
Chapter 5
Generalized Linear Models

Most of the theory in the previous chapters has been based on the assumption of
having similarity (or homogeneity) between the different observations. This was
expressed by making an i.i.d. assumption on the observations, see, e.g., Sect. 3.3.2.
In many practical applications such a homogeneity assumption is not reasonable,
one may for example think of car insurance pricing where different car drivers have
different driving experience and they drive different cars, or of health insurance
where policyholders may have different genders and ages. Figure 5.1 shows a
health insurance example where the claim sizes depend on the gender and the
age of the policyholders. The most popular statistical models that are able to
cope with such heterogeneous data are the generalized linear models (GLMs). The
notion of GLMs has been introduced in the seminal work of Nelder–Wedderburn
[283] in 1972. Their work has introduced a unified procedure for modeling and
fitting distributions within the EDF to data having systematic differences (effects)
that can be described by explanatory variables. Today, GLMs are the state-of-the-
art statistical models in many applied fields including statistics, actuarial science
and economics. However, the specific use of GLMs in the different fields may
substantially differ. In fields like actuarial science these models are mainly used for
predictive modeling, in other fields like economics or social sciences GLMs have
become the main tool in exploring and explaining (hopefully) causal relations. For
a discussion on “predicting” versus “explaining” we refer to Shmueli [338].

It is difficult to give a good list of references for GLMs, since GLMs and their
offsprings are present in almost every statistical modeling publication and in every
lecture on statistics. Classical statistical references are the books of McCullagh–
Nelder [265], Fahrmeir–Tutz [123] and Dobson [107], in the actuarial literature we
mention the textbooks (in alphabetical order) of Charpentier [67], De Jong–Heller
[89], Denuit et al. [99–101], Frees [134] and Ohlsson–Johansson [290], but this list
is far from being complete.
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Fig. 5.1 Claim sizes in
health insurance as a function
of the age of the policyholder,
and split by gender
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In this chapter we introduce and discuss GLMs in the context of actuarial
modeling. We do this in such a way that GLMs can be seen as a building block of
network regression models which will be the main topic of Chap. 7 on deep learning.

5.1 Generalized Linear Models and Log-Likelihoods

5.1.1 Regression Modeling

We start by assuming of having independent random variables Y1, . . . , Yn which
are described by a fixed member of the EDF. That is, we assume that all Yi are
independent and have densities w.r.t. a σ -finite measure ν on R given by

Yi ∼ f (yi; θi, vi/ϕ) = exp

{
yiθi − κ(θi)

ϕ/vi

+ a(yi; vi/ϕ)

}
for 1 ≤ i ≤ n,

(5.1)

with canonical parameters θi ∈ �̊, exposures vi > 0 and dispersion parameter ϕ >

0. Throughout, we assume that the effective domain � has a non-empty interior.
There is a fundamental difference between (5.1) and Example 3.5. We now allow
every random variable Yi to have its own canonical parameter θi ∈ �̊. We call
this a heterogeneous situation because the observations are allowed to differ in a
systematic way expressed by different canonical parameters. This is highlighted by
the lines in the health insurance example of Fig. 5.1 where (expected) claim sizes
differ by gender and age of policyholder.

In Sect. 4.1.2 we have introduced the saturated model where every observation Yi

has its own parameter θi . In general, if we have n observations Y = (Y1, . . . , Yn)
�

we can estimate at most n parameters. The other extreme case is the homogeneous
one, meaning that θi = θ ∈ �̊ for all 1 ≤ i ≤ n. In this latter case we have exactly
one parameter to estimate, and we call this model null model, intercept model
or homogeneous model, because all components of Y are assumed to follow the
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same law expressed in a single common parameter θ . Both the saturated model and
the null model may behave very poorly in predicting new observations. Typically,
the saturated model fully reflects the data Y including the noisy part (random
component, irreducible risk, see Remarks 4.2) and, therefore, it is not useful for
prediction. We also say that this model (in-sample) over-fits to the data Y and
does not generalize (out-of-sample) to new data. The null model often has a poor
predictive performance because if the data has systematic effects these cannot be
captured by a null model. GLMs try to find a good balance between these two
extreme cases, by trying to extract (only) the systematic effects from noisy data
Y . We therefore model the canonical parameters θi as a low-dimensional function
of explanatory variables which capture the systematic effects in the data. In Fig. 5.1
gender and age of policyholder play the role of such explanatory variables.

Assume that each observation Yi is equipped with a feature (explanatory variable,
covariate) xi that belongs to a fixed given feature space X . These features xi

are assumed to describe the systematic effects in the observations Yi , i.e., these
features are assumed to be appropriate descriptions of the heterogeneity between the
observations. In a nutshell, we then assume of having a suitable regression function

θ : X → �̊, x �→ θ(x),

such that we can appropriately describe the observations by

Yi
ind.∼ f (yi; θi = θ(xi ), vi/ϕ) = exp

{
yiθ(xi ) − κ(θ(xi ))

ϕ/vi
+ a(yi; vi/ϕ)

}
,

(5.2)

for 1 ≤ i ≤ n. As a result we receive for the first moment of Yi , see Corollary 2.14,

μi = μ(xi ) = Eθ(xi ) [Yi] = κ ′(θ(xi )). (5.3)

Thus, the regression function θ : X → �̊ is assumed to describe the systematic
differences (effects) between the random variables Y1, . . . , Yn being expressed by
the means μ(xi ) for features x1, . . . , xn. In GLMs this regression function takes a
linear form after a suitable transformation, which exactly motivates the terminology
generalized linear model.

