
Chapter 6
Bayesian Methods, Regularization
and Expectation-Maximization

The previous chapter has been focusing on MLE of regression parameters within
GLMs. Alternatively, we could address the parameter estimation problem within a
Bayesian setting. The purpose of this chapter is to discuss the Bayesian estimation
approach. This leads us to the notion of regularization within GLMs. Bayesian
methods are also used in the Expectation-Maximization (EM) algorithm for MLE
in the case of incomplete data. For literature on Bayesian theory we recommend
Gelman et al. [157], Congdon [79], Robert [319], Bühlmann–Gisler [58] and Gilks
et al. [158]. A nice historical (non-mathematical) review of Bayesian methods is
presented in McGrayne [266]. Regularization is discussed in the book of Hastie et
al. [184], and a good reference for the EM algorithm is McLachlan–Krishnan [267].

6.1 Bayesian Parameter Estimation

The Bayesian estimator has been introduced in Definition 3.6. Assume that the
observation Y has independent components Yi that can be described by a GLM
with link function g and regression parameter β ∈ R

q+1, i.e., the random variables
Yi have densities

Yi
ind.∼ f (y;β,x i , vi/ϕ) = exp

{
y(h ◦ g−1)〈β,xi〉 − (κ ◦ h ◦ g−1)〈β,xi〉

ϕ/vi

+ a(y; vi/ϕ)

}
,

with canonical link h = (κ ′)−1. In a Bayesian approach one models the regression
parameter β with a prior distribution1 π(β) on the parameter space R

q+1, and the
independence assumption between the components of Y needs to be understood

1 Often, in Bayesian arguing, distribution and density is used in an interchangeable (and not fully
precise) way, and it is left to the reader to give the right meaning to π .
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conditionally, given the regression parameter β. In other words, all observations
Yi share the same regression parameter β , which itself is modeled by a prior
distribution π .

The joint density of Y and β is given by

p(y,β) =
(

n∏
i=1

f (yi; β, xi , vi/ϕ)

)
π(β) = exp

{
�Y=y(β) + log π(β)

}
.

(6.1)

For the given observation Y , this allows us to calculate the posterior density of β

using Bayes’ rule

π(β|Y ) = p(Y ,β)∫
p(Y , β̃)dβ̃

∝
(

n∏
i=1

f (Yi; β, xi , vi/ϕ)

)
π(β), (6.2)

where the proportionality sign ∝ indicates that we have dropped the terms that do
not depend on β. Thus, the functional form in β of the posterior density π(β|Y )

is fully determined by the joint density p(Y ,β), and the remaining term is a
normalization to obtain a proper probability distribution. In many situations, the
knowledge of the functional form of the posterior density in β is sufficient to
perform Bayesian parameter estimation, at least, numerically. We will give some
references, below.

The Bayesian estimator for β is given by the posterior mean (supposed it exists)

β̂
Bayes = Eπ [β| Y ] =

∫
β π(β|Y )dν(β).

If we want to calculate the expectation of a new random variable Yn+1 that is
conditionally, given β, independent of Y and follows the same GLM as Y , we can
directly calculate, using the tower property and conditional independence,2

Eπ [Yn+1|Y ] = Eπ [E [Yn+1| β,Y ]| Y ] = Eπ [E [Yn+1|β]| Y ]

= Eπ

[
g−1〈β, xn+1〉

∣∣∣Y ]
=

∫
g−1〈β, xn+1〉 π(β|Y )dν(β),

supposed that this first moment exists and that xn+1 is the feature of Yn+1. We see
that it all boils down to have sufficiently explicit knowledge about the posterior
density π(β|Y ) given in (6.2).

Remark 6.1 (Conditional MSEP) Based on the assumption that the posterior distri-
bution π(β|Y ) can be determined, we can analyze the GL. In a Bayesian setup one

2 Note that we identify probabilities Pβ [·] = P[·|β] for given β.
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usually does not calculate the MSEP as described in Theorem 4.1, but one rather
studies the conditional MSEP, conditioned exactly on the collected information Y .
That is,

Eπ

[
(Yn+1 − Eπ [Yn+1| Y ])2

∣∣∣Y ]
= Varπ (Yn+1|Y )

= Varπ (E [Yn+1|β,Y ]| Y ) + Eπ [Var (Yn+1| β,Y )|Y ]

= Varπ
(
g−1〈β, xn+1〉

∣∣∣ Y
)

+ ϕ

vn+1
Eπ

[
(κ ′′ ◦ h ◦ g−1)〈β, xn+1〉

∣∣∣ Y
]

= Varπ
(
g−1〈β, xn+1〉

∣∣∣ Y
)

+ ϕ

vn+1
Eπ

[
V (g−1〈β, xn+1〉)

∣∣∣Y ]
,

where we need to assume existence of second moments. Similar to Theorem 4.1,
the first term is the estimation variance (in a Bayesian setting) and the second term
is the average process variance (using the EDF variance function μ 	→ V (μ)).

The remaining difficulty is the calculation of the posterior expectation of func-
tions of β, based on posterior density (6.2). In very well-designed experiments the
posterior density π(β|Y ) can be determined explicitly, for instance, in the homoge-
neous EDF case with so-called conjugate priors, see Chapter 2 in Bühlmann–Gisler
[58]. But in most cases, there is no closed from solution for the posterior distribution.
Major progress in Bayesian modeling has been made with the emergence of
computational methods like the Markov chain Monte Carlo (MCMC) method, Gibbs
sampling, the Metropolis–Hastings (MH) algorithm [185, 274], sequential Monte
Carlo (SMC) sampling, non-linear particle filters, and the Hamilton Monte Carlo
(HMC) algorithm. These methods help us to empirically approximate the posterior
density π(β|Y ) in different modeling setups. These methods have in common that
the explicit knowledge of the normalizing constant in (6.2) is not necessary, but it
suffices to know the functional form in β of the posterior density π(β|Y ).

For a detailed description of MCMC methods in general, which includes Gibbs
sampling and MH algorithms, we refer to Gilks et al. [158], Green [169, 170],
Johansen et al. [199]; SMC sampling and non-linear particle filters are explained
in Del Moral et al. [92, 93], Johansen–Evers [199], Doucet–Johansen [111], Creal
[85] and Wüthrich [389]; the HMC algorithm is described in Neal [281]. We do not
present these algorithms here, but for the description of the most popular algorithms
we refer to Section 4.4 in Wüthrich–Buser [392]. The reason for not presenting
these algorithms here is that they still face the curse of dimensionality, which makes
it difficult to use Bayesian methods for high-dimensional data sets in large models;
we provide another short discussion in Sect. 11.6.3, below.
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6.2 Regularization

6.2.1 Maximal a Posterior Estimator

In the previous section we have proposed to approximate the posterior density
π(β|Y ) of the regression parameter β, given Y , using MCMC methods. The
posterior log-likelihood in the Bayesian GLM is given by, see (6.2),

log π(β|Y ) ∝ �Y (β) + log π(β)

∝
n∑

i=1

Yi(h ◦ g−1)〈β, xi〉 − (κ ◦ h ◦ g−1)〈β, xi〉
ϕ/vi

+ log π(β).

Compared to the classical log-likelihood function �Y (β) for MLE, there is an
additional log-density term log π(β) that comes from the prior distribution of β.
Thus, the posterior log-likelihood is a balanced version of the log-likelihood �Y (β)

of the data Y and the prior log-density log π(β) of the regression parameter β. We
interpret this as regularization because the prior π smooths extremes in the log-
likelihood of the observation Y . This gives rise to estimate the regression parameter
β by the so-called maximal a posterior (MAP) estimator

β̂
MAP = arg max

β∈Rq+1
log π(β|Y ) = arg max

β∈Rq+1
�Y (β) + log π(β). (6.3)

This π-regularized (MAP) parameter estimation has gained much popularity
because it is a useful tool to prevent the model from over-fitting under suitable
prior choices. Moreover, under specific choices, it allows for parameter selection.
This is especially useful in high-dimensional problems; for a reference we refer to
Hastie et al. [184].

Popular choices for π are prior densities coming from Lp-norms for some p ≥ 1,
that is, π(β) ∝ exp{−λ‖β‖p

p} for λ > 0. Optimization problem (6.3) then becomes

β̂
MAP = arg max

β∈Rq+1
�Y (β) − λ‖β‖p

p,

for a fixed regularization parameter λ > 0 (also called tuning parameter). In
practical applications we should exclude the intercept parameter β0 ∈ R from
regularization: if we work with the canonical link within the GLM framework
we have the balance property which implies unbiasedness, see Corollary 5.7. This
property gets lost if β0 is included in the regularization term. For this reason, we set
β− = (β1, . . . , βq) ∈ R

q and we let regularization only act on these components
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β̂
MAP = β̂

MAP
(λ) = arg max

β∈Rq+1

1

n
�Y (β) − λ‖β−‖p

p, (6.4)

we also scale with the sample size n to make the units of the tuning parameter λ

independent of the sample size n.

Remarks 6.2

• The regularization term λ‖β−‖p
p keeps the components of the regression parame-

ter β− close to zero, thus, it prevents from over-fitting by letting parameters only
take moderate values. The magnitudes of the parameter values are controlled by
the regularization parameter λ > 0 which acts as a hyper-parameter. Optimal
hyper-parameters are determined by cross-validation.

• In (6.4) all components of β− are treated equally. This may not be appropriate
if the feature components of x live on different scales. This problem of different
scales can be solved by either scaling the components of x to a unit scale, or
by introducing a diagonal importance matrix T = diag(t1, . . . , tq) with tj > 0
that describes the scales of the components of x. This allows us to regularize
‖T −1β−‖p

p instead of ‖β−‖p
p . Thus, in this latter case we replace (6.4) by the

weighted version

β̂
MAP = arg max

β

1

n
�Y (β) − λ

q∑
j=1

t
−p
j |βj |p.

• Often, the features have a natural group structure x = (x0, x1, . . . , xK), for
instance, xk ∈ {0, 1}qk may represent dummy coding of a categorical feature
component with qk + 1 levels. In that case regularization should equally act on
all components of βk ∈ R

qk (that correspond to xk) because these components
describe the same systematic effect. Yuan–Lin [398] proposed for this problem
grouped penalties of the form

β̂
MAP = arg max

β

1

n
�Y (β) − λ

K∑
k=1

‖βk‖2. (6.5)

This proposal leads to sparsity, i.e., for large regularization parameters λ the
entire βk may be shrunk (exactly) to zero; this is discussed in Sect. 6.2.5, below.
We also refer to Section 4.3 in Hastie et al. [184], and Devriendt et al. [104]
proposed this approach in the actuarial literature.

• There are more versions of regularization, e.g., in the fused LASSO approach we
ensure that the first differences βj − βj−1 remain small.
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Our motivation for considering regularization has been inspired by Bayesian
theory, but we can also come from a completely different angle, namely, we can
consider a constraint optimization problem with a given budget constraint c > 0.
That is, we can consider

arg max
β∈Rq+1

1

n
�Y (β) subject to ‖β−‖p

p ≤ c. (6.6)

This optimization problem can be tackled by the method of Karush, Kuhn and
Tucker (KKT) [208, 228]. Optimization problem (6.4) corresponds by Lagrangian
duality to the constraint optimization problem (6.6). For every c for which the
budget constraint in (6.6) is binding ‖β−‖p

p = c, there is a corresponding
regularization parameter λ = λ(c), and, conversely, the solution of (6.4) solves (6.6)

with c = ‖β̂MAP
− (λ)‖p

p .

6.2.2 Ridge vs. LASSO Regularization

We compare the two special cases of p = 1, 2 in this section, and in the subsequent
Sects. 6.2.3 and 6.2.4 we discuss how these two cases can be solved numerically.

Ridge Regularization p = 2 For p = 2, the prior distribution π in (6.4) is a
centered Gaussian distribution. This L2-regularization is called ridge regularization
or Tikhonov regularization [353], and we have

β̂
ridge = β̂

ridge
(λ) = arg max

β∈Rq+1

1

n
�Y (β) − λ

q∑
j=1

β2
j . (6.7)

LASSO Regularization p = 1 For p = 1, the prior distribution π in (6.4) is a
Laplace distribution. This L1-regularization is called LASSO regularization (least
absolute shrinkage and selection operator), see Tibshirani [352], and we have

β̂
LASSO = β̂

LASSO
(λ) = arg max

β∈Rq+1

1

n
�Y (β) − λ

q∑
j=1

|βj |. (6.8)
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LASSO regularization has the advantage that it shrinks (unimportant) regression
components to exactly zero, i.e., LASSO regularization can be used for parameter
elimination and model reduction. This is discussed in the next paragraphs.

Ridge vs. LASSO Regularization Ridge (p = 2) and LASSO (p = 1)
regularization behave rather differently. This can be understood best by using the
budget constraint (6.6) interpretation which gives us a nice geometric illustration.
The crucial part is that the side constraint gives us either a budget constraint
‖β−‖2

2 = ∑q

j=1 β2
j ≤ c (squared Euclidean norm) or ‖β−‖1 = ∑q

j=1 |βj | ≤ c

(Manhattan norm). In Fig. 6.1 we illustrate these two cases, the left-hand side shows
the Euclidean ball in blue color (in two dimensions) and the right-hand side shows
the corresponding Manhattan square in blue color; this figure is similar to Figure 2.2
in Hastie et al. [184].

The (unconstraint) MLE β̂
MLE

is illustrated by the red dot in Fig. 6.1. If the
red dot would lie within the blue area, the budget constraint would not be binding.
In Fig. 6.1 the red dot (MLE) does not lie within the blue budget constraint,
and we need to compromise in the optimality of the MLE. Assume that the log-
likelihood β 	→ �Y (β) is a concave function in β , then we receive convex level sets

{β; �Y (β) ≥ γ0} around the MLE β̂
MLE

. The critical constant γ0 for which this level
set is tangential to the blue budget constraint exactly gives us the solution to (6.6);
this solution corresponds to the yellow dots in Fig. 6.1. The crucial difference
between ridge and LASSO regularization is that in the latter case the yellow dot
will eventually be in the corner of the Manhattan square if we shrink the budget
constraint c to zero. Or in other words, some of the components of β are set
exactly equal to zero for small c or large λ, respectively; in Fig. 6.1 (rhs) this

happens to the first component of β̂
LASSO

(under the given budget constraint c). In
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Fig. 6.1 Illustration of optimization problem (6.6) under a budget constraint (lhs) for p = 2
(Euclidean norm) and (rhs) p = 1 (Manhattan norm)
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Fig. 6.2 Elastic net
regularization
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ridge regularization this is not the case, except for special situations concerning the
position of the red MLE. Thus, ridge regression makes components of parameter
estimates generally smaller, whereas LASSO shrinks some of these components
exactly to zero (this also explains the name LASSO).

