the site of a given location.
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7.6 Model-Agnostic Tools

We collect some model-agnostic tools in this section that help us to better understand
and analyze the networks, their calibrations and predictions. Model-agnostic tools
are techniques that are not specific to a certain model type and can be used for
any regression model. Most methods presented here are nicely presented in the
tutorial of Lorentzen–Mayer [258]. There are several ways of getting a better
understanding of a regression model. First, we can analyze variable importance
which tries to answer similar questions to the GLM variable selection tools
of Sect. 5.3 on model validation. However, in general, we cannot rely on any
asymptotic likelihood theory for such an analysis. Second, we can try to understand
the predictive model. For a GLM with the log-link function this is quite simple
because the systematic effects are of a multiplicative nature. For networks this
is much more complicated because we allow for much more general regression
functions. We can either try to understand these functions on a global portfolio level
(by averaging the effects over many insurance policies) or we can try to understand
these functions locally for individual insurance policies. The latter refers to local
sensitivities around a chosen feature value x ∈ X , and the former to global model-
agnostics.

7.6.1 Variable Permutation Importance

For GLMs we have studied the LRT and the Wald test that have been assisting us
in reducing the GLM by the feature components that do not contribute sufficiently
to the regression task at hand, see Sects. 5.3.2 and 5.3.3. These variable reduction
techniques rely on an asymptotic likelihood theory. Here, we need to proceed
differently, and we just aim at ranking the variables by their importance, similarly
to a drop1 analysis, see Listing 5.6.

For a given FN network regression model

x ∈ X �→ μ(x) = g−1〈β, z(d :1)(x)〉,

we randomize one component of x = (x1, . . . , xq)
 at a time, and we study the
resulting change in the objective function. More precisely, for given (learning) data
L, with features x1, . . . , xn, we select one feature component 1 ≤ j ≤ q and
permute (xi,j )1≤i≤n randomly across the entire portfolio 1 ≤ i ≤ n. We denote by
L(j) the resulting data with the j -th component being permuted. We then compare
the resulting deviance loss D(L(j), μ) to the one D(L, μ) on the original data L
using the same regression model μ. We call this approach variable permutation
importance (VPI). Note that such a permutation does not only act on the marginal
effects, but it also distorts the interaction effects of the different feature components.
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Fig. 7.40 VPI measured by
the relative change vpi(j),
1 ≤ j ≤ q, of model Poisson
GLM3 of Table 5.5 and the
FN network regression model
μ̂m=1 of Table 7.9

VehPower

VehGas

Area

VehAge

Density

Region

VehBrand

DrivAge

BonusMalus

variable permutation importance (VPI)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

model GLM3
FN network

We calculate the VPI on the MTPL claim frequency data of model Poisson
GLM3 of Table 5.5 and the FN network regression model μ̂m=1 of Table 7.9; we
use this example throughout this section on model-agnostic tools. Figure 7.40 shows
the relative increases

vpi(j) = D(L(j), μ) − D(L, μ)

D(L, μ)
,

of the deviance losses by permuting one feature component 1 ≤ j ≤ q at a time.
Obviously, the BonusMalus level followed by DrivAge and VehBrand are

the most important variables according to this VPI method. This is in alignment for
both models. Thereafter, there are smaller disagreements between the two models.
These disagreements may (also) be caused by a non-optimal feature pre-processing
in the GLM where, for instance, we have to add the interaction effects manually,
see (5.35). Overall, these VPI results are in line with the findings of the classical
methods on GLMs, see for instance the drop1 table in Listing 5.6.

One point that is worth mentioning (and which makes the VPI results not fully
reliable) is the use of feature components that are highly correlated. In our case,
Density and Area are highly correlated, see Fig. 13.12. Therefore, it may not
make sense to randomly permute one component while keeping the other one
unchanged. This issue will also arise in other methods described below.

Remark 7.33 (Global Surrogate Model) There are other machine learning methods
that offer different measures of variable importance. For instance, (binary split)
classification and regression trees (CARTs) offer popular methods for measuring
variable importance; for binary split CARTs we refer to Breiman et al. [54]
and Denuit et al. [100]. These CARTs select individual feature components for
partitioning the feature space X , and variable importance is measured by analyzing
the contribution of each feature component to the total decrease of the objective
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function. Binary split CARTs have the advantage that this can be done in an additive
way.

More complex regression models like FN networks can then be analyzed by using
a binary split regression tree as a global surrogate model. That is, we can fit a CART
to the network regression function (as a surrogate model) and then analyze variable
importance in this surrogate regression tree model using the tools of regression trees.
We will not give an explicit example here because we have not formally introduced
regression trees in this manuscript, but this concept is fairly straightforward and
well-understood.

7.6.2 Partial Dependence Plots

There are several graphical tools that study the individual behavior in the feature
components. Some of these tools select individual insurance policies and others
study global portfolio properties. They have in common that they are based on
marginal considerations, i.e., some sort of projection.

Individual Conditional Expectation

Individual conditional expectation (ICE) selects individual insurance policies
(Yi, x i , vi ) and varies the feature components of xi over their entire domain;
we refer to Goldstein et al. [164]. Similarly to the VPI of Sect. 7.6.1, ICE does
not respect collinearity in feature components, but it is rather an isolated view of
individual components.