5.1.2 Definition of Generalized Linear Models

We start with the discussion of the features x ∈ X . Features are also called
explanatory variables, covariates, independent variables or regressors. Throughout,
we assume that the features x = (x0, x1, . . . , xq)� include a first component x0 = 1,
and we choose feature space X ⊂ {1} × R

q . The inclusion of this first component
x0 = 1 is useful in what follows. We call this first component intercept or bias
component because it will be modeling an intercept of a regression model. The
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null model (homogeneous model) has features that only consist of this intercept
component. For later purposes it will be useful to introduce the design matrix X
which collects the features x1, . . . , xn ∈ X of all responses Y1, . . . , Yn. The design
matrix is defined by

X = (x1, . . . , xn)
� =

⎛
⎜⎝

1 x1,1 · · · x1,q

...
...

. . .
...

1 xn,1 · · · xn,q

⎞
⎟⎠ ∈ R

n×(q+1). (5.4)

Based on these choices we assume existence of a regression parameter β ∈ R
q+1

and of a strictly monotone and smooth link function g : M → R such that we can
express (5.3) by the following function (we drop index i)

x �→ g(μ(x)) = g
(
Eθ(x) [Y ]

) = η(x) = 〈β, x〉 = β0 +
q∑

j=1

βjxj . (5.5)

Here, 〈·, ·〉 describes the scalar product in the Euclidean space R
q+1, θ(x) =

h(μ(x)) is the resulting canonical parameter (using canonical link h = (κ ′)−1),
and η(x) is the so-called linear predictor. After applying a suitable link function g,
the systematic effects of the random variable Y with features x can be described by
a linear predictor η(x) = 〈β, x〉, linear in the components of x ∈ X . This gives
a particular functional form to (5.3), and the random variables Y1, . . . , Yn share
a common regression parameter β ∈ R

q+1. Remark that the link function g used
in (5.5) can be different from the canonical link h used to calculate θ(x) = h(μ(x)).
We come back to this distinction below.

Summary of (5.5)

1. The independent random variables Yi follow a fixed member of the
EDF (5.1) with individual canonical parameters θi ∈ �̊, for all 1 ≤ i ≤ n.

2. The canonical parameters θi and the corresponding mean parameters μi

are related by the canonical link h = (κ ′)−1 as follows h(μi) = θi , where
κ is the cumulant function of the chosen EDF, see Corollary 2.14.

3. We assume that the systematic effects in the random variables Yi can
be described by linear predictors ηi = η(xi ) = 〈β, xi〉 and a strictly
monotone and smooth link function g such that we have g(μi) = ηi =
〈β, xi〉, for all 1 ≤ i ≤ n, with common regression parameter β ∈ R

q+1.

We can either express this GLM regression structure in the dual (mean) parameter
space M or in the effective domain �̊, see Remarks 2.9,
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x �→ μ(x) = g−1(η(x)) = g−1〈β, x〉 ∈ M or

x �→ θ(x) = (h ◦ g−1)(η(x)) = (h ◦ g−1)〈β, x〉 ∈ �̊,

where (h ◦ g−1) is the composition of the inverse link g−1 and the canonical link h.
For the moment, the link function g is quite general. In practice, the explicit choice
needs some care. The right-hand side of (5.5) is defined on the whole real line if at
least one component of x is both-sided unbounded. On the other hand, M and �̊

may be bounded sets. Therefore, the link function g may require some restrictions
such that the domain and the range fulfill the necessary constraints. The dimension
of β should satisfy 1 ≤ 1 + q ≤ n, the lower bound will provide a null model and
the upper bound a saturated model.

5.1.3 Link Functions and Feature Engineering

As link function we choose a strictly monotone and smooth function g : M → R

such that we do not have any conflicts in domains and ranges. Beside these
requirements, we may want further properties for the link function g and the features
x. From (5.5) we have

μ(x) = Eθ(x) [Y ] = g−1〈β, x〉. (5.6)

Of course, a basic requirement is that the selected features x can appropriately
describe the mean of Y by the function in (5.6), see also Fig. 5.1. This may
require so-called feature engineering of x, for instance, we may want to replace
the first component x1 of the raw features x by, say, x2

1 in the pre-processed
features. For example, if this first component describes the age of the insurance
policyholder, then, in some regression problems, it might be more appropriate to
consider age2 instead of age to bring the predictive problem into structure (5.6). It
may also be that we would like to enforce a certain type of interaction between the
components of the raw features. For instance, we may include in a pre-processed
feature a component x1/x

2
2 which might correspond to weight/height2 if the

policyholder has body weight x1 and body height x2. In fact, this pre-processed
feature is exactly the body mass index of the policyholder. We will come back to
feature engineering in Sect. 5.2.2, below.
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Another important requirement is the ability of model interpretation. In insurance
pricing problems, one often prefers additive and multiplicative effects in feature
components. Choosing the identity link g(m) = m we receive a model with additive
effects

μ(x) = Eθ(x) [Y ] = 〈β, x〉 = β0 +
q∑

j=1

βjxj ,

and choosing the log-link g(m) = log(m) we receive a model with multiplicative
effects

μ(x) = Eθ(x) [Y ] = exp〈β, x〉 = eβ0

q∏
j=1

eβj xj .