Remark 6.3 (Elastic Net) LASSO regularization faces difficulties with collinearity
in feature components. In particular, if we have a group of highly correlated feature
components, LASSO fails to do a grouped selection, but it selects one component
and ignores the other ones. On the other hand, ridge regularization can deal with
this issue. For this reason, Zou–Hastie [409] proposed the elastic net regularization,
which uses a combined regularization term

β̂
elastic net = arg max

β∈Rq+1

1

n
�Y (β) − λ

[
(1 − α)‖β‖2

2 + α‖β‖1

]
,

for some α ∈ (0, 1). The L1-term gives sparsity and the quadratic term removes
the limitation on the number of selected variables, providing a grouped selection.
In Fig. 6.2 we compare the elastic net regularization (orange color) to ridge and
LASSO regularization (black and blue color). Ridge regularization provides a
smooth strictly convex boundary (black), whereas LASSO provides a boundary that
is non-differentiable in the corners (blue). The elastic net is still non-differentiable
in the corners, this is needed for variable selection, and at the same time it is strictly
convex between the corners which is needed for grouping.
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6.2.3 Ridge Regression

In this section we consider ridge regression (p = 2) in more detail and we provide an

example. The ridge estimator β̂
ridge

in (6.7) is found by solving the score equations

s̃(β,Y ) = ∇β

(
�Y (β) − nλ‖β−‖2

2

)
= XW(β)R(Y ,β) − 2nλβ− = 0, (6.9)

note that we exclude the intercept β0 from regularization (we use a slight abuse of
notation, here), and we also refer to Proposition 5.1. The negative expected Hessian
of this optimization problem is given by

J (β) = −Eβ

[
∇2

β

(
�Y (β) − nλ‖β−‖2

2

)]
= I(β) + 2nλdiag(0, 1, . . . , 1) ∈ R

(q+1)×(q+1),

where I(β) = XW(β)X is Fisher’s information matrix of the unconstraint MLE
problem. This provides us with Fisher’s scoring updates for t ≥ 0, see (5.13),

β̂
(t) 	→ β̂

(t+1) = β̂
(t) + J (β̂

(t)
)−1 s̃(β̂

(t)
,Y ). (6.10)

Lemma 6.4 Fisher’s scoring update (6.10) can be rewritten as follows

β̂
(t) 	→ β̂

(t+1) = J (β̂
(t)

)−1XW(β̂
(t)

)
(
Xβ̂

(t) + R(Y , β̂
(t)

)
)

.

Proof A straightforward calculation shows

β̂
(t+1) = β̂

(t) + J (β̂
(t)

)−1 s̃(β̂
(t)

,Y )

= J (β̂
(t)

)−1
(
J (β̂

(t)
)β̂

(t) + XW(β̂
(t)

)R(Y , β̂
(t)

) − 2nλβ̂
(t)

−
)

= J (β̂
(t)

)−1
(
I(β̂

(t)
)β̂

(t) + XW(β̂
(t)

)R(Y , β̂
(t)

)
)

= J (β̂
(t)

)−1XW(β̂
(t)

)
(
Xβ̂

(t) + R(Y , β̂
(t)

)
)

.

This proves the claim. ��
Lemma 6.4 allows us to fit a ridge regularized GLM. To determine an optimal

regularization parameter λ ≥ 0 one uses cross-validation, in particular, generalized
cross-validation is used to receive an efficient cross-validation method, see (5.67).

Example 6.5 (Ridge Regression) We revisit the gamma claim size example of
Sect. 5.3.7, and we choose model Gamma GLM1, see Listing 5.11. This example
does not consider any categorical features, but only continuous ones. We directly
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Fig. 6.3 Ridge regularized MLEs in model Gamma GLM1: (lhs) in-sample deviance losses as a
function of the regularization parameter λ > 0, (rhs) resulting β̂

ridge
j (λ) for 1 ≤ j ≤ q = 8

apply Fisher’s scoring updates (6.10).3 For this analysis we center and normalize
(to unit variance) the columns of the design matrix (except for the initial column of
X encoding the intercept).

Figure 6.3 (lhs) shows the resulting in-sample deviance losses as a function of
λ > 0. Regularization parameter λ allows us to continuously connect the in-sample
deviance losses of the null model (2.085) and model Gamma GLM1 (1.717), see
Table 5.13. Figure 6.3 (rhs) shows the regression parameter estimates β̂

ridge
j (λ), 1 ≤

j ≤ q = 8, as a function of λ > 0. Overall they decrease because the budget
constraint gets more tight for increasing λ, however, the individual parameters do
not need to be monotone, since one parameter may (better) compensate a decrease
of another (through correlations in feature components).

Finally, we need to choose the optimal regularization parameter λ > 0.
This is done by cross-validation. We exploit the generalized cross-validation loss,
see (5.67), and the hat matrix in this ridge regularized case is given by

Hλ = W(β̂
ridge

)1/2X J (β̂
ridge

)−1 XW(β̂
ridge

)1/2.

In contrast to (5.66), this hat matrix Hλ is not a projection but we would need to
work in an augmented model to receive the projection property (accounting for the
regularization part).

Figure 6.4 plots the generalized cross-validation loss as a function of λ > 0.
We observe the minimum in parameter λ = e−9.4. The resulting generalized cross-
validation loss is 1.76742. This is bigger than the one received in model Gamma

3 The R command glmnet [142] allows for regularized MLE, however, the current version does
not include the gamma distribution. Therefore, we have implemented our own routine.
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Fig. 6.4 Generalized
cross-validation loss
D̂GCV(λ) as a function of
λ > 0
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GLM2, see Table 5.16, thus, we still prefer model Gamma GLM2 over the optimally
ridge regularized model GLM1. Note that for model Gamma GLM2 we did variable
selection, whereas ridge regression just generally shrinks regression parameters.
For more interpretation we refer to Example 6.8, below, which considers LASSO
regularization. �

6.2.4 LASSO Regularization

In this section we consider LASSO regularization (p = 1). This is more chal-
lenging than ridge regularization because of the non-differentiability of the budget
constraint, see Fig. 6.1 (rhs). This section follows Chapters 2 and 5 of Hastie et
al. [184] and Parikh–Boyd [292].

Gaussian Case

We start with the homoskedastic Gaussian model having unit variance σ 2 = 1. In a
first step, the regression model only involves one feature component q = 1. Thus,
we aim at solving LASSO optimization

β̂
LASSO = arg max

β∈R2
− 1

2n

n∑
i=1

(Yi − β0 − β1xi)
2 − λ|β1|.

We standardize the observations and features (Yi, xi)1≤i≤n such that we have∑n
i=1 Yi = 0,

∑n
i=1 xi = 0 and n−1 ∑n

i=1 x2
i = 1. This implies that we can omit

the intercept parameter β0, as the optimal intercept satisfies for this standardized
data (and any β1 ∈ R)

β̂0 = 1

n

n∑
i=1

Yi − β1xi = 0. (6.11)
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Thus, w.l.o.g., we assume to work with standardized data in this section, this gives
us the optimization problem (we drop the lower index in β1 because we only have
one component)

β̂LASSO = β̂LASSO(λ) = arg max
β∈R

− 1

2n

n∑
i=1

(Yi − βxi)
2 − λ|β|. (6.12)

The difficulty is that the regularization term is not differentiable in zero. Since this
term is convex we can express its derivative in terms of a sub-gradient s. This
provides score

∂

∂β

⎛
⎝− 1

2n

n∑
i=1

(Yi − βxi)
2 − λ|β|

⎞
⎠ = 1

n

n∑
i=1

(Yi − βxi ) xi − λs = 1

n
〈Y , x〉 − β − λs,

where we use standardization n−1 ∑n
i=1 x2

i = 1 in the second step, 〈Y , x〉 is the
scalar product of Y , x = (x1, . . . , xn)

 ∈ R
n, and where we consider the sub-

gradient

s = s(β) =
⎧⎨
⎩

+1 if β > 0,

−1 if β < 0,

∈ [−1, 1] otherwise.

Henceforth, we receive the score equation for β �= 0

n−1〈Y , x〉 − β − λs = n−1〈Y , x〉 − β − sign(β)λ
!= 0.

This score equation has a proper solution β̂ > 0 if n−1〈Y , x〉 > λ, and it has a
proper solution β̂ < 0 if n−1〈Y , x〉 < −λ. In any other case we have a boundary
solution β̂ = 0 for our maximization problem (6.12).

This solution can be written in terms of the following soft-thresholding
operator for λ ≥ 0

β̂LASSO = Sλ

(
n−1〈Y , x〉

)
with Sλ(x) = sign(x)(|x| − λ)+.

(6.13)

This soft-thresholding operator is illustrated in Fig. 6.5 for λ = 4.
This approach can be generalized to multiple feature components x ∈ R

q .
We standardize the observations and features

∑n
i=1 Yi = 0,

∑n
i=1 xi,j = 0 and
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Fig. 6.5 Soft-thresholding
operator x 	→ Sλ(x) for
λ = 4 (red dotted lines)
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n−1 ∑n
i=1 x2

i,j = 1 for all 1 ≤ j ≤ q . This allows us again to drop the intercept
term and to directly consider

β̂
LASSO = β̂

LASSO
(λ) = arg max

β∈Rq

− 1

2n

n∑
i=1

⎛
⎝Yi −

q∑
j=1

βjxi,j

⎞
⎠

2

− λ‖β‖1.

Since this is a concave (quadratic) maximization problem with a separable (convex)
penalty term, we can apply a cycle coordinate descent method that iterates a cyclic
coordinate-wise maximization until convergence. Thus, if we want to maximize
in the t-th iteration the j -th coordinate of the regression parameter we consider
recursively

β̂
(t)
j = arg max

βj∈R
− 1

2n

n∑
i=1

⎛
⎝Yi −

j−1∑
l=1

β
(t)
l xi,l −

q∑
l=j+1

β
(t−1)
l xi,l − βj xi,j

⎞
⎠

2

− λ|βj |.

Using the soft-thresholding operator (6.13) we find the optimal solution

β̂
(t)
j = Sλ

⎛
⎝n−1

〈
Y −

j−1∑
l=1

β
(t)
l xl −

q∑
l=j+1

β
(t−1)
l xl , xj

〉⎞
⎠ ,

with vectors xl = (x1,l, . . . , xn,l)
 ∈ R

n for 1 ≤ l ≤ q . Iteration until convergence

provides the LASSO regularized estimator β̂
LASSO

(λ) for given regularization
parameter λ > 0.
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Typically, we want to explore β̂
LASSO

(λ) for multiple λ’s. For this, one runs
a pathwise cyclic coordinate descent method. We start with a large value for λ,
namely, we define

λmax = max
1≤j≤q

n−1
∣∣〈Y , xj 〉

∣∣ .

For λ ≥ λmax, we have β̂
LASSO

(λ) = 0, i.e., we have the null model. Pathwise cycle
coordinate descent starts with this solution for λ0 = λmax. In a next step, one slightly
decreases λ0 and runs the cyclic coordinate descent algorithm until convergence for

this slightly smaller λ1 < λ0, and with starting value β̂
LASSO

(λ0). This is then
iterated for λt+1 < λt , t ≥ 0, which provides a sequence of LASSO regularized

estimators β̂
LASSO

(λt ) along the path (λt )t≥0.
For further remarks we refer to Section 2.6 in Hastie et al. [184]. This concerns

statements about uniqueness for general design matrices, also in the set-up where
q > n, i.e., where we have more parameters than observations. Moreover, references
to convergence results are given in Section 2.7 of Hastie et al. [184]. This closes the
Gaussian case.

Gradient Descent Algorithm for LASSO Regularization

In Sect. 7.2.3 we will discuss gradient descent methods for network fitting. In this
section we provide preliminary considerations on gradient descent methods because
these are also useful to fit LASSO regularized parameters within GLMs (different
from Gaussian GLMs). Remark that we do a sign switch in what follows, and we
aim at minimizing an objective function g.

Choose a convex and differentiable function g : R
q+1 → R. Assuming that

the global minimum of g is achieved, a necessary and sufficient condition for the
optimality of β∗ ∈ R

q+1 in this convex setting is ∇βg(β)|β=β∗ = 0. Gradient
descent algorithms find this optimal point by iterating for t ≥ 0

β(t) 	→ β(t+1) = β(t) − t+1∇βg(β(t)), (6.14)

for tempered learning rates t+1 > 0. This algorithm is motivated by a first order
Taylor expansion that determines the direction of the maximal local decrease of the
objective function g supposed we are in position β , i.e.,

g(β̃) = g(β) + ∇βg(β)
(
β̃ − β

) + o
(‖β̃ − β‖2

)
as ‖β̃ − β‖2 → 0.

The gradient descent algorithm (6.14) leads to the (unconstraint) minimum of the
objective function g at convergence. A budget constraint like (6.6) leads to a convex
constraint β ∈ C ⊂ R

q+1. Consideration of such a convex constraint requires
that we reformulate the gradient descent algorithm (6.14). The gradient descent
step (6.14) can also be found, for given learning rate t+1, by solving the following
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Fig. 6.6 Projected gradient
descent step, first, mapping
β(t) to the unconstraint
solution
β(t) − t+1∇βg(β(t))

of (6.15) and, second,
projecting this unconstraint
solution back to the convex
set C giving β(t+1); see also
Figure 5.5 in Hastie et
al. [184]
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linearized problem for g with the Euclidean square distance penalty term (ridge
regularization) for too big gradient descent steps

arg min
β∈Rq+1

{
g(β(t)) + ∇βg(β(t))

(
β − β(t)

)
+ 1

2t+1
‖β − β(t)‖2

2

}
. (6.15)

The solution to this optimization problem exactly gives the gradient descent
step (6.14). This is now adapted to a constraint gradient descent update for convex
constraint C:

β(t+1) = arg min
β∈C

{
g(β(t)) + ∇βg(β(t))

(
β − β(t)

)
+ 1

2t+1
‖β − β(t)‖2

2

}
.

(6.16)

The solution to this constraint convex optimization problem is obtained by, first,
taking an unconstraint gradient descent step β(t) 	→ β(t) − t+1∇βg(β(t)), and,
second, if this step is not within the convex set C, it is projected back to C; this is
illustrated in Fig. 6.6, and it is called projected gradient descent step (justification
is given in Lemma 6.6 below). Thus, the only difficulty in applying this projected
gradient descent step is to find an efficient method of projecting the unconstraint
solution (6.14)–(6.15) back to the convex constraint set C.

Assume that the convex constraint set C is expressed by a convex function
h (not necessarily being differentiable). To solve (6.16) and to motivate the
projected gradient descent step, we use the proximal gradient method discussed in
Section 5.3.3 of Hastie et al. [184]. The proximal gradient method helps us to do
the projection in the projected gradient descent step. We introduce the generalized
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projection operator, for z ∈ R
q+1

proxh(z) = arg min
β∈Rq+1

{
1

2
‖z − β‖2

2 + h(β)

}
. (6.17)

This generalized projection operator should be interpreted as a square minimization
problem ‖z − β‖2

2 /2 on a convex set C being expressed by its dual Lagrangian
formulation described by the regularization term h(β). The following lemma shows
that the generalized projection operator solves the Lagrangian form of (6.16).

Lemma 6.6 Assume the convex constraint C is expressed by the convex function h.
The generalized projection operator solves

β(t+1) = proxt+1h

(
β(t) − t+1∇βg(β(t))

)
(6.18)

= arg min
β∈Rq+1

{
g(β(t)) + ∇βg(β(t))

(
β − β(t)

)
+ 1

2t+1
‖β − β(t)‖2

2 + h(β)

}
.

Proof of Lemma 6.6 It suffices to consider the following calculation

1

2

∥∥∥β(t) − t+1∇βg(β(t)) − β

∥∥∥2

2
+ t+1h(β)

= 1

2
2

t+1

∥∥∥∇βg(β(t))

∥∥∥2

2
− t+1

〈
∇βg(β(t)), β(t) − β

〉
+ 1

2

∥∥∥β(t) − β

∥∥∥2

2
+ t+1h(β)

= 1

2
2

t+1

∥∥∥∇βg(β(t))

∥∥∥2

2
+ t+1

(
∇βg(β(t))

(
β − β(t)

)
+ 1

2t+1

∥∥∥β(t) − β

∥∥∥2

2
+ h(β)

)
.

This is exactly the right objective function (in the round brackets) if we ignore all
terms that are independent of β. This proves the lemma. ��

Thus, to solve the constraint optimization problem (6.16) we bring it into its dual
Lagrangian form (6.18). Then we apply the generalized projection operator to the
unconstraint solution to find the constraint solution, see Lemma 6.6. This approach
will be successful if we can explicitly compute the generalized projection operator
proxh(·).