In Fig. 7.41 we provide the ICE plots of model Poisson GLM3 of Table 5.5 and
the FN network regression model μ̂m=1 of Table 7.9 of 100 randomly selected
insurance policies xi . For these randomly selected insurance policies we let the
variable DrivAge vary over its domain {18, . . . , 90}. Each color corresponds to
one insurance policy i, and the colors in the two plots coincide. In the GLM
we observe that the lines are roughly parallel which reflects that we have an
additive regression structure on the canonical scale (note that these plots are on the
canonical parameter scale). The lines are not perfectly parallel because we allow
for an interaction between DrivAge and BonusMalus in model Poisson GLM3,
see (5.35). The plot of the FN network is more difficult to interpret. Overall the
levels (colors) coincide in the two plots, but in the FN network plot the lines are not
increasing for ages approaching 18, the reason for this is that we have interactions
with other feature components that are important. In particular, for ages close to
18 we cannot have a BonusMalus level of 50% and, therefore, the FN network
cannot be trained on this part of the feature space. Nevertheless, the ICE plot allows
for such feature configurations (by just extrapolating the FN network regression
function beyond the set of available insurance policies). This difficulty is confirmed
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Fig. 7.41 ICE plots of 100 randomly selected insurance policies xi of (lhs) model Poisson GLM3
and (rhs) FN network μ̂m=1 letting the variable DrivAge vary over its domain; the y-axis is on
the canonical parameter scale

by exploiting the same plot only on insurance policies that have a BonusMalus
level of at least 100%. In that case the lines for small ages are non-decreasing when
approaching the age of 18, thus, providing a more reasonable interpretation. We
conclude that if we have strong dependence and/or interactions between the feature
components this method may not provide any reasonable interpretations.

Partial Dependence Plot

Partial dependence plots (PDPs) have been introduced by Friedman [141], see also
Zhao–Hastie [405]. PDPs are closely related to the do-operator in causal inference
in statistics; we refer to Pearl [298] and Pearl et al. [299] for the do-operator. A
PDP and the do-operator, respectively, are obtained by breaking the dependence
structure between different feature components. Namely, we decompose the feature
x = (xj , x\j ) into two parts with x\j denoting all feature components except of
component xj ; we will use a slight abuse of notation because the components need
to be permuted correspondingly in the following regression function x → μ(x) =
μ(xj , x\j ). Since, typically, there is dependence between xj and x\j one can infer
x\j from xj , and vice versa. A PDP breaks this inference potential so that the
sensitivity can be studied purely in xj . In particular, the partial dependence profile
is obtained by

xj �→ μ̄j (xj ) =
∫

μ(xj , x\j ) dp(x\j ), (7.67)
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where p(x\j ) is the marginal (portfolio) distribution of the feature components x\j .
Observe that this differs from the conditional expectation which reads as

xj �→ μ(xj ) = Ep

[
μ(xj , x\j )

∣∣ xj

] =
∫

μ(xj , x\j ) dp(x\j |xj ),

the latter allowing for inferring x\j from xj through the conditional probability
dp(x\j |xj ).

Remark 7.34 (Discrimination-Free Insurance Pricing) Recent actuarial literature
discusses discrimination-free insurance pricing which aims at developing a pricing
framework that is free of discrimination w.r.t. so-called protected characteristics
such as gender and ethnicity; we refer to Guillén [174], Chen et al. [69, 70],
Lindholm et al. [253] and Frees–Huang [136] for discussions on discrimination
in insurance. In general, part of the problem also lies in the fact that one can
often infer the protected characteristics from the non-protected feature information.
This is called indirect discrimination or proxy discrimination. The proposal of
Lindholm et al. [253] for achieving discrimination-free prices exactly follows the
construction (7.67), by breaking the link, which infers the protected characteristics
from the non-protected ones.

The partial dependence profile on our portfolio L with given features x1, . . . , xn

is now obtained by just using the portfolio distribution as an empirical distribution
for p in (7.67). That is, for a selected component xj of x, we consider the partial
dependence profile

xj �→ μ̄j (xj ) = 1

n

n∑
i=1

μ(xj , xi,\j ) = 1

n

n∑
i=1

μ
(
xi,0, xi,1, . . . , xi,j−1, xj , xi,j+1, . . . , xi,q

)
,

thus, we average the ICE plots over xi,\j of our portfolio 1 ≤ i ≤ n.
Figure 7.42 (lhs, middle) give the PDPs of the variables BonusMalus and

DrivAge of model Poisson GLM3 and the FN network μ̂m=1. Overall they

Fig. 7.42 PDPs of (lhs) BonusMalus level and (middle) DrivAge; the y-axis is on the
canonical parameter scale; (rhs) ratio of policies with a bonus-malus level of 50% per driver’s
age
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look reasonable. However, we are again facing the difficulty that these partial
dependence profiles consider feature configurations that should not appear in our
portfolio. Roughly 57% of all insurance policies have a bonus-malus level of 50%,
which means that these driver’s did not suffer any claims in the past couple of
years. Obviously a driver of age 18 cannot be on this bonus-malus level, simply
because she/he is not in a state where she/he can have multiple years of driving
experience without an accident. However, the PDP does not respect this fact, and just
extrapolates the regression function into that part of the feature space. Therefore, the
PDP at driver’s age 18 is based on 57% of the insurance policies being on a bonus-
malus level of 50% because this corresponds to the empirical portfolio distribution
p(x\j ) excluding the driver’s age xj = DrivAge information. Figure 7.42 (rhs)
shows the ratio of insurance policies that have a bonus-malus level of 50%. We
observe that this ratio is roughly zero up to age 28 (orange vertical dotted line),
which indicates that a driver needs 10 successive accident-free years to reach the
lowest bonus-malus level (starting from 100%). We consider it to be data error that
this ratio below age 28 is not identically equal to zero. We conclude that these PDPs
need to be interpreted very carefully because the insurance portfolio is not uniformly
distributed across the feature space. In some parts of the feature space the regression
function x �→ μ(x) may not even be well-defined because certain combinations of
feature values x may not exist (e.g., a driver of age 18 on bonus-malus level 50% or
a boy at a girl’s college).