The latter is probably the most commonly used GLM in insurance pricing because
it leads to explainable tariffs where feature values directly relate to price de- and
increases in percentages of a base premium exp{β0}.

Another very popular choice is the canonical (natural) link, i.e., g = h = (κ ′)−1.
The canonical link substantially simplifies the analysis and it has very favorable
statistical properties (as we will see below). However, in some applications practical
needs overrule good statistical properties. Under the canonical link g = h we have
in the dual mean parameter space M and in the effective domain �, respectively,

x �→ μ(x) = κ ′(η(x)) = κ ′〈β, x〉 and x �→ θ(x) = η(x) = 〈β, x〉.

Thus, the linear predictor η and the canonical parameter θ coincide under the
canonical link choice g = h = (κ ′)−1.

5.1.4 Log-Likelihood Function and Maximum Likelihood
Estimation

After having a fully specified GLM within the EDF, there remains estimation of the
regression parameter β ∈ R

q+1. This is done within the framework of MLE.

The log-likelihood function of Y = (Y1, . . . , Yn)
� for regression parameter

β ∈ R
q+1 is given by, see (5.2) and we use the independence between the

Yi ’s,

(continued)
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β �→ 	Y (β) =
n∑

i=1

vi

ϕ

[
Yih(μ(xi ))−κ (h(μ(xi )))

]
+a(Yi; vi/ϕ), (5.7)

where we set μ(xi ) = g−1〈β, xi〉. For the canonical link g = h = (κ ′)−1

this simplifies to

β �→ 	Y (β) =
n∑

i=1

vi

ϕ

[
Yi〈β, xi〉 − κ〈β, x i〉

]
+ a(Yi; vi/ϕ). (5.8)

MLE of β needs maximization of log-likelihoods (5.7) and (5.8), respectively;
these are the GLM counterparts to the homogeneous case treated in Section 3.3.2.
We calculate the score, we set ηi = 〈β, x i〉 and μi = μ(xi ) = g−1〈β, xi〉,

s(β,Y ) = ∇β	Y (β) =
n∑

i=1

vi

ϕ
[Yi − μi] ∇βh(μ(xi ))

=
n∑

i=1

vi

ϕ
[Yi − μi]

∂h(μi)

∂μi

∂μi

∂ηi
∇βη(xi ) (5.9)

=
n∑

i=1

vi

ϕ

Yi − μi

V (μi)

(
∂g(μi)

∂μi

)−1

xi ,

where we use the definition of the variance function V (μ) = (κ ′′ ◦ h)(μ), see
Corollary 2.14. We define the diagonal working weight matrix, which in general
depends on β through the means μi = g−1〈β, xi〉,

W(β) = diag

((
∂g(μi)

∂μi

)−2
vi

ϕ

1

V (μi)

)
1≤i≤n

∈ R
n×n,

and the working residuals

R = R(Y ,β) =
(

∂g(μi)

∂μi

(Yi − μi)

)�

1≤i≤n

∈ R
n.

This allows us to write the score equations in a compact form, which provides the
following proposition.
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Proposition 5.1 The MLE for β is found by solving the score equations

s(β,Y ) = ∇β	Y (β) = X�W(β)R(Y ,β) = 0.

For the canonical link g = h = (κ ′)−1 the score equations simplify to

s(β,Y ) = ∇β	Y (β) = X�diag

(
vi

ϕ

)
1≤i≤n

(
Y − κ ′(Xβ)

) = 0,

where κ ′(Xβ) ∈ R
n is understood element-wise.

Remarks 5.2

• In general, the MLE of β is not calculated by maximizing the log-likelihood
function 	Y (β), but rather by solving the score equations s(β,Y ) = 0; we also
refer to Remarks 3.29 on M- and Z-estimators. The score equations provide
the critical points for β, from which the global maximum of the log-likelihood
function can be determined, supposed it exists.

• Existence of a MLE of β is not always given, similarly to Example 3.5, we may
face the problem that the solution lies at the boundary of the parameter space
(which itself may be an open set).

• If the log-likelihood function β �→ 	Y (β) is strictly concave, then the critical
point of the score equations s(β,Y ) = 0 is unique, supposed it exists, and,

henceforth, we have a unique MLE β̂
MLE

for β. Below, we give cases where
the strict concavity of the log-likelihood holds.

• In general, there is no closed from solution for the MLE of β, except in the
Gaussian case with canonical link, thus, we need to solve the score equations
numerically.

Similarly to Remarks 3.17 we can calculate Fisher’s information matrix w.r.t. β

through the negative expected Hessian of 	Y (β).