Lemma 6.7 The generalized projection operator (6.17) satisfies for LASSO
constraint h(β) = λ‖β−‖1

proxh(z) = SLASSO
λ (z)

def.= (
z0, sign(z1)(|z1| − λ)+, . . . , sign(zq)(|zq | − λ)+

)
,

for z ∈ R
q+1.
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Proof of Lemma 6.7 We need to solve for function β 	→ h(β) = λ‖β−‖1

proxλ‖(·)−‖1
(z) = arg min

β∈Rq+1

{
1

2
‖z − β‖2

2 + λ‖β−‖1

}
= arg min

β∈Rq+1

⎧⎨
⎩

1

2

q∑
j=0

(zj − βj )
2 + λ

q∑
j=1

|βj |
⎫⎬
⎭.

This decouples into q + 1 independent optimization problems. The first one is
solved by β0 = z0 and the remaining ones are solved by the soft-thresholding
operator (6.13). This finishes the proof. ��

We conclude that the constraint optimization problem (6.16) for the (convex)
LASSO constraint C = {β; ‖β−‖1 ≤ c} is brought into its dual Lagrangian
form (6.18) of Lemma 6.6 with h(β) = λ‖β−‖1 for suitable λ = λ(c). The LASSO
regularized parameter estimation is then solved by first performing an unconstraint
gradient descent step β(t) 	→ β(t) − t+1∇βg(β(t)), and this updated parameter is
projected back to C using the generalized projection operator of Lemma 6.7 with
h(β) = t+1λ‖β−‖1.

Proximal gradient descent algorithm for LASSO

1. Make the gradient descent step for a suitable learning rate t+1 > 0

β(t) 	→ β̃
(t+1) = β(t) − t+1∇βg(β(t)).

2. Perform soft-thresholding of the gradient descent solution

β̃
(t+1) 	→ β(t+1) = SLASSO

t+1λ

(
β̃

(t+1)
)

,

where the latter soft-thresholding function is defined in Lemma 6.7.
3. Iterate these two steps until a stopping criterion is met.

If the gradient ∇βg(·) is Lipschitz continuous with Lipschitz constant L > 0, the
proximal gradient descent algorithm will converge at rate O(1/t) for a fixed step
size 0 <  = t+1 ≤ L, see Section 4.2 in Parikh–Boyd [292].

Example 6.8 (LASSO Regression) We revisit Example 6.5 which considers claim
size modeling using model Gamma GLM1. In order to apply the proximal gradient
descent algorithm for LASSO regularization we need to calculate the gradient of
the negative log-likelihood. In the gamma case with log-link, it is given by, see
Example 5.5,

−∇β�Y (β) = −XW(β)R(Y ,β)

= −Xdiag

(
n1

ϕ
, . . . ,

nm

ϕ

)(
Y1

μ1
− 1, . . . ,

Ym

μm

− 1

)
,
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Fig. 6.7 LASSO regularized MLEs in model Gamma GLM1: (lhs) in-sample losses as a function
of the regularization parameter λ > 0, (rhs) resulting β̂LASSO

j (λ) for 1 ≤ j ≤ q

where m ∈ N is the number of policies with claims, and μi = μi(β) = exp〈β, xi〉.
We set ϕ = 1 as this constant can be integrated into the learning rates t+1.

We have implemented the proximal gradient descent algorithm ourselves using
an equidistant grid for the regularization parameter λ > 0, a fixed learning rate
t+1 = 0.05 and normalized features. Since this has been done rather brute force,
the results presented in Fig. 6.7 look a bit wiggly. These results should be compared
to Fig. 6.3. We see that, in contrast to ridge regularization, less important regression
parameters are shrunk exactly to zero in LASSO regularization. We give the order
in which the parameters are shrunk to zero: β1 (OwnerAge), β4 (RiskClass),
β6 (VehAge2), β8 (BonusClass), β7 (GenderMale), β2 (OwnerAge2), β3
(AreaGLM) and β5 (VehAge). In view of Listing 5.11 this order seems a bit
surprising. The reason for this surprising order is that we have grouped features
here, and, obviously, these should be considered jointly. In particular, we first drop
OwnerAge because this can also be partially explained by OwnerAge2, therefore,
we should not treat these two variables individually. Having this weakness in mind
supports the conclusions drawn from the Wald tests in Listing 5.11, and we come
back to this in Example 6.10, below.

�
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Oracle Property

An interesting question is whether the chosen regularization fulfills the so-called
oracle property. For simplicity, we assume to work in the normalized Gaussian
case that allows us to exclude the intercept β0, see (6.11). Thus, we work with a
regression parameter β ∈ R

q . Assume that there is a true data model that can be
described by the (true) regression parameter β∗ ∈ R

q . Denote by A∗ = {j ∈
{1, . . . , q}; β∗

j �= 0} the set of feature components of x ∈ R
q that determine the

true regression function, and we assume |A∗| < q . Denote by β̂n(λ) the parameter
estimate that has been received by the regularized MAP estimation for a given
regularization parameter λ ≥ 0 and based on i.i.d. data of sample size n. We say
that (β̂n(λn))n∈N fulfills the oracle property if there exists a sequence (λn)n∈N of
regularization parameters λn ≥ 0 such that

lim
n→∞P[Ân = A∗] = 1, (6.19)

√
n

(
β̂n,A∗(λn) − β∗

A∗
) ⇒ N

(
0,I−1

A∗
)

as n → ∞, (6.20)

where Ân = {j ∈ {1, . . . , q}; (β̂n(λn))j �= 0}, βA only considers the components
in A ⊂ {1, . . . , q}, and IA∗ is Fisher’s information matrix on the true feature
components. The first oracle property (6.19) tells us that asymptotically we choose
the right feature components, and the second oracle property (6.20) tells us that
we have asymptotic normality and, in particular, consistency on the right feature
components.

Zou [408] states that LASSO regularization, in general, does not satisfy the
oracle property. LASSO regularization can perform variable selection, however, as
Zou [408] argues, there are situations where consistency is violated and, therefore,
the oracle property cannot hold in general. Zou [408] therefore proposes an
adaptive LASSO regularization method. Alternatively, Fan–Li [124] introduced
smoothly clipped absolute deviation (SCAD) regularization which is a non-convex
regularization that possesses the oracle property. SCAD regularization of β is
obtained by penalizing

Jλ(β) =
q∑

j=1

λ|βj |1{|βj |≤λ} − |βj |2 − 2aλ|βj | + λ2

2(a − 1)
1{λ<|βj |≤aλ} + (a + 1)λ2

2
1{|βj |>aλ},

for a hyperparameter a > 2. This function is continuous and differentiable except
in βj = 0 with partial derivatives for β > 0

λ

(
1{β≤λ} + (aλ − β)+

λ(a − 1)
1{β>λ}

)
.
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Fig. 6.8 (lhs) LASSO soft-thresholding operator x 	→ Sλ(x) for λ = 4 (red dotted lines), (rhs)
SCAD thresholding operator x 	→ SSCAD

λ (x) for λ = 4 and a = 3

Thus, we have a constant LASSO-like slope λ > 0 for 0 < β ≤ λ, shrinking some
components exactly to zero. For β > aλ the slope is 0, removing regularization, and
it is concatenated between the two scenarios. The thresholding operator for SCAD
regularization is given by, see Fan–Li [124],

SSCAD
λ (x) =

⎧⎪⎨
⎪⎩

sign(x)(|x| − λ)+ for |x| ≤ 2λ,
(a−1)x−sign(x)aλ

a−2 for 2λ < |x| ≤ aλ,

x for |x| > aλ.

Figure 6.8 compares the two thresholding operators of LASSO and SCAD.
Alternatively, we propose to do variable selection with LASSO regularization in

a first step. Since the resulting LASSO regularized estimator may not be consistent,
one should explore a second regression step where one uses an un-penalized
regression model on the LASSO selected components, we also refer to Lee et al.
[237].

6.2.5 Group LASSO Regularization

In Example 6.8 we have seen that if there are natural groups within the feature
components they should be treated simultaneously. Assume we have a group
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structure x = (x0, x1, . . . , xK) with groups xk ∈ R
qk that should be treated

simultaneously. This motivates the grouped penalties proposed by Yuan–Lin [398],
see (6.5),

β̂
group = β̂

group
(λ) = arg max

β=(β0,β1,...,βK)

1

n
�Y (β) − λ

K∑
k=1

‖βk‖2, (6.21)

where we assume a group structure in the linear predictor providing

x 	→ η(x) = 〈β, x〉 = β0 +
K∑

k=1

〈βk, xk〉.

LASSO regularization is a special case of this grouped regularization, namely, if
all groups 1 ≤ k ≤ K only contain one single component, i.e., K = q , we have

β̂
group = β̂

LASSO
.

The side constraint in (6.21) is convex, and the optimization problem (6.21)
can again be solved by the proximal gradient descent algorithm. That is, in view
of Lemma 6.6, the only difficulty is the calculation of the generalized projection
operator for regularization term h(β) = λ

∑K
k=1 ‖βk‖2. We therefore need to solve

for z = (z0, z1, . . . , zK), zk ∈ R
qk ,

proxh(z) = arg min
β=(β0,β1,...,βK)

{
1

2
‖z − β‖2

2 + λ

K∑
k=1

‖βk‖2

}

=
(

z0,

(
arg min
βk∈Rqk

{
1

2

∥∥zk − βk

∥∥2
2 + λ‖βk‖2

})
1≤k≤K

)
.

The latter highlights that the problem decouples into K independent problems. Thus,
we need to solve for all 1 ≤ k ≤ K the optimization problems

arg min
βk∈Rqk

{
1

2

∥∥zk − βk

∥∥2
2 + λ‖βk‖2

}
.
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Lemma 6.9 The group LASSO generalized soft-thresholding operator satis-
fies for zk ∈ R

qk

Sqk

λ (zk) = arg min
βk∈Rqk

{
1

2

∥∥zk − βk

∥∥2
2 + λ‖βk‖2

}
= zk

(
1 − λ

‖zk‖2

)
+

∈ R
qk ,

and for the generalized projection operator for h(β) = λ
∑K

k=1 ‖βk‖2 we
have

proxh(z) = Sgroup
λ (z)

def.= (
z0,Sq1

λ (z1), . . . ,SqK

λ (zK)
)
,

for z = (z0, z1, . . . , zK) with zk ∈ R
qk .

Proof We prove this lemma. In a first step we have

arg min
βk

{
1

2

∥∥zk − βk

∥∥2
2 + λ‖βk‖2

}
= arg min

βk=zk/‖zk‖2, ≥0

{
1

2
‖zk‖2

2

(
1 − 

‖zk‖2

)2

+ λ

}
,

this follows because the square distance
∥∥zk − βk

∥∥2
2 = ‖zk‖2

2 − 2〈zk,βk〉 + ∥∥βk

∥∥2
2

is minimized if zk and βk point into the same direction. Thus, there remains the
minimization of the objective function in  ≥ 0. The first derivative is given by

∂

∂

(
1

2
‖zk‖2

2

(
1 − 

‖zk‖2

)2

+ λ

)
= − ‖zk‖2

(
1 − 

‖zk‖2

)
+λ = λ−‖zk‖2+.

If ‖zk‖2 > λ we have  = ‖zk‖2 −λ > 0, and otherwise we need to set  = 0. This
implies

Sqk

λ (zk) = (‖zk‖2 − λ)+ zk/‖zk‖2.

This completes the proof. ��
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Fig. 6.9 Group LASSO regularized MLEs in model Gamma GLM1: (lhs) in-sample losses as a
function of the regularization parameter λ > 0, (rhs) resulting β̂

group
j (λ) for 1 ≤ j ≤ q

Proximal gradient descent algorithm for group LASSO

1. Make the gradient descent step for a suitable learning rate t+1 > 0

β(t) 	→ β̃
(t+1) = β(t) − t+1∇βg(β(t)).

2. Perform soft-thresholding of the gradient descent solution

β̃
(t+1) 	→ β(t+1) = Sgroup

t+1λ

(
β̃

(t+1)
)

,

where the latter soft-thresholding function is defined in Lemma 6.9.
3. Iterate these two steps until a stopping criterion is met.

Example 6.10 (Group LASSO Regression) We revisit Example 6.8 which considers
claim size modeling using model Gamma GLM1. This time we group the variables
OwnerAge and OwnerAge2 (β1, β2) as well as VehAge and VehAge2 (β5, β6).
The results are shown in Fig. 6.9.

The order in which the parameters are regularized to zero is: β4 (RiskClass),
β8 (BonusClass), β7 (GenderMale), (β1, β2) (OwnerAge, OwnerAge2), β3
(AreaGLM) and (β5, β6) (VehAge, VehAge2). This order now reflects more the
variable importance as received from the Wald statistics of Listing 5.11, and it
shows that grouped features should be regularized jointly in order to determine their
importance. �
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6.3 Expectation-Maximization Algorithm

6.3.1 Mixture Distributions

In many applied problems there does not exist a simple off-the-shelf distribution
that is suitable to model the whole range of observations. We think of claim size
modeling which may range from small to very large claims; the main body of the
data may look like, say, gamma distributed, but the tail of the data being regularly
varying. Another related problem is that claims may come from different insurance
policy modules. For instance, in property insurance, one can insure water damage,
fire, glass and theft claims on the same insurance policy, and feature information
about the claim type may not always be available. In such cases, it looks attractive
to choose a mixture or a composition of different distributions. In this section we
focus on mixtures.

Choose a fixed integer K bigger than 1 and define the (K − 1)-unit simplex
excluding the edges by

�K =
{

p ∈ (0, 1)K;
K∑

k=1

pk = 1

}
. (6.22)

�K defines the family of categorical distributions with K levels (all levels having
a strictly positive probability). These distributions belong to the vector-valued
parameter EF which we have met in Sects. 2.1.4 and 5.7.

The idea behind mixture distributions is to mix K different distributions with a
mixture probability p ∈ �K . For instance, we can mix K different EDF densities
fk by considering

Y ∼
K∑

k=1

pkfk(y; θk, v/ϕk) =
K∑

k=1

pk exp

{
yθk − κk(θk)

ϕk/v
+ ak(y; v/ϕk)

}
,

(6.23)

with cumulant functions θk ∈ �k 	→ κk(θk), exposure v > 0 and dispersion
parameters ϕk > 0, for 1 ≤ k ≤ K .

At the first sight, this does not look very spectacular and parameter estimation
seems straightforward. If we consider the log-likelihood of n independent random
variables Y = (Y1, . . . , Yn)

 following mixture density (6.23) we receive log-
likelihood function

(θ ,p) 	→ �Y (θ,p) =
n∑

i=1

�Yi (θ ,p) =
n∑

i=1

log

(
K∑

k=1

pkfk(Yi; θk, vi/ϕk)

)
,

(6.24)
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for canonical parameter θ = (θ1, . . . , θK) ∈ � = �1 × · · · × �K and mixture
probability p ∈ �K . Unfortunately, MLE of (θ,p) in (6.24) is not that simple.
Note, the summation over 1 ≤ k ≤ K is inside of the logarithmic function, and
the use of the Newton–Raphson algorithm may be cumbersome. The Expectation-
Maximization (EM) algorithm presented in Sect. 6.3.3, below, makes parameter
estimation feasible. In a nutshell, the EM algorithm leads to a sequence of parameter
estimates for (θ ,p) that monotonically increases the log-likelihood in each iteration
of the algorithm. Thus, we can receive an approximation to the MLE of (θ ,p).