Accumulated Local Effects Profile

PDPs have the problem that they do not respect the dependencies between the
feature components, as explained in the previous paragraphs. The accumulated local
effects (ALE) profile tries to take account for these dependencies by only studying
a local feature perturbation, we refer to Apley–Zhu [13]. We present a smooth
(gradient-based) version of ALE because our regression functions are differentiable.
Consider the local effect in the individual feature x w.r.t. the component xj by
studying the partial derivative

μj (x) = ∂μ(x)

∂xj

. (7.68)

The average local effect of component j is received by

xj �→ �j(xj ; μ) =
∫

μj(xj , x\j )dp(x\j |xj ). (7.69)

ALE integrate the average local effects �j(·) over their domain, and the ALE profile
is defined by

xj �→
∫ xj

xj0

�j(zj ; μ)dzj =
∫ xj

xj0

∫
μj(zj , x\j )dp(x\j |zj )dzj , (7.70)
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where xj0 is a given initialization point. The difference between PDPs and ALE
is that the latter correctly considers the dependence structure between xj and x\j ,
see (7.69).

Listing 7.10 Local effects through the gradients of FN networks in keras [77]

1 Input = layer_input(shape = c(11), dtype = ’float32’, name = ’Design’)
2 #
3 Output = Input %>%
4 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
5 layer_dense(units=15, activation=’tanh’, name=’FNLayer2’) %>%
6 layer_dense(units=10, activation=’tanh’, name=’FNLayer3’) %>%
7 layer_dense(units=1, activation=’linear’, name=’Network’)
8 #
9 model = keras_model(inputs = c(Input), outputs = c(Output))

10 #
11 grad = Output %>%
12 layer_lambda(function(x) k_gradients(model$outputs, model$inputs))
13 model.grad = keras_model(inputs = c(Input), outputs = c(grad))
14 theta.grad <- data.frame(model.grad %>% predict(XX))

Example We come back to our MTPL claim frequency FN network example. The
local effects (7.68) can directly be calculated in the R library keras [77] for a FN
network, see Listing 7.10. In order to do so we need to drop the embedding layers,
compared to Listing 7.4, and directly work on the learned embeddings. This gives
an input layer of dimension q = 7 + 2 + 2 = 11 because we have two categorical
features that have been embedded into 2-dimensional Euclidean spaces R

2. Then,
we can formally calculate the gradient of the FN network w.r.t. its inputs which is
done on lines 11–13 of Listing 7.10. Remark that we work on the canonical scale
because we use the linear activation function on line 7 of the listing.

There remain the averaging (7.69) and the integration (7.70) which can be done
empirically

xj �→ �j(xj ; μ) = 1

|E(xj )|
∑

i∈E(xj )

μj (xi ), (7.71)

where E(xj ) denotes the indices i of all cases xi , 1 ≤ i ≤ n, with xi,j = xj ,
assuming of having discrete feature data observations. Note that this empirical
averaging respects the dependence within x. The (uncentered) ALE profile is then
obtained by aggregating these local effects, that is,

xj �→ μ̃j (xj ) =
∫ xj

xj0

�j(zj ; μ)dzj ,
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where this integration is typically understood in a discrete sense because the
observed feature components xi,j are discrete. Often, this uncentered ALE profile is
still translated (centered) by the portfolio average.

Remarks 7.35

• We have only introduced ALE for continuous feature variables. For nominal
categorical feature components it is not immediately clear how to reasonably
integrate the average local effects �j(xj ; μ), and one typically directly analyzes
these average local effects.

• For GLMs the ALEs are rather simple if we work on the canonical scale and
under the canonical link, since

θj (x) = ∂θ(x)

∂xj

= βj ≡ �j(xj ; θ).

In the case of model Poisson GLM3 presented in Sect. 5.3.4 the situation is
more delicate as we model the interactions in the GLM as follows, see (5.34)
and (5.35),

(DrivAge,BonusMalus)

�→ βl DrivAge+ βl+1log(DrivAge) +
4∑

j=2

βl+j (DrivAge)j

+βl+5BonusMalus+ βl+6 BonusMalus · DrivAge
+βl+7BonusMalus · (DrivAge)2.

In that case, though we work with a GLM, the resulting local effects are different
if we calculate the derivatives w.r.t. DrivAge and BonusMalus, respectively,
because we explicitly (manually) include non-linear effects into the GLM.