We get Fisher’s information matrix w.r.t. β

I(β) = Eβ

[
∇β	Y (β)

(∇β	Y (β)
)�] = −Eβ

[
∇2

β	Y (β)
]

= X�W(β)X.

(5.10)

If the design matrix X ∈ R
n×(q+1) has full rank q + 1 ≤ n, Fisher’s

information matrix I(β) is positive definite.



5.1 Generalized Linear Models and Log-Likelihoods 119

Dispersion parameter ϕ > 0 has been treated as a nuisance parameter above.
Its explicit specification does not influence the MLE of β because it cancels in the
score equations. If necessary, we can also estimate this dispersion parameter with
MLE. This requires solving the additional score equation

∂

∂ϕ
	Y (β, ϕ) =

n∑
i=1

− vi

ϕ2

[
Yih(μ(xi )) − κ (h(μ(xi )))

]
+ ∂

∂ϕ
a(Yi; vi/ϕ) = 0,

(5.11)

and we can plug in the MLE of β (which can be estimated independently of ϕ).
Fisher’s information matrix is in this extended framework given by

I(β, ϕ) = −Eβ

[
∇2

(β,ϕ)	Y (β, ϕ)
]

=
(
X�W(β)X 0

0 −Eβ

[
∂2	Y (β, ϕ)/∂ϕ2

]
)

,

that is, the off-diagonal terms between β and ϕ are zero.

In view of Proposition 5.1 we need a root search algorithm to obtain the MLE
of β. Typically, one uses Fisher’s scoring method or the iterative re-weighted
least squares (IRLS) algorithm to solve this root search problem. This is a main
result derived in the seminal work of Nelder–Wedderburn [283] and it explains the
popularity of GLMs, namely, GLMs can be solved efficiently by this algorithm.
Fisher’s scoring method/IRLS algorithm explore the updates for t ≥ 0 until
convergence

β̂
(t) �→ β̂

(t+1) =
(
X�W(β̂

(t)
)X
)−1

X�W(β̂
(t)

)
(
Xβ̂

(t) + R(Y , β̂
(t)

)
)

,

(5.12)

where all terms on the right-hand side are evaluated at algorithmic time t . If we
have n observations Y = (Y1, . . . , Yn)

� we can estimate at most n parameters.
Therefore, in our GLM we assume to have a regression parameter β ∈ R

q+1 of
dimension q + 1 ≤ n. Moreover, we require that the design matrix X has full rank
q + 1 ≤ n. Otherwise the regression parameter is not uniquely identifiable since
linear dependence in the columns of X allows us to reduce the dimension of the
parameter space to a smaller representation. This is also needed to calculate the
inverse matrix in (5.12). This motivates the following assumption.
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Assumption 5.3 Throughout, we assume that the design matrix X ∈
R

n×(q+1) has full rank q + 1 ≤ n.

Remarks 5.4 (Justification of Fisher’s Scoring Method/IRLS Algorithm)

• We give a short justification of Fisher’s scoring method/IRLS algorithm, for a
more detailed treatment we refer to Section 2.5 in McCullagh–Nelder [265] and
Section 2.2 in Fahrmeir–Tutz [123].

The Newton–Raphson algorithm provides a numerical scheme to find solu-
tions to the score equations. It requires to iterate for t ≥ 0

β̂
(t) �→ β̂

(t+1) = β̂
(t) + Î(β̂

(t)
)−1 s(β̂

(t)
,Y ),

where Î(β) = −∇2
β	Y (β) denotes the observed information matrix in β ∈ R

q+1.

The calculation of the inverse of the observed information matrix (Î(β̂
(t)

))−1 can
be time consuming and unstable because we need to calculate second derivatives
and the eigenvalues of the observed information matrix can be close to zero. A
stable scheme is obtained by replacing the observed information matrix Î(β)

by Fisher’s information matrix I(β) = Eβ [Î(β)] being positive definite under
Assumption 5.3; this provides a quasi-Newton method. Thus, for Fisher’s scoring
method we iterate for t ≥ 0

β̂
(t) �→ β̂

(t+1) = β̂
(t) + I(β̂

(t)
)−1 s(β̂

(t)
,Y ), (5.13)

and rewriting this provides us exactly with (5.12). The latter can also be
interpreted as an IRLS scheme where the response g(Yi) is replaced by an
adjusted linearized version Zi = g(μi) + ∂g(μi)

∂μi
(Yi − μi). This corresponds

to the last bracket in (5.12), and with corresponding weights.
• Under the canonical link choice, Fisher’s information matrix and the observed

information matrix coincide, i.e. I(β) = Î(β), and the Newton–Raphson
algorithm, Fisher’s scoring method and the IRLS algorithm are identical. This
can easily be seen from Proposition 5.1. We receive under the canonical link
choice

∇2
β	Y (β) = − Î(β) = −X�diag

(
vi

ϕ
V (μi)

)
1≤i≤n

X (5.14)

= −X�W(β)X = − I(β).