Nevertheless, model fitting may still be difficult for the following reasons. Firstly,
the log-likelihood function of a mixture distribution does not need to be bounded,
we highlight this in Example 6.13, below. In that case, MLE is not a well-defined
problem. Secondly, even in very simple situations, the log-likelihood function (6.24)
can have multiple local maximums. This usually happens if the data is clustered
and the clusters are well separated. In that case of multiple local maximums,
convergence of the EM algorithm does not guarantee that we have found the global
maximum. Thirdly, convergence of the log-likelihood function through the EM
algorithm does not guarantee that also the sequence of parameter estimates of (θ ,p)

converges. The latter needs additional examination and regularity conditions.
Figure 6.10 (lhs) shows a density of a mixture distribution mixing K = 3 gamma

densities with shape parameters αk = 1, 20, 40 (orange, green and blue) and mixture
probability p = (0.7, 0.1, 0.2); the mixture components are already multiplied
with p. The resulting mixture density in red color is continuous. Figure 6.10 (rhs)
replaces the blue gamma component of the plot on the left-hand side by a Pareto
component (in blue). As a result we observe that the resulting mixture density in
red is no longer continuous. This example is often used in practice, however, the
discontinuity may be a serious issue in applications and one may use a Lomax
(Pareto Type II) component instead, we refer to Sect. 2.2.5.
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Fig. 6.10 (lhs) Mixture distribution mixing three gamma densities, and (rhs) mixture distributions
mixing two gamma components and a Pareto component with mixture probabilities p =
(0.7, 0.1, 0.2) for orange, green and blue components (the density components are already
multiplied with p)
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6.3.2 Incomplete and Complete Log-Likelihoods

A mixture distribution can be defined (brute force) by just defining a mixture
density as in (6.23). Alternatively, we could define a mixture distribution in a more
constructive way. In the following we discuss this constructive derivation which will
allow us to efficiently fit mixture distributions to data Y . For our outline we focus
on (6.23), but all results presented below hold true in much more generality.

Choose a categorical random variable Z with K ≥ 2 levels having probabilities
P[Z = k] = pk > 0 for 1 ≤ k ≤ K , that is, with p ∈ �K . The main idea is to
sample in a first step level Z = k ∈ {1, . . . ,K}, and in a second step Y |{Z=k} ∼
fk(y; θk, v/ϕk), based on the selected level Z = k. The random tuple (Y,Z) has
joint density

(Y,Z) ∼ fθ ,p(y, k) = pkfk(y; θk, v/ϕk),

and the marginal density of Y is exactly given by (6.23). In this interpretation we
have a hierarchical model (Y,Z). If only Y is available for parameter estimation,
then we are in the situation of incomplete information because information about
the first hierarchy Z is missing. If both Y and Z are available we say that we have
complete information.

For the subsequent derivations we use a different coding of the categorical
random variable Z, namely, Z can be represented in the following one-hot encoding
version

Z = (Z1, . . . , ZK) = (1{Z=1}, . . . ,1{Z=K}), (6.25)

these are the K corners of the (K − 1)-unit simplex �K . One-hot encoding differs
from dummy coding (5.21). One-hot encoding does not lead to a full rank design
matrix because there is a redundancy, that is, we can drop one component of Z

and still have the same information. One-hot encoding Z of Z allows us to extend
the incomplete (data) log-likelihood �Y (θ ,p), see (6.23)–(6.24), under complete
information (Y,Z) as follows

�(Y,Z)(θ ,p) = log

(
K∏

k=1

(pkfk(Y ; θk, v/ϕk))
Zk

)

= log

(
K∏

k=1

(
pk exp

{
Yθk − κk(θk)

ϕk/v
+ ak(Y ; v/ϕk)

})Zk
)

(6.26)

=
K∑

k=1

Zk

(
log(pk) + Yθk − κk(θk)

ϕk/v
+ ak(Y ; v/ϕk)

)
.
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�(Y,Z)(θ ,p) is called complete (data) log-likelihood. As a consequence of this last
expression we observe that under complete information (Yi,Zi )1≤i≤n, the MLE
of θ and p can be determined completely analogously to above. Namely, θk is
estimated from all observations Yi for which Zi belongs to level k, and the level
indicators (Zi )1≤i≤n are used to estimate the mixture probability p. Thus, the
objective function nicely decouples under complete information into independent
parts for θk and p estimation. There remains the question of how to fit this model
under incomplete information Y . The next section will discuss this problem.

6.3.3 Expectation-Maximization Algorithm for Mixtures

The EM algorithm is a general purpose tool for parameter estimation under
incomplete information. The EM algorithm has been introduced within the EF by
Sundberg [348, 349]. Sundberg’s developments have been based on the vector-
valued parameter EF with statistics S(Y ) ∈ R

k , see (3.17), and he solved the
estimation problem under the assumption that S(Y ) is not fully known. These results
have been generalized to MLE under incomplete data in the celebrated work of
Dempster et al. [96] and Wu [385]. The monograph of McLachlan–Krishnan [267]
gives the theory behind the EM algorithm, and it also provides a historical review
in Section 1.8. In actuarial science the EM algorithm is increasingly used to solve
various kinds of problems of incomplete data. Mixture models of Erlang distribu-
tions are considered in Lee–Lin [240], Yin–Lin [396] and Fung et al. [146, 147];
general Erlang mixtures are universal approximators to positive distributions (in the
weak convergence sense), and regularized Erlang mixtures and mixtures of experts
models are determined using the EM algorithm to receive approximations to the
true underlying model. Miljkovic–Grün [278], Parodi [295] and Fung et al. [148]
consider the EM algorithm for mixtures of general distributions, in particular,
mixtures of small and large claims distributions. Verbelen et al. [371], Blostein–
Miljkovic [40], Grün–Miljkovic [173] and Fung et al. [147] use the EM algorithm
for censored and/or truncated observations, and dispersion modeling is performed
with the EM algorithm in Tzougas–Karlis [359]. (Inhomogeneous) phase-type and
matrix Mittag–Leffler distributions are fitted with the EM algorithm in Asmussen
et al. [14], Albrecher et al. [8] and Bladt [37], and the EM algorithm is used to
fit mixture density networks (MDNs) in Delong et al. [95]. Parameter uncertainty is
investigated in O’Hagan et al. [289] using the bootstrap method. The present section
is mainly based on McLachlan–Krishnan [267].

As mentioned above, the EM algorithm is a general purpose tool for parameter
estimation under incomplete data, and we describe the variant of the EM algorithm
which is useful for our mixture distribution setup given in (6.26). We give a
justification for its functioning below. The EM algorithm is an iterative algorithm
that performs a Bayesian expectation step (E-step) to infer the latent variable Z,
given the model parameters and Y . Next, it performs a maximization step (M-step)
for MLE of the parameters given the observation Y and the estimated latent variable
Ẑ. More specifically, the E-step and the M-step look as follows.
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• E-step. Calculate the posterior probability of the event that a given
observation Y has been generated from the k-th component of the mixture
distribution. Bayes’ rule allows us to infer this posterior probability (for
given θ and p) from (6.26)

Pθ,p[Zk = 1|Y ] = pkfk(Y ; θk, v/ϕk)∑K
l=1 plfl(Y ; θl, v/ϕl)

.

The posterior (Bayesian) estimate for Zk after having observed Y is given
by

Ẑk(θ ,p|Y )
def.= Eθ ,p[Zk|Y ] = Pθ,p[Zk = 1|Y ] for 1 ≤ k ≤ K.

(6.27)
This posterior mean Ẑ = Ẑ(θ ,p|Y ) = (Ẑ1(θ ,p|Y ), . . . , ẐK(θ ,p|Y )) ∈
�K is used as an estimate for the (unobserved) latent variable Z; note that
this posterior mean depends on the unknown parameters (θ,p).

• M-step. Based on Y and Ẑ the parameters θ and p are estimated with
MLE.

Alternation of these two steps provide the following recursive algorithm. We
assume to have independent responses (Yi,Zi ), 1 ≤ i ≤ n, following the mixture
distribution (6.26), where, for simplicity, we assume that only the volumes vi > 0
are dependent on i.

EM algorithm for mixture distributions

(0) Choose an initial parameter (̂θ
(0)

, p̂(0)) ∈ � × �K .
(1) Repeat for t ≥ 1 until a stopping criterion is met:

• E-step. Given parameter (̂θ
(t−1)

, p̂(t−1)) ∈ � × �K estimate the latent
variables Zi , 1 ≤ i ≤ n, by their conditional expectations, see (6.27),

Ẑ
(t)
i = Ẑ

(̂
θ

(t−1)
, p̂(t−1)

∣∣∣ Yi

)
= E

θ̂
(t−1)

,p̂(t−1)[Zi |Yi ] ∈ �K. (6.28)

• M-step. Calculate the MLE (̂θ
(t)

, p̂(t)) ∈ � × �K based on (complete)

observations ((Y1, Ẑ
(t)
1 ), . . . , (Yn, Ẑ

(t)
n )), i.e., solve the score equations,
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see (6.26),

∇θ

(
n∑

i=1

K∑
k=1

Ẑ
(t)
i,k

Yiθk − κk(θk)

ϕk/vi

)
= 0, (6.29)

∇p−

(
n∑

i=1

K∑
k=1

Ẑ
(t)
i,k log(pk)

)
= 0, (6.30)

where p− = (p1, . . . , pK−1)
 and setting pK = 1 − ∑K−1

k=1 pk ∈ (0, 1).

Remarks 6.11

• The E-step uses Bayes’ rule. This motivates to consider the EM algorithm in this
Bayesian chapter; alternatively, it also fits to the MLE chapters.

• We have formulated the M-step in (6.29)–(6.30) in a general way because the
canonical parameter θ and the mixture probability p could be modeled by
GLMs, and, henceforth, they may be feature xi dependent. Moreover, (6.29) is
formulated for a mixture of single-parameter EDF distributions, but, of course,
this holds in much more generality.

• Equations (6.29)–(6.30) are the score equations received from (6.26). There is
a subtle point here, namely, Zk ∈ {0, 1} in (6.26) are observations, whereas
Ẑ

(t)
i,k ∈ (0, 1) in (6.29)–(6.30) are their estimates. Thus, in the EM algorithm

the unknown latent variables are replaced by their estimates which, in our setup,
results in two different types of variables with disjoint ranges. This may matter
in software implementations, for instance, a categorical GLM may ask for a
categorical random variable Z ∈ {1, . . . ,K} (of factor type), whereas Ẑ is
in the interior of the unit simplex �K .

• For mixture distributions one can replace the latent variables Zi by their
conditionally expected values Ẑi , see (6.29)–(6.30). In general, this does not hold
true in EM algorithm applications: in our case we benefit from the fact that Zk

influences the complete log-likelihood linearly, see (6.26). In the general (non-
linear) case of the EM algorithm application, different from mixture distribution
problems, one needs to calculate the conditional expectation of the log-likelihood
function.
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• If we calculate the scores element-wise we receive

∂

∂θk

n∑
i=1

Yiθk − κk(θk)

ϕk/(vi Ẑ
(t)
i,k)

= 0,

∂

∂pk

n∑
i=1

(
Ẑ

(t)
i,k log(pk) + Ẑ

(t)
i,K log(pK)

)
= 0,

recall normalization pK = 1 − ∑K−1
k=1 pk ∈ (0, 1).

From the first score equation we see that we receive the classical MLE/GLM
framework, and all tools introduced above for parameter estimation can directly
be used. The only part that changes are the weights vi 	→ viẐ

(t)
i,k . In the

homogeneous case, i.e., in the null model we have MLE after the t-th iteration of
the EM algorithm

θ̂
(t )
k = hk

(∑n
i=1 viẐ

(t)
i,kYi∑n

i=1 viẐ
(t)
i,k

)
,

where hk is the canonical link that corresponds to cumulant function κk .
If we choose the null model for the mixture probabilities we receive MLEs

p̂
(t)
k = 1

n

n∑
i=1

Ẑ
(t)
i,k for 1 ≤ k ≤ K. (6.31)

In Sect. 6.3.4, below, we will present an example that uses the null model for
the mixture probabilities p, and we present an other example that uses a logistic
categorical GLM for these mixture probabilities.

Justification of the EM Algorithm So far, we have neither given any argument
why the EM algorithm is reasonable for parameter estimation nor have we said
anything about convergence. The purpose of this paragraph is to justify the above
EM algorithm. We aim at solving the incomplete log-likelihood maximization
problem, see (6.24),

(̂θ
MLE

, p̂MLE) = arg max
(θ,p)

�Y (θ ,p) = arg max
(θ ,p)

n∑
i=1

log

(
K∑

k=1

pkfk(Yi; θk, vi/ϕk)

)
,

subject to existence and uniqueness. We introduce some notation. Let f (y, z; θ,p)

= exp{�(y,z)(θ ,p)} be the joint density of (Y,Z) and let f (y; θ,p) =
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exp{�y(θ,p)} be the marginal density of Y . This allows us to rewrite the incomplete
log-likelihood as follows for any value of z

�Y (θ ,p) = log f (Y ; θ,p) = log

(
f (Y, z; θ,p)

f (z|Y ; θ,p)

)
,

thus, we bring in the complete log-likelihood by using Bayes’ rule. Choose an
arbitrary categorical distribution π ∈ �K with K levels. We have using the previous
step

�Y (θ ,p) = log f (Y ; θ ,p) =
∑

z

π(z) log f (Y ; θ,p)

=
∑

z

π(z) log

(
f (Y, z; θ,p)/π(z)

f (z|Y ; θ,p)/π(z)

)

=
∑

z

π(z) log

(
f (Y, z; θ,p)

π(z)

)
+

∑
z

π(z) log

(
π(z)

f (z|Y ; θ,p)

)

=
∑

z

π(z) log

(
f (Y, z; θ,p)

π(z)

)
+ DKL (π ||f (·|Y ; θ,p)) (6.32)

≥
∑

z

π(z) log

(
f (Y, z; θ,p)

π(z)

)
,

the inequality follows because the KL divergence is always non-negative, see
Lemma 2.21. This provides us with a lower bound for the incomplete log-likelihood
�Y (θ ,p) for any categorical distribution π ∈ �K and any (θ ,p) ∈ � × �K :

�Y (θ ,p) ≥
∑

z

π(z) log

(
f (Y, z; θ ,p)

π(z)

)
(6.33)

= EZ∼π

[
�(Y,Z)(θ ,p)

∣∣Y ] −
∑

z

π(z) log(π(z))
def.= Q(θ ,p; π).

Thus, we have a lower boundQ(θ ,p; π) on the incomplete log-likelihood �Y (θ ,p).
This lower bound is based on the conditionally expected complete log-likelihood
�(Y,Z)(θ ,p), given Y , and under an arbitrary choice π for Z. The difference between
this arbitrary π and the true conditional posterior distribution is given by the KL
divergence DKL (π ||f (·|Y ; θ,p)), see (6.32).
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The general idea of the EM algorithm is to make this lower bound Q(θ,p; π) as
large as possible in θ , p and π by iterating the following two alternating steps for
t ≥ 1:

π̂ (t) = arg max
π

Q
(̂
θ

(t−1)
, p̂(t−1); π

)
, (6.34)

(̂θ
(t)

, p̂(t)) = arg max
θ,p

Q
(
θ ,p; π̂ (t)

)
. (6.35)

The first step (6.34) can be solved explicitly and it results in the E-step. Namely,

from (6.32) we see that maximizing Q(̂θ
(t−1)

, p̂(t−1); π) in π is equivalent to

minimizing the KL divergence DKL(π ||f (·|Y ; θ̂
(t−1)

, p̂(t−1))) in π because the
left-hand side of (6.32) is independent of π . Thus, we have to solve

π̂ (t) = arg max
π

Q
(̂
θ

(t−1)
, p̂(t−1);π

)
= arg min

π
DKL

(
π

∥∥∥f (·|Y ; θ̂
(t−1)

, p̂(t−1))
)

.