Figure 7.43 shows the ALE profiles of the variables BonusMalus and
DrivAge. The shapes of these profiles can directly be compared to the PDPs
of Fig. 7.42 (the scale on the y-axis should be ignored because this will depend
on the applied centering, however, we hold on to the canonical scale). The main
difference between these two plots can be observed for the variable DrivAge at
low ages. Namely, the ALE profiles have a different shape at low ages respecting
the dependencies in the feature components by only considering real local feature
configurations.
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Fig. 7.43 ALE profiles of (lhs) BonusMalus level and (rhs) DrivAge; the y-axis is on the
log-scale

7.6.3 Interaction Strength

Next we are going to discuss pairwise interaction strength. Friedman–Popescu [143]
made the following proposal. Roughly speaking, there is an interaction between the
two feature components xj and xk of x in the regression function x �→ μ(x) if

μj,k(x) = ∂2μ(x)

∂xj∂xk

�= 0. (7.72)

This means that the magnitude of a change of the regression function μ(x) in xj

depends on the current value of xk. If there is no such interaction, we can additively
decompose the regression function μ(x) into two independent terms. This then
reads as μ(x) = μ\j (x\j ) + μ\k(x\k). This motivation is now applied to the
PDP profiles given in (7.67). We define the centered versions xj �→ μ̆j (xj ) and
xk �→ μ̆k(xk) of the PDP profiles by centering the PDP profiles xj �→ μ̄j (xj )

and xk �→ μ̄k(xk) over the portfolio values xi , 1 ≤ i ≤ n. Next, we consider an
analogous two-dimensional version for (xj , xk). Let (xj , xk) �→ μ̆j,k(xj , xk) be the
centered version of a two-dimensional PDP profile (xj , xk) �→ μ̄j,k(xj , xk).

Friedman’s H -statistics measures the pairwise interaction strength between the
components xj and xk, and it is defined by

H 2
j,k =

∑n
i=1

(
μ̆j,k(xi,j , xi,k) − μ̆j (xi,j ) − μ̆k(xi,k)

)2
∑n

i=1 μ̆j,k(xi,j , xi,k)2 , (7.73)

we refer to formula (44) in Friedman–Popescu [143]. While H 2
j,k measures the

proportion of the joint interaction effect, as we normalize by the variability of
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the joint effect
∑n

i=1 μ̆j,k(xi,j , xi,k)
2, sometimes also the absolute measure is

considered by taking the square root of the enumerator in (7.73). Of course, this
can be extended to interactions of three components, etc., we refer to Friedman–
Popescu [143].

We do not give an example here, because calculating Friedman’s H -statistics
can be computationally demanding if one has many feature components with many
levels in FN network modeling.

7.6.4 Local Model-Agnostic Methods

The above methods like the PDP and the ALE profile have been analyzing the global
behavior of the regression functions. We briefly mention some tools that describe the
local sensitivity and explanation of regression results.

Probably the most popular method is the locally interpretable model-agnostic
explanation (LIME) introduced by Ribeiro et al. [311]. This analyzes locally the
expected response of a given feature x by perturbing x. In a nutshell, the idea is to
select an environment E(x) ⊂ X of a chosen feature x and to study the regression
function x′ �→ μ(x′) in this environment x′ ∈ E(x). This is done by fitting a
(much) simpler surrogate model to μ on this environment E(x). If the environment
is small, often a linear regression model is chosen. This then allows one to interpret
the regression function μ(·) locally using the simpler surrogate model, and if we
have a high-dimensional feature space, this linear regression is complemented with
LASSO regularization to only select the most important feature components.

The second method considered in the literature is the Shapley additive expla-
nation (SHAP). The SHAP is based on Shapley values [335] which is a method
of allocating rewards to players in cooperative games, where a team of individual
players jointly contributes to a potential success. Shapley values solve this allocation
problem under the requirements of additivity and fairness. This concept can be
translated to analyzing how individual feature components of x contribute to the
total prediction μ(x) of a given case. Shapley values allow one to do such a
contribution analysis in the aforementioned additive and fair way, see Lundberg–Lee
[261]. The calculation of SHAP values is combinatorially demanding and therefore
several approximations have been proposed, many of them having their own caveats,
we refer to Aas et al. [1]. We will not further consider these but refer to the relevant
literature.

7.6.5 Marginal Attribution by Conditioning on Quantiles

The above model-agnostic tools have mainly been studying the sensitivities of the
expected response μ(x) in the feature components of x. This becomes apparent
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from considering the partial derivatives (7.68) to calculate the local effects. Alterna-
tively, we could try to understand how the feature components of x contribute to a
given response μ(x), see Ancona et al. [12]; this section follows Merz et al. [273].
The marginal attribution on an input component j of the response μ(x) can be
studied by the directional derivative

xj �→ xjμj (x) = xj
∂μ(x)

∂xj

. (7.74)

This was first proposed to the data science community by Shrikumar et al. [340].
Basically, it means that we replace the partial derivative μj(x) by the directional
derivative along the vector xjej = (0, . . . , 0, xj , 0, . . . , 0)
 ∈ R

q+1

lim
ε→0

μ(x + εxjej ) − μ(x)

ε

= lim
ε→0

μ
(
(1, x1, . . . , xj−1, (1 + ε)xj , xj+1, . . . , xq)


)− μ(x)

ε
= xjμj (x),

where ej is the (j + 1)-st basis vector in R
q+1 (index j = 0 corresponds to the

intercept component x0 = 1).
We start by recalling the sensitivity analysis of Hong [189] and Tsanakas–

Millossovich [355] in the context of risk measurement. Assume the features have
a portfolio distribution X ∼ p. This describes the random selection of an insurance
policy X = x from the portfolio described by p. The average price over the entire
portfolio is then given by

μ = Ep[μ(X)] =
∫

μ(x)dp(x).

We implicitly interpret μ(X) = E[Y |X] as the price of the response Y , here,
though we do not need the response distribution in this section. Assume μ(X)

has a continuous distribution function Fμ(X); and we drop the intercept component
X0 = x0 = 1 from these considerations (but we still keep it in the regression
model). This implies that Uμ(X) = Fμ(X)(μ(X)) is uniformly distributed on [0, 1].
Choosing a density ζ on [0, 1] gives us a probability distortion ζ(Uμ(X)) as we have
the normalization

Ep

[
ζ(Uμ(X))

] =
∫ 1

0
ζ(u)du = 1.