5.1 Generalized Linear Models and Log-Likelihoods 121

The full rank assumption q + 1 ≤ n on the design matrix X implies that
Fisher’s information matrix I(β) is positive definite. This in turn implies that
the log-likelihood function 	Y (β) is strictly concave, providing uniqueness of a
critical point (supposed it exists). This indicates that the canonical link has very
favorable properties for MLE. Examples 5.5 and 5.6 give two examples not using
the canonical link, the first one is a concave maximization problem, the second
one is not for p > 2.

Example 5.5 (Gamma Model with Log-Link) We study the gamma distribution as a
single-parameter EDF model, choosing the shape parameter α = 1/ϕ as the inverse
of the dispersion parameter, see Sect. 2.2.2. Cumulant function κ(θ) = − log(−θ)

gives us the canonical link θ = h(μ) = −1/μ. Moreover, we choose the log-link
η = g(μ) = log(μ) for the GLM. This gives a canonical parameter θ = − exp{−η}.
We receive the score

s(β,Y ) = ∇β	Y (β) =
n∑

i=1

vi

ϕ

[
Yi

μi

− 1

]
xi = X�diag

(
vi

ϕ

)
1≤i≤n

R(Y ,β).

Unlike in other examples with non-canonical links, we receive a favorable expres-
sion here because only one term in the square bracket depends on the regression
parameter β, or equivalently, the working weight matrix W does not dependent on
β. We calculate the negative Hessian (observed information matrix)

Î(β) = − ∇2
β	Y (β) = X�diag

(
vi

ϕ

Yi

μi

)
1≤i≤n

X.

In the gamma model all observations Yi are strictly positive, a.s., and under the
full rank assumption q + 1 ≤ n, the observed information matrix Î(β) is positive
definite, thus, we have a strictly concave log-likelihood function in the gamma case
with log-link. �

Example 5.6 (Tweedie’s Models with Log-Link) We study Tweedie’s models for
power variance parameters p > 1 as a single-parameter EDF model, see Sect. 2.2.3.
The cumulant function κp is given in Table 4.1. This gives us the canonical link θ =
hp(μ) = μ1−p/(1 − p) < 0 for μ > 0 and p > 1. Moreover, we choose the log-
link η = g(μ) = log(μ) for the GLM. This implies θ = exp{(1−p)η}/(1−p) < 0
for p > 1. We receive the score

s(β,Y ) = ∇β	Y (β) =
n∑

i=1

vi

ϕ

Yi − μi

μ
p−1
i

xi = X�diag

(
vi

ϕ

1

μ
p−2
i

)

1≤i≤n

R(Y ,β).
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We calculate the negative Hessian (observed information matrix) for μi > 0

Î(β) = − ∇2
β	Y (β) = X�diag

(
vi

ϕ

(p − 1)Yi − (p − 2)μi

μ
p−1
i

)

1≤i≤n

X.

This matrix is positive definite for p ∈ [1, 2], and for p > 2 it is not positive definite
because (p−1)Yi−(p−2)μi may have positive or negative values if we vary μi > 0
over its domain M. Thus, we do not have concavity of the optimization problem
under the log-link choice in Tweedie’s GLMs for power variance parameters p > 2.
This in particular applies to the inverse Gaussian GLM with log-link. �

5.1.5 Balance Property Under the Canonical Link Choice

Throughout this section we work under the canonical link choice g = h = (κ ′)−1.
This choice has very favorable statistical properties. We have already seen in
Remarks 5.4 that the derivation of the MLE of β becomes particularly easy under
the canonical link choice and the observed information matrix Î(β) coincides with
Fisher’s information matrix I(β) in this case, see (5.14).

For insurance pricing, canonical links have another very remarkable property,
namely, that the estimated model automatically fulfills the balance property and,
henceforth, is unbiased. This is particularly important in insurance pricing because
it tells us that the insurance prices (over the entire portfolio) are on the right level.
We have already met the balance property in Corollary 3.19.

Corollary 5.7 (Balance Property) Assume that Y has independent compo-
nents being modeled by a GLM under the canonical link choice g = h =
(κ ′)−1. Assume that the MLE of regression parameter β ∈ R

q+1 exists and

denote it by β̂
MLE

. We have balance property on portfolio level (for constant
dispersion ϕ)

n∑
i=1

E
β̂

MLE [viYi ] =
n∑

i=1

viκ
′〈β̂MLE

, xi〉 =
n∑

i=1

viYi .

Proof The first column of the design matrix X is identically equal to 1 representing
the intercept, see (5.4). The second part of Proposition 5.1 then provides for this first
column of X, we cancel the (constant) dispersion ϕ,

(1, . . . , 1) diag(v1, . . . , vn) κ ′(Xβ̂
MLE

) = (1, . . . , 1) diag(v1, . . . , vn) Y .

This proves the claim. ��
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Remark 5.8 We mention once more that this balance property is very strong and
useful, see also Remarks 3.20. In particular, the balance property holds, even though
the chosen GLM might be completely misspecified. Misspecification may include
an incorrect distributional model, not the right link function choice, or if we have
not pre-processed features appropriately, etc. Such misspecification will imply that
we have a poor model on an insurance policy level (observation level). However,
the total premium charged over the entire portfolio will be on the right level
(supposed that the structure of the portfolio does not change) because it matches
the observations, and henceforth, we have unbiasedness for the portfolio mean.