This optimization is solved by choosing the density π̂ (t) = f (·|Y ; θ̂
(t−1)

, p̂(t−1)),
see Lemma 2.21, and this gives us exactly (6.28) if we calculate the corresponding
conditional expectation of the latent variable Z. Moreover, importantly, this step
provides us with an identity in (6.33):

�Y (̂θ
(t−1)

, p̂(t−1)) = Q
(̂
θ

(t−1)
, p̂(t−1); π̂ (t)

)
. (6.36)

The second step (6.35) then increases the right-hand side of (6.36). This second
step is equivalent to

(̂θ
(t)

, p̂(t)) = arg max
θ,p

Q
(
θ ,p; π̂ (t)

)
= arg max

θ,p

EZ∼π̂ (t)

[
�(Y,Z)(θ ,p)

∣∣ Y ]
,

(6.37)

and this maximization is solved by the solution of the score equations (6.29)–(6.30)
of the M-step. In this step we explicitly use the linearity in Z of the log-likelihood
�(Y,Z), which allows us to calculate the objective function in (6.37) explicitly

resulting in replacing Z by Ẑ
(t)

. For other incomplete data problems, where we
do not have this linearity, this step will be more complicated.

Summarizing, alternating optimizations (6.34) and (6.35) gives us a sequence of

parameters (̂θ
(t)

, p̂(t))t≥0 with monotonically increasing incomplete log-likelihoods

. . . ≤ �Y (̂θ
(t−1)

, p̂(t−1)) ≤ �Y (̂θ
(t)

, p̂(t)) ≤ �Y (̂θ
(t+1)

, p̂(t+1)) ≤ . . . .

(6.38)
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Therefore, the EM algorithm converges supposed that the incomplete log-likelihood
�Y (θ ,p) is a bounded function.

Remarks 6.12

• In general, the log-likelihood function (θ ,p) 	→ �Y (θ ,p) does not need to be
bounded. In that case the EM algorithm may not converge (unless it converges
to a local maximum). An illustrative example is given in Example 6.13, below,
which shows what can go wrong in MLE of mixture distributions.

• Even if the log-likelihood function (θ ,p) 	→ �Y (θ ,p) is bounded, one may
not expect a unique solution to the parameter estimation problem with the EM
algorithm. Firstly, a monotonically increasing sequence (6.38) only guarantees
that we have convergence of that sequence. But the sequence may not converge
to the global maximum and different starting points of the algorithm need to
be explored. Secondly, convergence of sequence (6.38) does not necessarily

imply that the parameters (̂θ
(t)

, p̂(t)) converge for t → ∞. On the one hand,
we may have an identifiability issue because the components fk of the mixture
distribution may be exchangeable, and secondly one needs stronger conditions
to ensure that not only the log-likelihoods converge but also their arguments

(parameters) (̂θ
(t)

, p̂(t)). This is the point studied in Wu [385].
• Even in very simple examples of mixture distributions we can have multiple local

maximums. In this case the role of the starting point plays a crucial role. It is
advantageous that in the starting configuration every component k shares roughly

the same number of observations for the initial estimates (̂θ
(0)

, p̂(0)) and Ẑ
(1)

,
otherwise one may start in a so-called spurious configuration where only a few
observations almost fully determine a component k of the mixture distribution.
This may result in similar singularities as in Example 6.13, below. Therefore,
there are three common ways to determine a starting configuration of the EM
algorithm, see Miljkovic–Grün [278]: (a) Euclidean distance-based initialization:
cluster centers are selected at random, and all observations are allocated to these
centers according to the shortest Euclidean distance; (b) K-means clustering
allocation; or (c) completely random allocation to K bins. Using one of these
three options, fk and p are initialized.

• We have formulated the EM algorithm in the homogeneous situation. However,
we can easily expand it to GLMs by, for instance, assuming that the canonical
parameters θk are modeled by linear predictors 〈βk, x〉 and/or likewise for
the mixture probabilities p. The E-step will not change in this setup. For
the M-step, we will solve a different maximization problem, however, this
maximization problem respects monotonicity (6.38), and therefore a modified
version of the above EM algorithm applies. We emphasize that the crucial point
is monotonicity (6.38) that makes the EM algorithm a valid procedure.
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6.3.4 Lab: Mixture Distribution Applications

In this section we are going to present different mixture distribution examples that
use the EM algorithm for parameter estimation. On the one hand this illustrates the
functioning of the EM algorithm, and on the other hand it also highlights pitfalls
that need to be avoided.

Example 6.13 (Gaussian Mixture) We directly fit a mixture model to the observa-
tion Y = (Y1, . . . , Yn)

. Assume that the log-likelihood of Y is given by a mixture
of two Gaussian distributions

�Y (θ , σ ,p) =
n∑

i=1

log

(
2∑

k=1

pk

1√
2πσk

exp

{
− 1

2σ 2
k

(Yi − θk)
2

})
,

with p ∈ �2, mean vector θ = (θ1, θ2)
 ∈ R

2 and standard deviations σ =
(σ1, σ2)

 ∈ R
2+. Choose estimate θ̂1 = Y1, then we have

lim
σ1→0

1√
2πσ1

exp

{
− 1

2σ 2
1

(Y1 − θ̂1)
2

}
= lim

σ1→0

1√
2πσ1

= ∞.

For any i �= 1 we have Yi �= θ̂1 (note that the Gaussian distribution is absolutely
continuous and observations are distinct, a.s.). Henceforth for i �= 1

lim
σ1→0

1√
2πσ1

exp

{
− 1

2σ 2
1

(Yi − θ̂1)
2

}
= lim

σ1→0

1√
2π

exp

{
− 1

2σ 2
1

(Yi − θ̂1)
2 − log σ1

}
= 0.

If we choose any θ̂2 ∈ R, p ∈ �2 and σ2 > 0, we receive for θ̂1 = Y1

lim
σ1→0

�Y (̂θ , σ ,p) = lim
σ1→0

log

(
2∑

k=1

pk
1√

2πσk

exp

{
− 1

2σ 2
k

(Y1 − θ̂k)
2

})

+
n∑

i=2

log

(
p2√
2πσ2

)
− 1

2σ 2
2

(Yi − θ̂2)
2 = ∞.

Thus, we can make the log-likelihood of this mixture Gaussian model arbitrarily
large by fitting a degenerate Gaussian model to one observation in one mixture
component, and letting the remaining observations be described by the other mixture
component. This shows that the MLE problem may not be well-posed for mixture
distributions because the log-likelihood can be unbounded.

If the data has well separated clusters, the log-likelihood of a mixture Gaussian
distribution will have multiple local maximums. One can construct for any given
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number B ∈ N a data set Y such that the number of local maximums exceeds this
number B, see Theorem 3 in Améndola et al. [11]. �

Example 6.14 (Gamma Claim Size Modeling) In this example we consider claim
size modeling of the French MTPL example given in Chap. 13.1. In view of
Fig. 13.15 this seems quite difficult because we have three modes and heavy-
tailedness. We choose a mixture of 5 distribution functions, we choose four gamma
distributions and the Lomax distribution

Y ∼
4∑

k=1

(
pk

β
αk

k

�(αk)
yαk−1 exp {−βky}

)
+ p5

β5

M

(
y + M

M

)−(β5+1)

, (6.39)

with shape parameters αk and scale parameters βk, 1 ≤ k ≤ 4, for the gamma
densities; scale parameter M and tail parameter β5 for the Lomax density; and
with mixture probability p ∈ �5. The idea behind this choice is that three gamma
distributions take care of the three modes of the empirical density, see Fig. 13.15,
the fourth gamma distribution models the remaining claims in the body of the
distribution, and the Lomax distribution takes care of the regularly varying tail of
the data. For the gamma distribution, we refer to Sect. 2.1.3, and for the Lomax
distribution, we refer to Sect. 2.2.5.

We choose the null model for both the mixture probabilities p ∈ �5 and the
densities fk , 1 ≤ k ≤ 5. This model can directly be fitted with the EM algorithm as
presented above, in particular, we can estimate the mixture probabilities by (6.31).
The remaining shape, scale and tail parameters are directly estimated by MLE. To
initialize the EM algorithm we use the interpretation of the components as explained
above. We partition the entire data into K = 5 bins according to their claim sizes
Yi being in (0, 300], (300, 1′000], (1′000, 1′200], (1′200, 5′000] or (5′000,∞).
The first three intervals will initialize the three modes of the empirical density,
see Fig. 13.15 (lhs). This will correspond to the categorical variable taking values
Z = 1, 2, 3; the fourth interval will correspond to Z = 4 and it will model the main
body of the claims; and the last interval will correspond to Z = 5, modeling the
Lomax tail of the claims. These choices provide the initialization given in Table 6.1
with upper indices (0). We remark that we choose a fixed threshold of M = 2′000
for the Lomax distribution, this choice will be further discussed below.

Based on these choices we run the EM algorithm for mixture distributions. We
observe convergence after roughly 80 iterations, and the resulting parameters after
100 iterations are presented in Table 6.1. We observe rather large shape parameters
α̂

(100)
k for the first three components k = 1, 2, 3. This indicates that these three

components model the three modes of the empirical density and these three modes
collect almost p̂

(100)
1 + p̂

(100)
2 + p̂

(100)
3 ≈ 50% of all claims. The remaining claims

are modeled by the gamma density k = 4 having mean 1’304 and by the Lomax
distribution having tail parameter β̂

(100)
5 = 1.416, thus, this tail has finite first

moment M/(β̂
(100)
5 − 1) = 4′812 and infinite second moment.



242 6 Bayesian Methods, Regularization and Expectation-Maximization

Table 6.1 Parameter choices in the mixture model (6.39)

k = 1 k = 2 k = 3 k = 4 k = 5

p̂
(0)
k 0.13 0.18 0.25 0.39 0.05

α̂
(0)
k 2.43 11.24 1’299.44 5.63 –

β̂
(0)
k 0.019 0.018 1.141 0.003 0.517

μ̂
(0)
k = α̂

(0)
k /β̂

(0)
k 125 623 1’138 1’763 –

p̂
(100)
k 0.04 0.03 0.42 0.25 0.26

α̂
(100)
k 93.05 650.94 1’040.37 1.34 –

β̂
(100)
k 1.207 1.108 0.888 0.001 1.416

μ̂
(100)
k = α̂

(100)
k /β̂

(100)
k 77 588 1’172 1’304 –

Figure 6.11 shows the resulting estimated mixture distribution. It gives the
individual mixture components (top-lhs), the resulting mixture density (top-rhs),
the QQ plot (bottom-lhs) and the log-log plot (bottom-rhs). Overall we find a
rather good fit; maybe the first mode is a bit too spiky. However, this plot may
also be misleading because the empirical density plot relies on kernel smoothing
having a given bandwidth. Thus, the true observations may be more spiky than the
plot indicates. The third mode suggests that there are two different values in the
observations around 1’100, this is also visible in the QQ plot. Nevertheless, the
overall result seems satisfactory. These results (based on 13 estimated parameters)
are also summarized in Table 6.2.

We mention a couple of limitations of these results. Firstly, the log-likelihood
of this mixture model is unbounded, similarly to Example 6.13 we can precisely fit
one degenerate gamma mixture component to an individual observation Yi which
results in an infinite log-likelihood value. Thus, the found solution corresponds
to a local maximum of the log-likelihood function and we should not state AIC
values in Table 6.2, see also Remarks 4.28. Secondly, it is crucial to initialize three
components to the three modes, if we randomly allocate all claims to 5 bins as initial
configuration, the EM algorithm only finds mode Z = 3 but not necessarily the first
two modes, at least, in our specifically chosen random initialization this was the
case. In fact, the likelihood value of our latter solution was worse than in the first
calibration which shows that we ended up in a worse local maximum.

We may be tempted to also estimate the Lomax threshold M with MLE. In
Fig. 6.12 we plot the maximal log-likelihood as a function of M (if we start the EM
algorithm always in the same configuration given in Table 6.1). From this figure a
threshold of M = 1′600 seems optimal. Choosing this threshold of M = 1′600
leads to a slightly bigger log-likelihood of −199’304 and a slightly smaller tail
parameter of β̂

(100)
5 = 1.318. However, overall the model is very similar to the one

with M = 2′000. In general, we do not recommend to estimate M with MLE, but
this should be treated as a hyper-parameter selected by the modeler. The reason for
this recommendation is that this threshold is crucial in deciding for large claims
modeling and its estimation from data is, typically, not very robust; we also refer to
Remarks 6.15, below.
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Fig. 6.11 Mixture null model: (top-lhs) individual estimated gamma components
fk(·; α̂

(100)
k , β̂

(100)
k ), 1 ≤ k ≤ K , and Lomax component f5(·; β̂

(100)
5 ), (top-rhs) estimated

mixture density
∑4

k=1 p̂
(100)
k fk(·; α̂

(100)
k , β̂

(100)
k ) + p̂

(100)
5 f5(·; β̂

(100)
5 ), (bottom-lhs) QQ plot of

the estimated model, (bottom-rhs) log-log plot of the estimated model

Table 6.2 Mixture models for French MTPL claim size modeling

# Param. �Y (̂θ, p̂) AIC μ̂ = Eθ̂ ,p̂[Y ]
Empirical 2’266

Null model (M = 2000) 13 −199’306 398’637 2’381

Logistic GLM (M = 2000) 193 −198’404 397’193 2’176

In a next step we enhance the mixture modeling by including feature information
xi to explain the responses Yi . In view of Fig. 13.17 we have decided to only model
the mixture probabilities p = p(x) feature dependent because feature information
seems to mainly influence the heights of the peaks. We do not consider features
VehPower and VehGas because these features do not seem to contribute, and
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we do not consider Density because of the high co-linearity with Area, see
Fig. 13.12 (rhs). Thus, we are left with the features Area, VehAge, DrivAge,
BonusMalus, VehBrand and Region. Pre-processing of these features is done
as in Listing 5.1, except that we keep Area categorical. Using these features
x ∈ X ⊂ {1} × R

q we choose a logistic categorical GLM for the mixture
probabilities

x 	→ (p1(x), . . . , pK−1(x)) = exp{Xγ }
1 + ∑4

l=1 exp〈γ l , x〉 , (6.40)

that is, we choose K = 5 as reference level, feature matrix X ∈ R
(K−1)×(K−1)(q+1)

is defined in (5.71), and with regression parameter γ = (γ 
1 , . . . , γ 

K−1)
 ∈

R
(K−1)(q+1); this regression parameter γ should not be confused with the shape

parameters β1, . . . , β4 of the gamma components and the tail parameter β5 of the
Lomax component, see (6.39). Note that the notation in this section slightly differs
from Sect. 5.7 on the logistic categorical GLM. In this section we consider mixture
probabilities p(x) ∈ �K=5 (which corresponds to one-hot encoding), whereas
in Sect. 5.7 we model (p1(x), . . . , pK−1(x)) with a categorical GLM (which
corresponds to dummy coding), and normalization provides us with pK(x) =
1 − ∑K−1

l=1 pl(x) ∈ (0, 1).
This logistic categorical GLM requires that we replace in the M-step

the probability estimation (6.31) by Fisher’s scoring method for GLMs as
outlined in Sect. 5.7.2, but there is a small difference to that section. In the
working residuals (5.74) we use dummy coding T (Z) ∈ {0, 1}K−1 of a
categorical variable Z, this now needs to be replaced by the estimated vector
(Ẑ1(θ ,p|Y ), . . . , ẐK−1(θ ,p|Y )) ∈ (0, 1)K−1 which is used as an estimate
for the latent variable T (Z). Apart from that everything is done as described in
Sect. 5.7.2; in R this can be done with the procedure multinom from the package
nnet [368]. We start the EM algorithm exactly in the final configuration of the
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Table 6.3 Parameter choices in the mixture models: upper part null model, lower part GLM for
estimated mixture probabilities p̂(xi )

k = 1 k = 2 k = 3 k = 4 k = 5

Null: p̂
(100)
k 0.04 0.03 0.42 0.25 0.26

Null: α̂
(100)
k 93.05 650.94 1’040.37 1.34 –

Null: β̂
(100)
k 1.207 1.108 0.888 0.001 1.416

Null: μ̂
(100)
k = α̂

(100)
k /β̂

(100)
k 77 588 1’172 1’304 –

GLM: average mixture probabilities 0.04 0.03 0.42 0.25 0.26

GLM: α̂
(100)
k 94.03 597.20 1’043.38 1.28 –

GLM: β̂
(100)
k 1.223 1.019 0.891 0.001 1.365

GLM: μ̂
(100)
k = α̂

(100)
k /β̂

(100)
k 77 586 1’172 1’268 –

estimated mixture null model, and we run this algorithm for 20 iterations (which
provides convergences).