This allows us to define a distorted portfolio price in the sense of a Radon–Nikodým
derivative, namely, we set for the distorted portfolio price

�(μ(X); ζ ) = Ep

[
μ(X)ζ(Uμ(X))

]
.
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This functional �(μ(X); ζ ) is a so-called distortion risk measure. Our goal is to
study the sensitivities of this distortion risk measure in the components of X.
Assume existence of the following directional derivatives for all 1 ≤ j ≤ q

Sj (μ; ζ ) = ∂

∂ε
�
(
μ
(
(1,X1, . . . , Xj−1, (1 + ε)Xj ,Xj+1, . . . Xq)


)
; ζ
)∣∣∣

ε=0
.

Sj (μ; ζ ) can be used to describe the sensitivities of the regression function X �→
μ(X) in the feature components Xj . Under different sets of assumptions, Hong
[189] and Tsanakas–Millossovich [355] have proved the following identity

Sj (μ; ζ ) = Ep

[
Xjμj (X)ζ(Uμ(X))

]
,

the right-hand side exactly uses the marginal attribution (7.74). There remains the
freedom of the choice of the density ζ on [0, 1], which allows us to study the
sensitivities of different distortion risk measures. For the uniform distribution ζ ≡ 1
on [0, 1] we simply have the average (best-estimate) price and its average marginal
attributions

�(μ(X); ζ ≡ 1) = Ep[μ(X)] = μ and Sj (μ; ζ ≡ 1) = Ep[Xjμj (X)].

If we want to consider a quantile risk measure, called value-at-risk (VaR), we choose
a Dirac measure for the density ζ . That is, choose a point measure of mass 1 in
α ∈ (0, 1), i.e., the density ζ is concentrated in the single point α. In that case, the
event {Fμ(X)(μ(X)) = Uμ(X) = α} receives probability one, and therefore we have
the α-quantile

�(μ(X); α) = F−1
μ(X)(α),

and the corresponding sensitivities for 1 ≤ j ≤ q

Sj (μ; α) = Ep

[
Xjμj (X)

∣∣∣μ(X) = F−1
μ(X)(α)

]
. (7.75)

Remarks 7.36

• In the introduction to this section we have assumed that μ(X) has a continuous
distribution function. This emphasizes that this sensitivity analysis is most
suitable for continuous feature components. Categorical and discrete feature
components can be embedded into a Euclidean space, e.g., using embedding
layers, and then they can be treated as continuous variables.

• Sensitivities (7.75) respect the local portfolio structure as they are calculated
w.r.t. p.

• In applications, we will work with the empirical portfolio distribution for p

provided by (xi )1≤i≤n. This gives an empirical approximation to (7.75) and,
in particular, it will require a choice of a bandwidth for the evaluation of the
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conditional probability, conditioned on the event {μ(X) = F−1
μ(X)(α)}. This is

done with a local smoother similarly to Listing 7.8.

In analogy to Merz et al. [273] we give a different interpretation to the
sensitivities (7.75), which allows us to further expand this formula. We have 1st
order Taylor expansion

μ(x + ε) = μ(x) + (∇xμ(x))
ε + o (‖ε‖2) for ‖ε‖2 → 0.

Obviously, this is a local approximation in x. Setting ε = −x, we get (a possibly
crude) approximation

μ(0) ≈ μ (x) − (∇xμ(x))
 x.

By bringing the gradient term to the other side, using (7.75) and conditionally
averaging, we receive the 1st order marginal attributions

F−1
μ(X)(α) = Ep

[
μ (X)

∣∣∣μ(X) = F−1
μ(X)(α)

]
≈ μ (0) +

q∑
j=1

Sj (μ; α). (7.76)

Thus, the sensitivities Sj (μ; α) provide a 1st order description of the quantiles
F−1

μ(X)(α) of μ(X). We call this approach marginal attribution by conditioning on
quantiles (MACQ) because it shows how the components Xj of X contribute to a
given quantile level.

Example 7.37 (MACQ for Linear Regression) The simplest case is the linear
regression case because the 1st order marginal attributions (7.76) are exact in this
case. Consider a linear regression function with regression parameter β ∈ R

q+1

x �→ μ(x) = 〈β, x〉 = β0 +
q∑

j=1

βjxj .

The 1st order marginal attributions for fixed α ∈ (0, 1) are given by

F−1
μ(X)(α) = μ (0) +

q∑
j=1

Sj (μ; α)

= β0 +
q∑

j=1

βjEp

[
Xj

∣∣∣μ(X) = F−1
μ(X)(α)

]
. (7.77)

That is, we replace the feature components Xj by their expected contributions on
a given quantile level F−1

μ(X)(α) in (7.77). We compare this explanation to the ALE
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profile (7.70). Set initial value xj0 = 0, the ALE profile for the linear regression
model is given by

xj �→
∫ xj

0
�j(zj )dzj = βjxj .

This is the sensitivity of the linear regression function in component xj ,
whereas (7.77) describes the contribution of each feature component to an expected
response level μ(x), in particular, Ep[Xj |μ(X) = F−1

μ(X)
(α)] describes the average

feature value in component j on a given quantile level. �

A natural next step is to expand the 1st order attributions to 2nd orders. This
allows us to consider the interaction terms. Consider the 2nd order Taylor expansion

μ(x + ε) = μ(x) + (∇xμ(x))
ε + 1

2
ε
∇2

xμ(x)ε + o(‖ε‖2
2) for ‖ε‖2 → 0.