From the log-likelihood function (5.8) we see that under the canonical link choice
we consider the statistics S(Y ) = X�diag(vi/ϕ)1≤i≤nY ∈ R

q+1, and to prove the
balance property we have used the first component of this statistics. Considering all
components, S(Y ) is an unbiased estimator (decision rule) for

Eβ [S(Y )] = X�diag(vi/ϕ)1≤i≤nκ
′(Xβ) =

(
n∑

i=1

vi

ϕ
κ ′〈β, x i〉xi,j

)�

0≤j≤q

.

(5.15)

This unbiased estimator S(Y ) meets the Cramér–Rao information bound, hence
it is UMVU: taking the partial derivatives of the previous expression gives
∇βEβ [S(Y )] = I(β), the latter also being the multivariate Cramér–Rao
information bound for the unbiased decision rule S(Y ) for (5.15). Focusing on
the first component we have

Varβ

(
n∑

i=1

E
β̂

MLE [viYi]

)
= Varβ

(
n∑

i=1

viYi

)
=

n∑
i=1

ϕviV (μi) = ϕ2 (I(β))0,0,

(5.16)

where the component (0, 0) in the last expression is the top-left entry of Fisher’s
information matrix I(β) under the canonical link choice.

5.1.6 Asymptotic Normality

Formula (5.16) quantifies the uncertainty in the premium calculation of the insur-
ance policies if we use the MLE estimated model (under the canonical link
choice). That is, this quantifies the uncertainty in the dual mean parametrization

in terms of the resulting variance. We could also focus on the MLE β̂
MLE

itself
(for general link function g). In general, this MLE is not unbiased but we have
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consistency and asymptotic normality similar to Theorem 3.28. Under “certain
regularity conditions”1 we have for n large

β̂
MLE
n

(d)≈ N
(
β,In(β)−1

)
, (5.17)

where β̂
MLE
n is the MLE based on the observations Y n = (Y1, . . . , Yn)�, and In(β)

is Fisher’s information matrix of Y n, which scales linearly in n in the homogeneous
EF case, see Remarks 3.14, and in the homogeneous EDF case it scales as

∑n
i=1 vi ,

see (3.25).

5.1.7 Maximum Likelihood Estimation and Unit Deviances

From formula (5.7) we conclude that the MLE β̂
MLE

of β ∈ R
q+1 is found by the

solution of (subject to existence)

β̂
MLE = arg max

β

	Y (β) = arg max
β

n∑
i=1

vi

ϕ

[
Yih(μ(xi )) − κ (h(μ(xi )))

]
,

with μi = μ(xi ) = Eθ(xi ) [Y ] = g−1〈β, x i〉 under the link choice g. If we prefer
to work with an objective function that reflects the notion of a loss function, we
can work under the unit deviances d(Yi , μi) studied in Sect. 4.1.2. The MLE is then
obtained by, see (4.20)–(4.21),

β̂
MLE = arg max

β

	Y (β) = arg min
β

n∑
i=1

vi

ϕ
d(Yi, μi), (5.18)

the latter satisfying d(Yi , μi) ≥ 0 for all 1 ≤ i ≤ n, and being zero if and
only if Yi = μi , see Lemma 2.22. Thus, using the unit deviances we have a loss
function that is bounded below by zero, and we determine the regression parameter
β such that this loss is (in-sample) minimized. This can also be interpreted in a more
geometric way. Consider the (q + 1)-dimensional manifold M ⊂ R

n spanned by
the GLM function

β �→ μ(β) = g−1(Xβ) = (g−1〈β, x1〉, . . . , g−1〈β, xn〉)� ∈ R
n. (5.19)

1 The regularity conditions for asymptotic normality results will depend on the particular
regression problem studied, we refer to pages 43–44 in Fahrmeir–Tutz [123].
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Fig. 5.2 2-dimensional
manifold M ⊂ R

3 for
observation
Y = (Y1, Y2, Y3)

� ∈ R
3, the

straight line illustrates the
projection (w.r.t. the unit
deviance distances d) of Y

onto M which gives MLE

β̂
MLE

satisfying

μ(β̂
MLE

) ∈ M

i=1
i=2

i=3

Y

Minimization (5.18) then tries to find the point μ(β) in this manifold M ⊂ R
n

that minimizes simultaneously all unit deviances d(Yi , ·) w.r.t. the observation Y =
(Y1, . . . , Yn)

� ∈ R
n. Or in other words, the optimal parameter β is obtained by

“projecting” observation Y onto this manifold M, where “projection” is understood
as a simultaneous minimization of loss function

∑n
i=1

vi

ϕ
d(Yi , μi), see Fig. 5.2. In

the un-weighted Gaussian case, this corresponds to the usual orthogonal projection
as the next example shows, and in the non-Gaussian case it is understood in the KL
divergence minimization sense as displayed in formula (4.11).

Example 5.9 (Gaussian Case) Assume we have the Gaussian EDF case κ(θ) =
θ2/2 with canonical link g(μ) = h(μ) = μ. In this case, the manifold (5.19) is the
linear space spanned by the columns of the design matrix X

β �→ μ(β) = Xβ = (〈β, x1〉, . . . , 〈β, xn〉)� ∈ R
n.