The resulting parameters are given in the lower part of Table 6.3. We observe that
the resulting parameters remain essentially the same, the second mode Z = 2 is a
bit less spiky, and the tail parameter is slightly smaller. The summary of this model
is given on the last line of Table 6.2. Regression modeling adds another 4 ·45 = 180
parameters to the model because we have q = 45 feature components in x (different
from the intercept component). In view of AIC we give preference to the logistic
mixture probability case (though AIC has to be interpreted with care, here, because
we do not consider the MLE but rather a local maximum).

Figure 6.13 plots the individual estimated mixture probabilities xi 	→ p̂(xi ) ∈
�5 over the insurance policies 1 ≤ i ≤ n; these plots are inspired by the thesis of
Frei [138]. The upper plots consider these probabilities against the estimated claim
sizes μ̂(xi ) = ∑5

k=1 p̂k(xi )μ̂k and the lower plots against the ranks of μ̂(xi ), the
latter gives a different scaling on the x-axis because of the heavy-tailedness of the
claims. The plots on the left-hand side show all individual policies 1 ≤ i ≤ n, and
the plots on the right-hand side show a quadratic spline fit to these observations. Not
surprisingly, we observe that the claim size estimate μ̂(xi ) is mainly driven by the
large claims probability p̂5(xi ) describing the Lomax contribution.

In Fig. 6.14 we compare the QQ plots of the mixture null model and the one
where we model the mixture probabilities with the logistic categorical GLM. We
see that the latter (more complex) model clearly outperforms the more simple one,
in fact, this QQ plot looks quite convincing for the French MTPL claim size data.
Finally, we perform a Wald test (5.32). We simultaneously treat all parameters that
belong to the same feature variable (similar to the ANOVA analysis); for instance,
for the 22 Regions the corresponding part of the regression parameter γ contains
4 · 21 = 84 components. The resulting p-values of dropping such components are
all close to 0 which says that we should not eliminate one of the feature variables.
This closes the example. �
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Fig. 6.13 Mixture probabilities xi 	→ p̂(xi ) on individual policies 1 ≤ i ≤ n: (top) against the
estimated means μ̂(xi ) and (bottom) against the ranks of the estimated means μ̂(xi ); (lhs) over
policies 1 ≤ i ≤ n and (rhs) quadratic spline fit

Remarks 6.15

• In Example 6.14 we have chosen a mixture distribution with four gamma
components and one Lomax component. The reason for choosing the Lomax
component has been two-fold. Firstly, we need a regularly varying tail to
model the heavy-tailed property of the data. Secondly, we have preferred the
Lomax distribution over the Pareto distribution because this provides us with a
continuous density in (6.39). The results in Example 6.14 have been satisfactory.
In most practical approaches, however, this approach will not work, even when
fixing the threshold M of the Lomax component. Often, the nature of the data
is such that the chosen gamma mixture distribution is not able to fully explain
the small data in the body of the distribution, and in that situation the Lomax tail
will assist in fitting the small claims. The typical result is that the Lomax part
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Fig. 6.14 QQ plots of the mixture models: (lhs) null model and (rhs) logistic categorical GLM for
mixture probabilities

then pays more attention to small claims (through the log-likelihood function of
numerous small claims) and the fitting of the tail turns out to be poor (because
a few large claims do not sufficiently contribute to the log-likelihood). There are
two ways to solve this dilemma. Either one works with composite distributions,
see (6.56) below, and one drops the continuity property of the density; this is the
approach taken in Fung et al. [148]. Or one fits the Lomax distribution solely
to large observations in a first step, and then fixes the parameters of the Lomax
distribution during the second step when fitting the full model to all data, this
is the approach taken in Frei [138]. Both of these two approaches have been
providing good results on real insurance data.

• There is an asymptotic theory for the optimal selection of the number of
mixture components, we refer to Khalili–Chen [214] and Khalili [213]. Fung et
al. [148] combine this asymptotic theory of mixture component selection with
feature selection within these mixture components using LASSO and SCAD
regularization.

• In Example 6.14 we have only modeled the mixture probabilities feature depen-
dent, but not the parameters of the gamma mixture components. Introducing
regressions for the gamma mixture components needs some care in fitting. For
policy independent shape parameters α1, . . . , α4, we can estimate the regression
functions for the means of the mixture components without explicitly specifying
αk because these shape parameters cancel in the score equations. However, these
shape parameters will be needed in the E-step, which requires also MLE of αk .
For more discussion on shape parameter estimation we refer to Sect. 5.3.7 (GLM
with constant shape parameter) and Sect. 5.5.4 (double GLM).
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6.4 Truncated and Censored Data

6.4.1 Lower-Truncation and Right-Censoring

A common problem in insurance is that we often have truncated or censored
observations. Truncation naturally occurs if we sell insurance products that have
a deductible d > 0 because in that case only the insurance claim (Y − d)+ is
compensated, and claims below the deductible d are usually not reported to the
insurance company. This case is called lower-truncation, because claims below the
deductible are not observed. If we lower-truncate an original claim Y ∼ f (·; θ) with
lower-truncation point τ ∈ R we obtain the density

f(τ,∞)(y; θ) = f (y; θ)1{y>τ }
1 − F(τ, θ)

, (6.41)

if F(·; θ) is the distribution function corresponding to the density f (·; θ). The
lower-truncated density f(τ,∞)(y; θ) only considers claims that fall into the interval
(τ,∞). Obviously, we can define upper-truncation completely analogously by
considering an interval (−∞, τ ] instead. Figure 6.15 (lhs) gives an example of a
lower-truncated density, and Fig. 6.15 (rhs) gives an example of a lower- and upper-
truncated density.

Censoring occurs by selling insurance products with a maximal cover M > 0
because in that case only the insurance claim Y ∧ M = min{Y,M} is compensated,
and the exact claim size above the maximal cover M may not be available. This case
is called right-censoring because the exact claim amount above M is not known.
Right-censoring of an original claim Y ∼ F(·; θ) with censoring point M ∈ R
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Fig. 6.15 (lhs) Lower-truncated gamma density with τ = 2′000, and (rhs) lower- and upper-
truncated gamma density with truncation points 2′000 and 6′000
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Fig. 6.16 (lhs) Right-censored gamma distribution with M = 6′000, and (rhs) left- and right-
censored gamma distribution with censoring points 2′000 and 6′000

gives the distribution

FY∧M(y; θ) = F(y; θ)1{y<M} + 1{y≥M},

that is, we have a point mass in the censoring point M . We can define left-censoring
analogously by considering the claim Y ∨M = max{Y,M}. Figure 6.16 (lhs) shows
a right-censored gamma distribution with censoring point M = 6′000, and Fig. 6.16
(rhs) shows a left- and right-censored example with censoring points 2′000 and
6′000.

Often in re-insurance, deductibles (also called retention levels) and maximal
covers are combined, for instance, an excess-of-loss (XL) insurance cover of size
u > 0 above the retention level d > 0 covers the claim

(Y − d)+ ∧ u = (Y − d)1{d≤Y<d+u} + u1{Y≥d+u} = (Y − d)+ − (Y − (d + u))+.

Obviously, truncation and censoring pose some challenges in regression modeling
because at the same time we need to consider the density f (·; θ) and the distribution
function F(·; θ) to estimate a parameter θ . Both cases can be understood as
missing data problems, with censoring providing the number of claims but not
necessarily the exact claim size, and with truncation leaving also the number of
claims unknown. These two cases are studied in Fung et al. [147] within the mixture
of experts models using a variant of the EM algorithm. We use their techniques
within the EDF framework for right-censored or lower-truncated data. This is done
in the next sections.
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6.4.2 Parameter Estimation Under Right-Censoring

Assume we have a fixed censoring point M > 0 that applies to independent
observations Yi following EDF densities f (·; θi, vi/ϕ); for simplicity we assume
to work with an absolutely continuous EDF in this section. The (incomplete) log-
likelihood function of canonical parameters θ = (θi)1≤i≤n for observations Y ∧ M

is given by

�Y∧M(θ) =
∑

i: Yi<M

log f (Yi; θi, vi/ϕ) +
∑

i: Yi∧M=M

log (1 − F(M; θi, vi/ϕ)) .

(6.42)

We interpret this as an incomplete data problem because the claim sizes Yi above
the censoring point M are not known. The complete log-likelihood is given by

�Y (θ) =
n∑

i=1

log f (Yi; θi, vi/ϕ).

Similarly to (6.32) we calculate a lower bound to the incomplete log-likelihood.
We focus on one component of Y and drop the lower index i in Yi for this
consideration. Firstly, if Y ∧ M < M we are in the situation of full claim size
information and, obviously, we have log-likelihood in that case Y < M

�Y∧M(θ) = �Y (θ) = Yθ − κ(θ)

ϕ/v
+ a(Y ; v/ϕ). (6.43)

In the second case Y ∧ M = M we do not have precise claim size information. In
that case we have conditional density of claim Y |{Y∧M=M} = Y |{Y≥M} above M

f(z|Y ≥ M; θ, v/ϕ) = f (z; θ, v/ϕ)1{z≥M}
1 − F(M; θ, v/ϕ)

= f (z; θ, v/ϕ)1{z≥M}
exp{�Y∧M(θ)} , (6.44)

the latter follows because Y∧M = M has the corresponding point mass in censoring
point M (we work with an absolutely continuous EDF here). Choose an arbitrary
density π having the same support as Y |{Y≥M}, and consider a random variable
Z ∼ π . Using (6.44) and the EDF structure on the last line, we have for Y ≥ M

�Y∧M(θ) =
∫

π(z) �Y∧M(θ) dν(z)

=
∫

π(z) log

(
f (z; θ, v/ϕ)/π(z)

f (z|Y ≥ M; θ, v/ϕ)/π(z)

)
dν(z)

=
∫

π(z) log

(
f (z; θ, v/ϕ)

π(z)

)
dν(z) + DKL (π ||f (·|Y ≥ M; θ, v/ϕ))
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≥
∫

π(z) log

(
f (z; θ, v/ϕ)

π(z)

)
dν(z)

= Eπ [Z] θ − κ(θ)

ϕ/v
+ Eπ [a(Z; v/ϕ)] − Eπ

[
log π(Z)

] def.= Q(θ; π).

This allows us to explore the E-step and the M-step similarly to (6.34) and (6.35).
The E-step in the case Y ≥ M for given canonical parameter estimate θ̂ (t−1)

reads as

π̂ (t) = arg max
π

Q
(
θ̂ (t−1); π

)
= arg min

π
DKL

(
π

∥∥∥f (·|Y ≥ M; θ̂ (t−1), v/ϕ)
)

= f (·|Y ≥ M; θ̂ (t−1), v/ϕ).

This allows us to calculate the estimation of the claim size above M , i.e., under π̂ (t)

Ŷ (t) = Eπ̂ (t) [Z] =
∫

z f (z|Y ≥ M; θ̂ (t−1), v/ϕ) dν(z). (6.45)

Note that this is an estimate of the censored claim Y |{Y≥M}. This completes the
E-step.

The M-step considers in the EDF case for censored claim sizes Y ≥ M

θ̂(t) = arg max
θ

Q
(
θ; π̂ (t)

)
= arg max

θ

Eπ̂ (t) [Z] θ − κ(θ)

ϕ/v

= arg max
θ

�Ŷ (t) (θ), (6.46)

the latter uses that the normalizing term a(·; v/ϕ) is not relevant for the MLE of
θ . That is, (6.46) describes the regular MLE step under the observation Ŷ (t) in the
case of a censored observation Y ≥ M; and if Y < M we simply use the log-
likelihood (6.43).

EM algorithm for right-censored data within the EDF

(0) Choose an initial parameter θ̂
(0) = (θ̂

(0)
i )1≤i≤n.

(1) Repeat for t ≥ 1:

• E-step. Given parameter θ̂
(t−1) = (θ̂

(t−1)
i )1≤i≤n, estimate for the right-

censored claims Yi ≥ M their sizes by, see (6.45),

Ŷ
(t)
i =

∫
z f

(
z

∣∣∣Yi ≥ M; θ̂
(t−1)
i , vi/ϕ

)
dν(z).
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This provides us with an estimated observation

Ŷ
(t) =

(
Yi1{Yi<M} + Ŷ

(t)
i 1{Yi≥M}

)
1≤i≤n

.

• M-step. Calculate the MLE θ̂
(t) = (θ̂

(t)
i )1≤i≤n based on observation Ŷ

(t)
,

i.e., solve

θ̂
(t) = arg max

θ

�
Ŷ

(t) (θ).

Note that the above EM algorithm uses that the log-likelihood �Y (θ) of the EDF
is linear in the observations that interact with parameter θ . We revisit the gamma
claim size example of Sect. 5.3.7.

Example 6.16 (Right-Censored Gamma Claim Sizes) We revisit the gamma claim
size GLM introduced in Sect. 5.3.7. The claim sizes are illustrated in Fig. 13.22. In
total we have n = 656 observations Yi , and they range from 16 SEK to 211’254
SEK. We right-censor this data at M = 50′000, this results in 545 uncensored
observations and 111 censored observations equal to M . Thus, for the 17% largest
claims we assume to not have any knowledge about the exact claim sizes. We use
the EM algorithm for right-censored data to fit a GLM to this problem.

In order to calculate the E-step we need to evaluate the conditional expecta-
tion (6.45) under the gamma model

Ŷ (t) =
∫

z f (z|Y ≥ M; θ̂ (t−1), v/ϕ) dν(z) (6.47)

=
∫ ∞

M

z

βα

�(α)
zα−1 exp{−βz}

1 − G(α, βM)
dz = α

β

1 − G(α + 1, βM)

1 − G(α, βM)
,

with shape parameter α = v/ϕ, scale parameter β = −θ̂ (t−1)v/ϕ, see (5.45), and
scaled incomplete gamma function

G(α, y) = 1

�(α)

∫ y

0
zα−1 exp{−z} dz ∈ (0, 1) for y ∈ (0,∞).

(6.48)

Thus, we receive a simple formula that allows us to efficiently calculate the E-
step, and the M-step is exactly the gamma GLM explained in Sect. 5.3.7 for the

(estimated) data Ŷ
(t)

.
For the modeling we choose exactly the features as used for model Gamma

GLM2, this gives q + 1 = 7 regression parameter components and additionally we
set for the dispersion parameter ϕ̂MLE = 1.427, this is the MLE in model Gamma
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Table 6.4 Comparison of the complete log-likelihood and the incomplete log-likelihood (right-
censoring M = 50′000) results

# Log-likelihood Dispersion Average Rel.

Param. �Y (θ̂MLE, ϕ̂MLE) est. ϕ̂MLE amount change

Gamma GLM2 (complete data) 7 + 1 −7′129 1.427 25’130

Crude GLM2 (right-censored) 7 + 1 −7′158 18’068 −28%

EM est. GLM2 (right-censored) 7 + 1 −7′132 26’687 +6%

GLM2. This dispersion parameter we keep fixed in all our models studied in this
example. In a first step we simply fit a gamma GLM to the right-censored data
Yi ∧ M . We call this model ‘crude GLM2’, and it underestimates the empirical
claim sizes by 28% because it ignores the fact of having right-censored data.