Similar to (7.76), setting ε = −x, this gives us the 2nd order marginal attributions

F−1
μ(X)(α) ≈ μ (0) +

q∑
j=1

Sj (μ; α) − 1

2

q∑
j,k=1

Tj,k(μ; α) (7.78)

= μ (0) +
q∑

j=1

(
Sj (μ; α) − 1

2
Tj,j (μ; α)

)
−

∑
1≤j<k≤q

Tj,k(μ; α),

where for 1 ≤ j, k ≤ q we define μj,k(x) = ∂xj ∂xkμ(x), see (7.72), and

Tj,k(μ; α) = Ep

[
XjXkμj,k(X)

∣∣∣μ(X) = F−1
μ(X)(α)

]
. (7.79)

Remarks 7.38

• The first line of (7.78) separates the 1st order attributions from the 2nd order
attributions, the second line splits w.r.t. the individual component j attributions
and the interaction attributions j �= k.

• The 1st order attributions (7.75) have been motivated by considering the direc-
tional derivatives of the VaR distortion risk measure. Unfortunately, the 2nd order
consideration has no simple equivalent motivation, as the 2nd order directional
derivatives are much more involved, even in the linear case, we refer to Property
1 in Gourieroux et al. [167].
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• Interestingly, we can precisely evaluate the accuracy of approximation (7.78) by
analyzing for a given regression function μ(·)

sup
α∈(0,1)

∣∣∣∣∣∣
F−1

μ(X)(α) − μ (0) −
q∑

j=1

Sj (μ; α) + 1

2

q∑
j,k=1

Tj,k(μ; α)

∣∣∣∣∣∣
. (7.80)

Intuitively, in order to have a uniform good approximation, the origin 0 should be
somehow centered in the feature distribution X ∼ p. This will be studied next.

Above we have implicitly assumed that 0 is a suitable reference point that makes
the approximation error (7.80) small. For FN network fitting we typically normalize
the features either using the MinMaxScaler (7.29) or we center and normalize the
components of (xi )1≤i≤n according to (7.30). That is, the reference point is chosen
such that the gradient descent fitting works efficiently. However, this may not be
an optimal reference point for studying the 2nd order attributions. Therefore, we
analyze this question in more detail, and the following reparametrization can still be
done after model fitting.

If we choose an arbitrary translation a ∈ R
q , we can set ε = a − x in the

above 2nd order Taylor expansion to receive another 2nd order marginal attribution
representation

F−1
μ(X)(α) ≈ μ (a) − Ep

[
(a − X)
∇xμ(X)

∣∣∣μ(X) = F−1
μ(X)(α)

]
(7.81)

−1

2
Ep

[
(a − X)
∇2

xμ(X)(a − X)

∣∣∣μ(X) = F−1
μ(X)(α)

]
.

Essentially, this means that we shift the feature distribution p to considering the
shifted random vectors Xa = X − a and while setting μa(·) = μ(a + ·),
thus, this simply says that we pre-process the features differently. In view of
approximation (7.81) we can now select a reference point a ∈ R

q that makes the 2nd
order marginal attributions as precise as possible. Define the events Al = {μ(X) =
F−1

μ(X)(αl)} for a discrete quantile grid 0 < α1 < . . . < αL < 1. We define the
objective function

a �→ G(a; μ) =
L∑

l=1

(
F−1

μ(X)
(αl) − μ (a) + Ep

[
(a − X)
∇xμ(X)

∣∣∣Al

]
(7.82)

+ 1

2
Ep

[
(a − X)
∇2

xμ(X)(a − X)

∣∣∣Al

])2

.

Making this objective function G(a; μ) small in a will provide us with a good
reference point for the selected quantile levels (αl)1≤l≤L; this is exactly the MACQ
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proposal of Merz et al. [273]. A local minimum can be found by applying a gradient
descent algorithm

a(t) �→ a(t+1) = a(t) − δt+1∇aG(a(t); μ),

for tempered learning rates δt+1 > 0. The gradient of G w.r.t. a is given by

∇aG(a; μ) = 2
L∑

l=1

(
F−1

μ(X)(αl) − μ (a) + Ep

[
(a − X)
∇xμ(X)

∣∣∣Al

]

+1

2
Ep

[
(a − X)
∇2

xμ(X)(a − X)

∣∣∣Al

])

×
(

− ∇aμ (a) + Ep [∇xμ(X)|Al]

−Ep

[
X
∇2

xμ(X)

∣∣∣Al

]
+ 1

2
a


Ep

[
∇2

xμ(X)

∣∣∣Al

])
.

All subsequent considerations and interpretations are done w.r.t. an optimal ref-
erence point a ∈ R

q by minimizing the objective function (7.82) on the chosen
quantile grid. Mathematically speaking, this optimal choice is w.l.o.g. because the
origin 0 of the coordinate system of the feature space X is arbitrary, and any
other origin can be chosen by a translation, see formula (7.81) and the subsequent
discussion. For interpretations, however, the choice of the reference point a matters
because the directional derivative Xjμj (X) can be small either because Xj is small
or because μj(X) is small. Having a small Xj means that this feature value is close
to the chosen reference point.