If additionally we assume vi/ϕ = c > 0 for all 1 ≤ i ≤ n, the minimization
problem (5.18) reads as

β̂
MLE = arg min

β

n∑
i=1

vi

ϕ
d(Yi , μi) = arg min

β

‖Y − Xβ‖2
2,

where we have used that the unit deviances in the Gaussian case are given by the

square loss function, see Example 4.12. As a consequence, the MLE β̂
MLE

is found
by orthogonally projecting Y onto M = {Xβ| β ∈ R

q+1} ⊂ R
n, and this orthogonal

projection is given by Xβ̂
MLE ∈ M. �
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5.2 Actuarial Applications of Generalized Linear Models

The purpose of this section is to illustrate how the concept of GLMs is used in
actuarial modeling. We therefore explore the typical actuarial examples of claim
counts and claim size modeling.

5.2.1 Selection of a Generalized Linear Model

The selection of a predictive model within GLMs for solving an applied actuarial
problem requires the following choices.

Choice of the Member of the EDF Select a member of the EDF that fits the
modeling problem. In a first step, we should try to understand the properties of
the data Y before doing this selection, for instance, do we have count data, do we
have a classification problem, do we have continuous observations?

All members of the EDF are light-tailed because the moment generating function
exists around the origin, see Corollary 2.14, and the EDF is not suited to model
heavy-tailed data, for instance, having a regularly varying tail. Therefore, a datum
Y is sometimes first transformed before being modeled by a member of the EDF.
A popular transformation is the logarithm for positive observations. After this
transformation a member of the EDF can be chosen to model log(Y ). For instance,
if we choose the Gaussian distribution for log(Y ), then Y will be log-normally
distributed, or if we choose the exponential distribution for log(Y ), then Y will
be Pareto distributed, see Sect. 2.2.5. One can then model the transformed datum
with a GLM. Often this provides very accurate models, say, on the log scale for the
log-transformed data. There is one issue with this approach, namely, if a model
is unbiased on the transformed scale then it is typically biased on the original
observation scale; if the transformation is concave this easily follows from Jensen’s
inequality. The problematic part now is that the bias correction itself often has
systematic effects which means that the transformation (or the involved nuisance
parameters) should be modeled with a regression model, too, see Sect. 5.3.9. In
many cases this will not easily work, unfortunately. Therefore, if possible, clear
preference should be given to modeling the data on the original observation scale (if
unbiasedness is a central requirement).

Choice of Link Function From a statistical point of view we should choose the
canonical link g = h to connect the mean μ of the model to the linear predictor
η because this implies many favorable mathematical properties. However, as seen,
sometimes we have different needs. Practical reasons may require that we have a
model with additive or multiplicative effects, which favors the identity or the log-
link, respectively. Another requirement is that the resulting canonical parameter θ =
(h ◦ g−1)(η) needs to be within the effective domain �. If this effective domain is
bounded, for instance, if it covers the negative real line as for the gamma model,
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a (transformation of the) log-link might be more suitable than the canonical link
because g−1(·) = − exp(·) has a strictly negative range, see Example 5.5.

Choice of Features and Feature Engineering Assume we have selected the
member of the EDF and the link function g. This gives us the relationship between
the mean μ and the linear predictor η, see (5.5),

μ(x) = Eθ(x) [Y ] = g−1(η(x)) = g−1〈β, x〉. (5.20)

Thus, the features x ∈ X ⊂ R
q+1 need to be in the right functional form so that

they can appropriately describe the systematic effect via the function (5.20). We
distinguish the following feature types:

• Continuous real-valued feature components, examples are age of policyholder,
weight of car, body mass index, etc.

• Ordinal categorical feature components, examples are ratings like good-
medium-bad or A-B-C-D-E.

• Nominal categorical feature components, examples are vehicle brands, occupa-
tion of policyholders, provinces of living places of policyholders, etc. The values
that the categorical feature components can take are called levels.

• Binary feature components are special categorical features that only have two
levels, e.g. female-male, open-closed. Because binary variables often play a
distinguished role in modeling they are separated from categorical variables
which are typically assumed to have more than two levels.

All these components need to be brought into a suitable form so that they can be
used in a linear predictor η(x) = 〈β, x〉, see (5.20). This requires the consideration
of the following points (1) transformation of continuous components so that they can
describe the systematic effects in a linear form, (2) transformation of categorical
components to real-valued components, (3) interaction of components beyond an
additive structure in the linear predictor, and (4) the resulting design matrixX should
have full rank q + 1 ≤ n. We are going to describe these points (1)–(4) in the next
section.