To initialize the EM algorithm for right-censored data we use the model crude
GLM2. We then iterate the algorithm for 15 steps which provides convergence. The
results are presented in Table 6.4. We observe that the resulting log-likelihood of
the model fitted on the censored data and evaluated on the complete data �Y (which
is available here) is almost the same as for model Gamma GLM2, which has been
estimated on the complete data. Moreover, this right-censored EM algorithm fitted
model slightly over-estimates the average claim sizes.

Figure 6.17 shows the estimated means μ̂i on an individual claims level. The
x-axis always gives the estimates from the complete log-likelihood model Gamma
GLM2. The y-axis on the left-hand side shows the estimates from the crude GLM
and the right-hand side the estimates from the EM algorithm fitted counterpart (fitted
on the right-censored data). We observe that the crude model underestimates the
claims (being below the diagonal), and the largest estimate lies below M = 50′000
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Fig. 6.17 Comparison of the estimated means μ̂i in model Gamma GLM2 against (lhs) the crude
GLM and (rhs) the EM fitted right-censored model; both axis are on the log-scale, the dotted lines
shows the censoring point log(M)
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in our example (horizontal dotted line). The EM algorithm fitted model, considering
the fact that we have right-censored data, corrects for the censoring, and the resulting
estimates resemble the ones from the complete log-likelihood model quite well.
In fact, we probably slightly over-estimate under right-censoring, here. Note that
all these considerations have been done under an identical dispersion parameter
estimate ϕ̂MLE. For the complete log-likelihood case, this is not really needed for
mean estimation because it cancels in the score equations for mean estimation.
However, a reasonable dispersion parameter estimate is crucial for the incomplete
case as it enters Ŷ (t) in the E-step, see (6.47), thus, the caveat here is that we need
a reasonable dispersion estimate from the right-censored data (which we did not
discuss, here, and which requires further research). �

6.4.3 Parameter Estimation Under Lower-Truncation

Compared to censoring we have less information under truncation because not only
the claim sizes below the lower-truncation point are unknown, but we also do not
know how many claims there are below that truncation point τ . Assume we work
with responses belonging to the EDF. The incomplete log-likelihood is given by

�Y>τ (θ) =
n∑

i=1

log f (Yi; θi, vi/ϕ) − log (1 − F(τ ; θi, vi/ϕ)) ,

assuming that Y = (Yi)1≤i≤n > τ collects all claims above the truncation point
Yi > τ , see (6.41). We proceed as in Fung et al. [147] to construct a complete
log-likelihood; there are different ways to do so, but this proposal is convenient
for parameter estimation. Firstly, we equip each observed claim Yi > τ with an
independent count random variable Ki ∼ p(·; θi, vi/ϕ) that determines the number
of claims below the truncation point that correspond to claim i above the truncation
point. Secondly, we assume that these claims are given by independent observations
Zi,1, . . . , Zi,Ki ≤ τ , a.s., with a distribution obtained from an un-truncated version
of Yi , i.e., we consider the upper-truncated version of f (·; θi, vi/ϕ) for Zi,j . This
gives us the complete log-likelihood

�(Y ,K,Z)(θ) =
n∑

i=1

(
log

(
f (Yi; θi, vi/ϕ)

1 − F(τ ; θi, vi/ϕ)

)
(6.49)

+ log p(Ki; θi, vi/ϕ) +
Ki∑
j=1

log

(
f (Zi,j ; θi, vi/ϕ)

F (τ ; θi, vi/ϕ)

))
,
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with K = (Ki)1≤i≤n, and Z collects all (latent) claims Zi,j ≤ τ , an empty sum is
set equal to zero. Next, we assume that Ki is following the geometric distribution

Pθi [Ki = k] = p(k; θi, vi/ϕ) = F(τ ; θi, vi/ϕ)k (1 − F(τ ; θi, vi/ϕ)) .

(6.50)

As emphasized in Fung et al. [147], this complete log-likelihood is an artificial
construct that supports parameter estimation of lower-truncated data. It does not
claim that the true un-truncated data follows this model (6.49) but it provides
a distributional extension below the truncation point τ > 0 that is convenient
for parameter estimation. Namely, inserting this geometric distribution assumption
into (6.49) gives us complete log-likelihood

�(Y ,K,Z)(θ) =
n∑

i=1

⎛
⎝log f (Yi; θi, vi/ϕ) +

Ki∑
j=1

log f (Zi,j ; θi, vi/ϕ)

⎞
⎠ . (6.51)

Within the EDF this allows us to do the same EM algorithm considerations as above;
note that this expression no longer involves the distribution function. We consider
one observation Yi > τ and we drop the lower index i. This gives us complete
observation (Y,K,Z = (Zj)1≤j≤K) and conditional density

f (k, z|y; θ, v/ϕ) = f (y, k, z; θ, v/ϕ)

f(τ,∞)(y; θ, v/ϕ)
= f (y, k, z; θ, v/ϕ)

exp{�Y=y>τ (θ)} ,

where �Y>τ (θ) is the log-likelihood of the lower-truncated datum Y > τ . Choose an
arbitrary density π modeling the random vector (K,Z) below the truncation point
τ . This gives us for the random vector (K,Z) ∼ π

�Y>τ (θ) =
∫

π(k, z) �Y>τ (θ) dν(k, z)

=
∫

π(k, z) log

(
f (Y, k, z; θ, v/ϕ)/π(k, z)

f (k, z|Y ; θ, v/ϕ)/π(k, z)

)
dν(k, z)

=
∫

π(k, z) log
(

f (Y, k, z; θ, v/ϕ)

π(k, z)

)
dν(k, z) + DKL (π ||f (·|Y ; θ, v/ϕ))

≥
∫

π(k, z) log

(
f (Y, k, z; θ, v/ϕ)

π(k, z)

)
dν(k, z)

= Eπ

[
�(Y,K,Z)(θ)

∣∣ Y ] − Eπ

[
log π(K,Z)

]

= log f (Y ; θ, v/ϕ) + Eπ

⎡
⎣ K∑

j=1

log f (Zj ; θ, v/ϕ)

⎤
⎦ − Eπ

[
log π(K,Z)

]

def.= Q(θ;π),
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where the second last identity uses that the log-likelihood (6.51) has a simple form
under the geometric distribution chosen for K; this is exactly the step where we
benefit from this specific choice of the probability extension below the truncation
point. There is a subtle point here. Namely, �Y>τ (θ) is the log-likelihood of the
lower-truncated datum Y > τ , whereas log f (Y ; θ, v/ϕ) is the log-likelihood not
using any lower-truncation.

The E-step for given canonical parameter estimate θ̂ (t−1) reads as

π̂ (t) = arg max
π

Q
(
θ̂ (t−1); π

)
= arg min

π
DKL

(
π

∥∥∥f (·|Y ; θ̂ (t−1), v/ϕ)
)

= f
(
·
∣∣∣Y ; θ̂ (t−1), v/ϕ

)

= p
(
·; θ̂ (t−1), v/ϕ

) ·∏
j=1

f (·j ; θ̂ (t−1), v/ϕ)

F (τ ; θ̂ (t−1), v/ϕ)
.

The latter describes a compound distribution for
∑K

j=1 Zj with a geometric count
random variable K and independent i.i.d. random variables Z1, Z2, . . . , having
upper-truncated densities f(−∞,τ ](·; θ̂ (t−1), v/ϕ). This allows us to calculate the
expected compound claim below the truncation point

Ŷ
(t)
≤τ = Eπ̂ (t)

⎡
⎣ K∑

j=1

Zj

⎤
⎦ = Eπ̂ (t) [K] Eπ̂ (t) [Z1]

= F(τ ; θ̂ (t−1), v/ϕ)

1 − F(τ ; θ̂ (t−1), v/ϕ)

∫
z f(−∞,τ ](z; θ̂ (t−1), v/ϕ) dν(z).

This completes the E-step.
The M-step considers within the EDF

θ̂ (t ) = arg max
θ

Q
(
θ; π̂ (t)

)

= arg max
θ

(
Y + Eπ̂ (t)

[∑K
j=1 Zj

])
θ − (1 + Eπ̂ (t) [K])κ(θ)

ϕ/v

= arg max
θ

v(1 + Eπ̂ (t) [K])

ϕ

[(
Y + Ŷ

(t)
≤τ

1 + Eπ̂ (t) [K]

)
θ − κ(θ)

]
.
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That is, the M-step applies the classical MLE step, we only need to change weights
and observations

v 	→ v(t) = v
(
1 + Eπ̂ (t) [K]

) = v

1 − F(τ ; θ̂ (t−1), v/ϕ)
,

Y 	→ Ŷ (t) = Y + Ŷ
(t)
≤τ

1 + Eπ̂ (t) [K]
= Y + Eπ̂ (t) [K]Eπ̂ (t) [Z1]

1 + Eπ̂ (t) [K]
.

Note that this uses the specific structure of the EDF, in particular, we benefit from
linearity here which allows for closed-form solutions.

EM algorithm for lower-truncated data within the EDF

(0) Choose an initial parameter θ̂
(0) = (θ̂

(0)
i )1≤i≤n.

(1) Repeat for t ≥ 1:

• E-step. Given parameter θ̂
(t−1) = (θ̂

(t−1)
i )1≤i≤n, estimate the number of

claims K and the corresponding claim sizes Zi,j by

K̂
(t)
i = F(τ ; θ̂

(t−1)
i , vi/ϕ)

1 − F(τ ; θ̂
(t−1)
i , vi/ϕ)

,

Ẑ
(t)
i,1 =

∫
z f(−∞,τ ](z; θ̂

(t−1)
i , vi/ϕ) dν(z). (6.52)

This provides us with estimated weights and observations for 1 ≤ i ≤ n

v
(t)
i = vi

(
1 + K̂

(t)
i

)
and Ŷ

(t)
i = Yi + K̂

(t)
i Ẑ

(t)
i,1

1 + K̂
(t)
i

.

• M-step. Calculate the MLE θ̂
(t) = (θ̂

(t)
i )1≤i≤n based on observations Ŷ

(t) =
(Ŷ

(t)
i )1≤i≤n and weights v̂(t) = (̂v

(t)
i )1≤i≤n, i.e., solve

θ̂
(t) = arg max

θ

�
Ŷ

(t) (θ; v̂(t)/ϕ) = arg max
θ

n∑
i=1

log f (Ŷ
(t)
i ; θi, v̂

(t)
i /ϕ).

Remarks 6.17 Essentially, the above algorithm uses that the MLE in the EDF is
based on a sufficient statistics of the observations, and in our case this sufficient
statistics is Ŷ

(t)
i .

Example 6.18 (Lower-Truncated Claim Sizes) We revisit the gamma claim size
GLM introduced in Sect. 5.3.7, see also Example 6.16 on right-censored claims. We
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choose as lower-truncation point τ = 1′000, i.e., we get rid of the very small claims
that mainly generate administrative expenses at a rather small claim compensation.
We have 70 claims below this truncation point, and there remain n = 586 claims
above the truncation point that can be used for model fitting in the lower-truncated
case. We use the EM algorithm for lower-truncated data to fit a GLM to this problem.

In order to calculate the E-step we need to evaluate the conditional expecta-
tion (6.52) under the gamma model for truncation probability

F(τ ; θ̂ (t−1), v/ϕ) =
∫ τ

0

βα

�(α)
zα−1 exp{−βz} dz = G(α, βτ),

with shape parameter α = v/ϕ and scale parameter β = −θ̂ (t−1)v/ϕ. In complete
analogy to (6.47) we have

Ẑ
(t)
1 =

∫
z f(∞,τ ](z; θ̂ (t−1), v/ϕ) dν(z) = α

β

G(α + 1, βτ)

G(α, βτ)
.

For the modeling we choose again the features as used for model Gamma GLM2,
this gives q+1 = 7 regression parameter components and additionally we set for the
dispersion parameter ϕ̂MLE = 1.427. This dispersion parameter we keep fixed in all
the models studied in this example. In a first step we simply fit a gamma GLM to the
lower-truncated data Yi > τ . We call this model ‘crude GLM2’, and it overestimates
the true claim sizes because it ignores the fact of having lower-truncated data.

To initialize the EM algorithm for lower-truncated data we use the model crude
GLM2. We then iterate the algorithm for 10 steps which provides convergence.
The results are presented in Table 6.5. We observe that the resulting log-likelihood
fitted on the lower-truncated data and evaluated on the complete data �Y (which is
available here) is the same as for model Gamma GLM2 which has been estimated
on the complete data. Moreover, this lower-truncated EM algorithm fitted model
slightly under-estimates the average claim sizes.

Figure 6.18 shows the estimated means μ̂i on an individual claims level. The
x-axis always gives the estimates from the complete log-likelihood model Gamma
GLM2. The y-axis on the left-hand side shows the estimates from the crude GLM
and the right-hand side the estimates from the EM algorithm fitted counterpart
(fitted on the lower-truncated data). We observe that the crude model overestimates

Table 6.5 Comparison of the complete log-likelihood and the incomplete log-likelihood (lower-
truncation τ = 1′000) results

# Log-likelihood Dispersion Average Rel.

Param. �Y (θ̂MLE, ϕ̂MLE) est. ϕ̂MLE amount change

Gamma GLM2 (complete data) 7 + 1 −7′129 1.427 25’130

Crude GLM2 (lower-truncated) 7 + 1 −7′133 26’879 +7%

EM est. GLM2 (lower-truncated) 7 + 1 −7′129 24’900 −1%
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Fig. 6.18 Comparison of the estimated means μ̂i in model Gamma GLM2 against (lhs) the crude
GLM and (rhs) the EM fitted lower-truncated model; both axis are on the log-scale

the claims (being above the orange diagonal), in particular, this applies to claims
with lower expected claim amounts. The EM algorithm fitted model, considering
the fact that we have lower-truncated data, corrects for the truncation, and the
resulting estimates almost completely coincide with the ones from the complete log-
likelihood model. Again we remark that we use an identical dispersion parameter
estimate ϕ̂MLE, and it is an open problem to select a reasonable value from lower-
truncated data. �

Example 6.19 (Zero-Truncated Claim Counts and the Hurdle Poisson Model) In
Sect. 5.3.6, we have been studying the ZIP model that has assigned an additional
probability weight to the event {N = 0} of having zero claims. This model can
be understood as a hierarchical model with a latent variable Z indicating whether
we have an excess zero claim or not, see (5.41). In that situation we have a
mixture distribution of a Poisson distribution and a degenerate distribution. Fitting
in Example 5.25 has been done brute force by using a general purpose optimizer,
but we could also use the EM algorithm for mixture distributions.

An alternative way of modeling excess zeros is the hurdle approach which
combines a lower-truncated count distribution with a point mass in zero. For the
Poisson case this reads as, see (5.42),

fhurdle Poisson(k; λ, v, π0) =
⎧⎨
⎩

π0 for k = 0,

(1 − π0)
e−vλ (vλ)k

k!
1−e−vλ for k ∈ N,

(6.53)

for π0 ∈ (0, 1) and λ, v > 0. If we ignore any observation {N = 0} we obtain
a lower-truncated Poisson model, also called zero-truncated Poisson (ZTP) model.
This ZTP model can be fitted with the EM algorithm for lower-truncated data. In the
following we only consider insurance policies i with Ni > 0. The log-likelihood of
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the ZTP model N > 0 is given by (we consider one single component only and drop
the lower index in the notation)

θ 	→ �N>0(θ) = Nθ − veθ − log(N !) + N log(v) − log(1 − e−veθ

), (6.54)

with exposure v > 0 and canonical parameter θ ∈ � = R such that λ = exp{θ}.
The ZTP model provides for the random variable K the following geometric
distribution (for the number of claims below the truncation point), see (6.50),

Pθ [K = k] = Pθ [N = 0]k Pθ [N > 0] = e−kveθ
(

1 − e−veθ
)

.