Example 7.39 (MACQ Analysis) We revisit the MTPL claim frequency example
using the FN network regression model of depth d = 3 having (q1, q2, q3) =
(20, 15, 10) neurons. Importantly, we use the hyperbolic tangent as the activation
function in the FN layers which provides smoothness of the regression function.
Figure 7.40 shows the VPI plot of this fitted model. Obviously, the variable
BonusMalus plays the most important role in this predictive model. Remark that
the VPI plot does not properly respect the dependence structure in the features as it
independently permutes each feature component at a time. The aim in this example
is to determine variable importance by doing the MACQ analysis (7.78).

Figure 7.44 (lhs) shows the empirical density of the fitted canonical parameter
θ(xi ), 1 ≤ i ≤ n; all plots in this example refer to the canonical scale. We then
minimize the objective function (7.82) which provides us with an optimal reference
point a ∈ R

q ; we choose equidistant quantile grid 1% < 2% < . . . < 99%
and all conditional expectations in ∇aG(a; μ) are empirically approximated by a
local smoother similar to Listing 7.8. Figure 7.44 (rhs) gives the resulting marginal
attributions w.r.t. this reference point. The orange line shows the 1st order marginal
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Fig. 7.44 (lhs) Empirical density of the fitted canonical parameter θ(xi ), 1 ≤ i ≤ n, (rhs) 1st and
2nd order marginal attributions
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Fig. 7.45 (lhs) Second order marginal attributions Sj (μ; α) − 1
2 Tj,j (μ; α) excluding interaction

terms, and (rhs) interaction terms − 1
2 Tj,k(μ; α), j �= k

attributions (7.76), and the red line the 2nd order marginal attributions (7.78). The
cyan line drops the interaction terms Tj,k(μ; α), j �= k, from the 2nd order marginal
attributions. From the shaded cyan area we see the importance of the interaction
terms. We note that the 2nd order marginal attributions (red line) match the true
empirical quantiles (black dots) quite well for the chosen reference point a.

Figure 7.45 gives the 2nd order marginal attributions Sj (μ; α) − 1
2Tj,j (μ; α) of

the individual components 1 ≤ j ≤ q on the left-hand side, and the interaction terms
− 1

2Tj,k(μ; α), j �= k on the right-hand side. We identify the following components
as being important BonusMalus, DrivAge, VehGas, VehBrand and Region;
these components show a behavior substantially different from being equal to 0, i.e.,
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2

∑q

k=1 Tj,k(μ; α) including
interaction terms, and (rhs) slices at the quantile levels α ∈ {20%, 40%, 60%, 80%}

these components differentiate from the reference point a. These components also
have major interactions that contribute to the quantiles above the level 80%.

If we allocate the interaction terms to the corresponding components 1 ≤ j ≤ q

we receive the second order marginal attributions Sj (μ; α) − 1
2

∑q

k=1 Tj,k(μ; α).
These are illustrated in Fig. 7.46 (lhs) and the quantile slices at the levels α ∈
{20%, 40%, 60%, 80%} are given in Fig. 7.46 (rhs). These graphs illustrate variable
importance on different quantile levels (and respecting the dependence within
the features). In particular, we identify the main variables that distinguish the
given quantile levels from the reference level θ(a), i.e., Fig. 7.46 (rhs) should be
understood as the relative differences to the chosen reference level. Once more we
see that BonusMalus is the main driver, but also other variables contribute to the
differentiation of the high quantile levels.

Figure 7.47 shows the individual attributions xi,jμj (xi ) of 1’000 randomly
selected cases xi for the feature components j = BonusMalus,DrivAge,

VehGas,VehBrand; the colors illustrate the corresponding feature values xi,j

of the individual car drivers i, and the black solid line corresponds to Sj (μ; α) −
1
2Tj,j (μ; α) excluding the interaction terms (the black dotted line is one empir-
ical standard deviation around the black solid line). Focusing on the variable
BonusMalus we observe that the lower quantiles are almost completely domi-
nated by insurance policies on the lowest bonus-malus level. The bonus-malus levels
70–80 provide little sensitivity (are concentrated around the zero line) because the
reference point a reflects these bonus-malus levels, and, finally, the large quantiles
are dominated by high bonus-malus levels (red dots).

The plot of the variable DrivAge is interpreted similarly. The reference point
a is close to the young drivers, therefore, young drivers are concentrated around
the zero line. At the low quantile levels, higher ages contribute positively to the
low expected frequencies, whereas these ages have an unfavorable impact at higher
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Fig. 7.47 Individual attributions xi,jμj (xi ) of 1’000 randomly selected cases xi for j =
BonusMalus,DrivAge,VehGas,VehBrand; the plots have different y-scales

quantile levels (this should be considered in combination with their bonus-malus
levels). We also observe a few outliers in this plot, for instance, we can identify a
driver of age 20 at a quantile level of 20%. Further inspection of this driver raises
some doubts whether this data is correct since this driver is at a bonus-malus level
of 68% (which should technically not be possible) and she/he has an exposure of 2
days. Surely, this insurance policy would need further investigation.