In view of (6.51), this gives us complete log-likelihood (note that Zj = 0 for all j )

�(N,K,Z)(θ) = Nθ − veθ − log(N !) + N log(v) +
K∑

j=1

(
Zj θ − veθ − log(Zj !) + Zj log(v)

)

= Nθ − (1 + K)veθ − log(N !) + N log(v).

We can now directly apply a simplified version of the EM algorithm for lower-
truncated data. For the E-step we have, given parameter θ̂ (t−1),

K̂(t) = Pθ̂ (t−1) [N = 0]
1 − Pθ̂ (t−1)[N = 0] = e−veθ̂(t−1)

1 − e−veθ̂(t−1)
and Ẑ

(t)
1 = 0.

This provides us with the estimated weights and observations (set Y = N/v)

v(t) = v
(

1 + K̂(t)
)

= v

1 − e−veθ̂(t−1)
and Ŷ (t) = Y

1 + K̂(t)
= N

v(t)
.

(6.55)

Thus, the EM algorithm iterates Poisson MLEs, and the E-Step modifies the weights
v(t) in each step of the loop correspondingly. We remark that the ZTP model
has an EF representation which allows one to directly estimate the corresponding
parameters without using the EM algorithm, see Remark 6.20, below.

We revisit the French MTPL claim frequency data, and, in particular, we use
model Poisson GLM3 as a benchmark, we refer to Tables 5.5 and 5.10. The feature
engineering is done exactly as in model Poisson GLM3. We then select only the
insurance policies from the learning data L that have suffered at least one claim, i.e.,
Ni > 0. These are m = 22′434 out of n = 610′206 insurance policies. Thus, we
only consider m/n = 3.68% of all insurance policies, and we fit the lower-truncated
log-likelihood (ZTP model) to this data

�N>0(β) =
m∑

i=1

Niθi − vie
θi − log(Ni !) + Ni log(vi) − log(1 − e−vie

θi
),



6.4 Truncated and Censored Data 261

0 20 40 60 80 100

−
0.

24
5

−
0.

24
0

−
0.

23
5

−
0.

23
0

−
0.

22
5

convergence of log−likelihood in EM algorithm

algorithmic time

lo
g−

lik
el

ih
oo

d

0–2–4–6–8

0
–2

–4
–6

–8

canonical parameter fitted on all data

ca
no

ni
ca

l p
ar

am
et

er
 fi

tte
d 

on
 N

>
0

fitted on all data vs. fitted on data N>0

Fig. 6.19 (lhs) Convergence of the EM algorithm for the lower-truncated data in the Poisson
hurdle case; (rhs) canonical parameters of the Poisson GLMs fitted on all data L vs. fitted only
on policies with Ni > 0

Table 6.6 Run times, number of parameters, AICs, in-sample and out-of-sample deviance losses
(units are in 10−2) and in-sample average frequency of the Poisson null model and the Poisson,
negative-binomial, ZIP and hurdle Poisson GLMs

Run # In-sample Out-of-sample Aver.

time Param. AIC loss on L loss on T freq.

Poisson null – 1 199’506 25.213 25.445 7.36%

Poisson GLM3 15 s 50 192’716 24.084 24.102 7.36%

NB GLM3 α̂MLE
NB = 1.810 85 s 51 192’113 20.722 20.674 7.38%

ZIP GLM3 (null π0) 270 s 51 192’393 – – 7.37%

Hurdle Poisson GLM3 300 s 100 191’851 – – 7.39%

where 1 ≤ i ≤ m runs over all insurance policies with at least one claim and where
the canonical parameter θi is given by the linear predictor θi = 〈β, xi〉. We fit this
model using the EM algorithm for lower-truncated data. In each loop this requires
that the offset o

(t)
i = log(v

(t)
i ) is adjusted according to (6.55); for the discussion of

offsets we refer to Sect. 5.2.3. Convergence of the EM algorithm is achieved after
roughly 75 iterations, see Fig. 6.19 (lhs).

In our first analysis we do not consider the Poisson hurdle model, but we simply
consider model Poisson GLM3. However, this Poisson model with regression
parameter β is fitted only on the data Ni > 0 (exactly using the results of the
EM algorithm for lower-truncated data Ni > 0). The resulting predictive model is
presented in Table 6.7. We observe that model Poisson GLM3 that is only fitted on
the data Ni > 0 is clearly not competitive, i.e., we cannot simply extrapolate this
estimated model to {Ni = 0}. This extrapolation results in a Poisson GLM that has
a much too large average frequency of 15.11%, see last column of Table 6.7; this
bias can clearly be seen in Fig. 6.19 (rhs) where we compare the two fits. From
this we conclude that either the Poisson model assumption in general does not
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Table 6.7 Number of parameters, in-sample and out-of-sample deviance losses on all data
(units are in 10−2), out-of-sample lower-truncated log-likelihood �N>0 and in-sample average
frequency of the Poisson null model and model Poisson GLM3 fitted on all data L and fitted on
the data Ni > 0 only

# In-sample Out-of-sample Aver.

Param. Loss on L Loss on T �N>0 freq.

Poisson null 1 25.213 25.445 – 7.36%

Poisson GLM3 fitted on all data 50 24.084 24.102 −0.2278 7.36%

Poisson GLM3 fitted on Ni > 0 50 28.064 28.211 −0.2195 15.11%

match the data, or that we have excess zeros (which do not influence the estimation
procedure if we only consider the policies with at least one claim). Let us compare
the lower-truncated log-likelihood �N>0 out-of-sample only on the policies with at
least one claim (ZTP model). We observe that the EM fitted model provides a better
description of the data, as we have a bigger log-likelihood than the model fitted on
all data L (i.e. −0.2195 vs. −0.2278 for the ZTP log-likelihood). Thus, the lower-
truncated fitting procedure finds a better model on {Ni > 0} when only fitted on
these lower-truncated claim counts.

This analysis concludes that we need to fit the full hurdle Poisson model (6.53).
That is, we cannot simply extrapolate the model fitted on the ZTP log-likelihood
�N>0 because, typically, π0(xi ) �= exp{−vie

〈β,xi 〉}, the latter coming from the
Poisson GLM with regression parameter β. We model the zero claim probability
π0(xi ) by the logistic Bernoulli GLM indicating whether we have claims or not.
We set up the logistic GLM for p(x i ) = 1 − π0(xi ) of describing the indicator
Yi = 1{Ni>0} of having claims. The difficulty compared to the Poisson model is that
we cannot easily integrate the time exposure vi as a pro rata temporis variable like
in the Poisson case. We therefore make the following considerations. The canonical
link in the logistic Bernoulli GLM is the logit function p 	→ logit(p) = log(p/(1 −
p)) = log(p) − log(1 − p) for p ∈ (0, 1). Typically, in our application, p � 1 is
fairly small because claims are rare events. This implies log(p/(1 − p)) ≈ log(p),
i.e., the logit link behaves similarly to the log-link for small default probabilities p.
This motivates to integrate the logged exposures log vi as offsets into the logistic
probabilities. That is, we make the following model assumption

(x, v) 	→ logit(p(xi , vi )) = log(vi) + 〈β̃, xi〉,

with offset oi = log(vi) and regression parameter β̃ ∈ R
q+1. We fit this model using

the R command glm using family=binomial(). The results then allow us to
define the estimated hurdle Poisson model by, recall p(x i , vi ) = 1 − π0(xi , vi ),

fhurdle Poisson(k; xi , vi ) =
{

1 − p(x i , vi ) = (
1 + exp{log(vi) + 〈β̃,x i〉}

)−1
for k = 0,

p(xi ,vi )

1−e−μ(xi ,vi )
e−μ(x i ,vi ) μ(xi ,vi )

k

k! for k ∈ N,
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Table 6.8 Contingency table of the observed numbers of policies against predicted numbers of
policies with given claim counts ClaimNb (in-sample)

Numbers of claims ClaimNb

0 1 2 3 4 5

Observed number of policies 587’772 21’198 1’174 57 4 1

Poisson predicted number of policies 587’325 22’064 779 34 3 0.3

NB predicted number of policies 587’902 20’982 1’200 100 15 4

ZIP predicted number of policies 587’829 21’094 1’191 79 9 4

Hurdle Poisson predicted number of policies 587’772 21’119 1’233 76 6 1

where β̃ ∈ R
q+1 is the regression parameter from the logistic Bernoulli GLM,

and where μ(xi , vi ) = vi exp〈β, xi〉 is the Poisson GLM estimated with the
EM algorithm on the lower-truncated data Ni > 0 (ZTP model). The results are
presented in Table 6.6.

Table 6.6 compares the hurdle Poisson model to the approaches studied in
Table 5.10. Firstly, fitting the hurdle Poisson model is more time intensive, the EM
algorithm takes some time and we need to fit the Bernoulli logistic GLM which
is of a similar complexity as fitting model Poisson GLM3. The results in terms of
AIC look convincing. The hurdle Poisson model provides an excellent model for the
indicator of having a claim (here it outperforms model ZIP GLM3). It also tries to
optimally fit a ZTP model to all insurance policies having at least one claim. This
can also be seen from Table 6.8 which determines the expected number of policies
that suffer the different numbers of claims.

We close this example by concluding that the hurdle Poisson model provides the
best description, at the price of using more parameters. The ZIP model could be
lifted to a similar level, however, we consider fitting the hurdle approach to be more
convenient, see also Remark 6.20, below. In particular, feature engineering seems
simpler in the hurdle approach because the different effects are clearly separated,
whereas in the ZIP approach it is more difficult to suitably model the excess zeros,
see also Listing 5.10. This closes this example. �

Remark 6.20 In (6.54) we have been considering the ZTP model for different
exposures v > 0. If we set these exposures to v = 1, we obtain the ZTP log-
likelihood

�N>0(θ) = Nθ −
(
eθ + log(1 − e−eθ

)
)

− log(N !).

Note that this describes a single-parameter linear EF with cumulant function

κ(θ) = eθ + log(1 − e−eθ

),
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for canonical parameter in the effective domain θ ∈ � = R. The mean of this EF
model is given by

μ = Eθ [N] = κ ′(θ) = eθ

1 − e−eθ
= λ

1 − e−λ
,

where we set λ = eθ . The variance is given by

Varθ (N) = κ ′′(θ) = μ

(
eλ − (1 + λ)

eλ − 1

)
= μ

(
1 − μe−λ

)
> 0.

Note that the term in brackets is positive but less than one. The latter implies that
the ZTP model has under-dispersion. Alternatively to the EM algorithm, we can
also directly fit a GLM to this ZTP model. The only difficulty is that we need to
appropriately integrate the time exposures. The original Poisson model suggests
that if we choose the canonical parameter being equal to the linear predictor, we
should integrate the logged exposures as offsets into the linear predictors. Along
these lines, if we choose the canonical link h = (κ ′)−1 of the ZTP model, we
receive that the canonical parameter θ is equal to the linear predictor 〈β, x〉, and we
can directly integrate the logged exposures as offsets into the canonical parameters,
see (5.25). This then allows us to directly fit this ZTP model with exposures using
Fisher’s scoring method. In this case of a concave log-likelihood function, the result
will be identical to the solution of the EM algorithm found in Example 6.19, and, in
fact, this direct approach is more straightforward and more time-efficient. Similar
considerations can be done for other hurdle models.

6.4.4 Composite Models

In Sect. 6.3.1 we have promoted to mix distributions in cases where the data cannot
be modeled by a single EDF distribution. Alternatively, one can also consider to
compose densities which leads to so-called composite models (also called splicing
models). This idea has been introduced to the actuarial literature by Cooray–Ananda
[81] and Scollnik [332]. Assume we have two absolutely continuous densities
f (i)(·; θi) with corresponding distribution functions F (i)(·; θi), i = 1, 2. These two
densities can easily be composed at a splicing value τ and with weight p ∈ (0, 1)

by considering the following composite density

f (y; p, θ1, θ2) = p
f (1)(y; θ1)1{y≤τ }

F (1)(τ ; θ1)
+ (1 − p)

f (2)(y; θ2)1{y>τ }
1 − F (2)(τ ; θ2)

, (6.56)

supposed that both denominators are non-zero. In this notation we treat splicing
value τ as a hyper-parameter that is chosen by the modeler, and is not estimated
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from data. In view of (6.41) we can rewrite this in terms for lower- and upper-
truncated densities

f (y; p, θ1, θ2) = p f
(1)
(−∞,τ ](y; θ1) + (1 − p) f

(2)
(τ,∞)(y; θ2).

In this notation, we see that a composite model can also be interpreted as a mixture
model with mixture probability p ∈ (0, 1) and mixing densities f

(1)
(−∞,τ ] and f

(2)
(τ,∞)

having disjoint supports (∞, τ ] and (τ,∞), respectively.
These disjoint supports allow for simpler MLE, i.e., we do not need to rely on

the ‘EM algorithm for mixture distributions’ to fit this model. The log-likelihood of
Y ∼ f (y; p, θ1, θ2) is given by

�Y (p, θ1, θ2) =
(

log(p) + log f
(1)
(−∞,τ ](Y ; θ1)

)
1{Y≤τ }

+
(

log(1 − p) + log f
(2)
(τ,∞)(Y ; θ2)

)
1{Y>τ }.

This shows that the log-likelihood nicely decouples in the composite case and all
parameters can directly be estimated with MLE: parameter θ1 uses all observations
smaller or equal to τ , parameter θ2 uses all observations bigger than τ , and p is
estimated by the proportions of claims below and above the splicing point τ . This
holds for a null model as well as for a GLM approach for θ1, θ2 and p.

Nevertheless, the EM algorithm may still be used for parameter estimation,
namely, truncation may ask for the ‘EM algorithm for truncated data’. Alternatively,
we could also use the ‘EM algorithm for censored data’ to estimate the truncated
densities, because we have knowledge of the number of claims above and below the
splicing point τ , thus, we could right- or left-censor these claims. The latter may
lead to more stability in the estimation procedure since we use more information
in parameter estimation, i.e., the two truncated densities will not be independent
because they simultaneously consider all claim counts (but not identical claim sizes
due to censoring).

For composite models one sometimes requires more regularity in the densities,
we may, e.g., require continuity in the density in the splicing point which provides
mixture probability

p = f (2)(τ ; θ2)F
(1)(τ ; θ1)

f (1)(τ ; θ1)(1 − F (2)(τ ; θ2)) + f (2)(τ ; θ2)F (1)(τ ; θ1)
.

This reduces the number of parameters to be estimated but complicates the score
equations. If we require a differential condition in τ we receive requirement

p = f
(2)
y (τ ; θ2)F

(1)(τ ; θ1)

f
(1)
y (τ ; θ1)(1 − F (2)(τ ; θ2)) + f

(2)
y (τ ; θ2)F (1)(τ ; θ1)

,
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where f
(i)
y (y; θi) denotes the first derivative w.r.t. y. Together with the continuity

this provides requirement for having differentiability in τ

f (2)(τ ; θ2)

f (1)(τ ; θ1)
= f

(2)
y (τ ; θ2)

f
(1)
y (τ ; θ1)

.

Again this reduces the degrees of freedom in parameter estimation but complicates
the score equations. We refrain from giving an example and close this section; we
will consider a deep composite regression model in Sect. 11.3.2, below, where we
replace the fixed splicing point by a quantile for a fixed quantile level.
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