The plot of VehGas shows that the chosen reference level θ(a) is closer to
Diesel fuel cars as the red dots fluctuate less around the zero line; in different
runs of the gradient descent algorithm (with different seeds) this order has been
changing (as it depends on the reference point a). We skip a detailed analysis of the
variable VehBrand. �
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7.7 Lab: Analysis of the Fitted Networks

In the previous section we have studied some model-agnostic tools that can be used
for any (differentiable) regression model. In this section we give some network
specific plots. For simplicity we choose one specific example, namely, the FN

network μ̂
def.= μ̂m=1 of Table 7.9. We start by analyzing the learned representations

in the different FN layers, this links to our introduction in Sect. 7.1.
For any FN layer 1 ≤ m ≤ d we can study the learned representations

z(m:1)(x). For Fig. 7.48 we select at random 1’000 insurance policies xi , and the
dots show the activations of these insurance policies in neurons j = 4 (x-axis)
and j = 9 (y-axis) in the corresponding FN layers. These neuron activations are
in the interval (−1, 1) because we work with the hyperbolic tangent activation
function for φ. The color scale shows the resulting estimated frequencies μ̂(xi ) of
the selected policies. We observe that the layers are increasingly (in the depth of the
network) separating the low frequency policies (light blue-green colors) from the
high frequency policies (red color). This is a quite typical picture that we obtain
here, though, this sparsity in the 3rd FN layer is not the case for every neuron
1 ≤ j ≤ qd .

In higher dimensional FN architectures it will be difficult to analyze the learned
representations on each individual neuron, but at least one can try to understand
the main effects learned. For this, on the one hand, we can focus on the important
feature components, see, e.g., Sect. 7.6.1, and, on the other hand, we can try to study
the main effects learned using a PCA in each FN layer, see Sect. 7.5.3. Figure 7.49
shows the singular values λ1 ≥ λ2 ≥ . . . ≥ λqm > 0 in each of the three FN layers
1 ≤ m ≤ d = 3; we center the neuron activations to mean zero before applying
the SVD. These plots support the previously made statement that the layers are
increasingly separating the high frequency from the low frequency policies. An
elbow criterion tells us that in the first FN layer we have 8 important principal
components (out of 20), in the second FN layer 3 (out of 15) and in the third FN
layer 1 (out of 10). This is also reflected in Fig. 7.48 where we see more and more

Fig. 7.48 Observed activations in the three FN layers m = 1, 2, 3 (left-middle-right) in the
corresponding neurons j = 4, 9, the color key shows the estimated frequencies μ̂(xi )
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Fig. 7.49 Singular values λ1 ≥ λ2 ≥ . . . ≥ λqm
> 0 in the FN layers 1 ≤ m ≤ d = 3

concentration in the neuron activations. It is important to notice that the chosen
FN network calibration μ̂ does not involve any drop-out layers during the gradient
descent fitting, see Sect. 7.4.1. Drop-out layers prevent individual neurons to over-
train to a specific task. Consequently, we will receive a network calibration that is
more equally balanced across all neurons under drop-outs, because if one neuron
drops out, the composite of the remaining neurons needs to be able to take over the
task of the dropped out neuron. This leads to less sparsity and to singular values that
are more similarly sized.

In Fig. 7.50 we analyze the first two principal components in each FN layer,
thus, these are the two principal components that correspond to the two biggest
singular values (λ1, λ2) in each of the three FN layers. The first row shows the
input variables (BonusMalus,DrivAge) ∈ [50, 125] × [18, 90] of the 1’000
randomly selected policies xi ; these are the two most important feature components
according to the VPI analysis. All three columns show the same data, however, in
different color scales: (lhs) gives the color scale μ̂, (middle) gives the color scale
BonusMalus, and (rhs) gives the color scale DrivAge. These color scales also
apply to the other rows. The 2nd row shows the first two principal components in
the 1st FN layer, the 3rd row in the 2nd FN layer, and the last row in the third
FN layer. Focusing on the first column we observe that the layers cluster the high
and the low frequency policies in the 1st principal component more and more
across the FN layers. Not surprisingly this leads to a quite clear-cut separation
w.r.t. the bonus-malus level which can be verified from the second column of
Fig. 7.50. For the driver’s age variable this sharp separation gets lost across the
layers, see third column of Fig. 7.50, which indicates that the variable DrivAge
does not influence the frequency monotonically and it interacts with the variable
BonusMalus.

Figure 7.51 shows the second order marginal attributions (7.78) for the different
inputs. The graph on the left-hand side shows the plot w.r.t. the original inputs
xi , the graph in the middle w.r.t. the learned representations z(1:1)(xi ) ∈ R

q1

in the first FN layer, and on the right-hand side w.r.t. the learned representations
z(2:1)(xi ) ∈ R

q2 in the second FN layer. We interpret these plots as follows: the
FN network disentangles the different effects through the FN layers by making
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Fig. 7.50 (First row) Input variables (BonusMalus,DrivAge), (Second–fourth row) first two
principal components in FN layers m = 1, 2, 3; (lhs) gives the color scale of estimated frequency
μ̂, (middle) gives the color scale BonusMalus, and (rhs) gives the color scale DrivAge
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Fig. 7.51 Second order marginal attributions: (lhs) w.r.t. the input layer x ∈ R
q0 , (middle)

w.r.t. the first FN layer z(1:1)(x) ∈ R
q1 , and (rhs) w.r.t. the second FN layer z(2:1)(x) ∈ R

q2

the plots more smooth and making the interactions between the neurons smaller.
Note that the learned representations z(3:1)(xi ) ∈ R

q3 in the last FN layer go into
a classical GLM for the output layer, which does not have any interactions in the
canonical predictor (because it is additive on the canonical scale), thus, being of
the same type as the linear regression of Example 7.37. In the Poisson model with
the log-link function, the interactions can only be of a multiplicative type in GLMs.
Therefore, the network feature-engineers the input xi (in an automated way) such
that the learned representation z(d :1)(xi ) in the last FN layer is exactly in this GLM
structure. This is verified by the small interaction part in Fig. 7.51 (rhs). This closes
this part on model-agnostic tools.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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