5.2.2 Feature Engineering

Categorical Feature Components: Dummy Coding

Categorical variables need to be embedded into a Euclidean space. This embedding
needs to be done such that the resulting design matrix X has full rank q + 1 ≤ n.
There are many different ways to do so, and the particular choice depends on
the modeling purpose. The most popular way is dummy coding. We only describe
dummy coding here because it is sufficient for our purposes, but we mention that



128 5 Generalized Linear Models

Table 5.1 Dummy coding
example that maps the
K = 11 levels (colors) to the
unit vectors of the
10-dimensional Euclidean
space R

10 selecting the last
level a11 (brown color) as
reference level, and showing
the resulting dummy vectors
x�

j as row vectors

a1 = white 1 0 0 0 0 0 0 0 0 0

a2 = yellow 0 1 0 0 0 0 0 0 0 0

a3 = orange 0 0 1 0 0 0 0 0 0 0

a4 = red 0 0 0 1 0 0 0 0 0 0

a5 = magenta 0 0 0 0 1 0 0 0 0 0

a6 = violet 0 0 0 0 0 1 0 0 0 0

a7 = blue 0 0 0 0 0 0 1 0 0 0

a8 = cyan 0 0 0 0 0 0 0 1 0 0

a9 = green 0 0 0 0 0 0 0 0 1 0

a10 = beige 0 0 0 0 0 0 0 0 0 1

a11 = brown 0 0 0 0 0 0 0 0 0 0

there are also other codings like effects coding or Helmert’s contrast coding.2 The
choice of the coding will not influence the predictive model (if we work with
a full rank design matrix), but it may influence parameter selection, parameter
reduction and model interpretation. For instance, the choice of the coding is (more)
important in medical studies where one tries to understand the effects between
certain therapies.

Assume that the raw feature component x̃j is a categorical variable taking K

different levels {a1, . . . , aK }. For dummy coding we declare one level, say aK , to
be the reference level and all other levels are described relative to that reference
level. Formally, this can be described by an embedding map

x̃j �→ xj = (1{̃xj =a1}, . . . ,1{̃xj =aK−1})� ∈ R
K−1. (5.21)

This is closely related to the categorical distribution in Sect. 2.1.4. An explicit
example is given in Table 5.1.

Example 5.10 (Multiplicative Model) If we choose the log-link function η =
g(μ) = log(μ), we receive the regression function for the categorical example of
Table 5.1

x̃j �→ exp〈β, xj 〉 = exp{β0}
K−1∏
k=1

exp
{
βk1{̃xj=ak}

}
, (5.22)

including an intercept component. Thus, the base value exp{β0} is determined
by the reference level a11 = brown, and any color different from brown has
a deviation from the base value described by the multiplicative correction term
exp{βk1{̃xj =ak}}. �

2 There is an example of Helmert’s contrast coding in Remarks 2.7 of lecture notes [392], and for
more examples we refer to the UCLA statistical consulting website: https://stats.idre.ucla.edu/r/
library/r-library-contrast-coding-systems-for-categorical-variables/.
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Remarks 5.11

• Importantly, dummy coding leads to full rank design matrices X and, henceforth,
Assumption 5.3 is fulfilled.

• Dummy coding is different from one-hot encoding which is going to be
introduced in Sect. 7.3.1, below.

• Dummy coding needs some care if we have categorical feature components with
many levels, for instance, considering car brands and car models we can get
hundreds of levels. In that case we will have sparsity in the resulting design
matrix. This may cause computational issues, and, as the following example
will show, it may lead to high uncertainty in parameter estimation. In particular,
the columns of the design matrix X of very rare levels will be almost collinear
which implies that we do not receive very well-conditioned matrices in Fisher’s
scoring method (5.12). For this reason, it is recommended to merge levels
to bigger classes. In Sect. 7.3.1, below, we are going to present a different
treatment. Categorical variables are embedded into low-dimensional spaces, so
that proximity in these spaces has a reasonable meaning for the regression task
at hand.

Example 5.12 (Balance Property and Dummy Coding) A main argument for the
use of the canonical link function has been the fulfillment of the balance property,
see Corollary 5.7. If we have categorical feature components and if we apply dummy
coding to those, then the balance property is projected down to the individual levels
of that categorical variable. Assume that columns 2 to K of design matrix X are
used to model a raw categorical feature x̃1 with K levels according to (5.21). In that
case, columns 2 ≤ k ≤ K will indicate all observations Yi which belong to levels
ak−1. Analogously to the proof of Corollary 5.7, we receive (summation i runs over
the different instances/policies)

∑
i: x̃i,1=ak−1

E
β̂

MLE [viYi ] =
n∑

i=1

xi,kEβ̂
MLE [viYi] =

n∑
i=1

xi,kviYi =
∑

i: x̃i,1=ak−1

viYi .

(5.23)

Thus, we receive the balance property for all policies 1 ≤ i ≤ n that belong to level
ak−1.

If we have many levels, then it will happen that some levels have only very few
observations, and the above summation (5.23) only runs over very few insurance
policies with x̃i,1 = ak−1. Suppose additionally the volumes vi are small. This can
lead to considerable estimation uncertainty, because the estimated prices on the left-
hand side of (5.23) will be based too much on individual observations Yi having the
corresponding level, and we are not in the regime of a law of large numbers that
balances these observations.

Thus, this balance property from dummy coding is a natural property under the
canonical link choice. Actuarial pricing is very familiar with such a property. Early
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distribution-free approaches have postulated this property resulting in the method of
the total marginal sums, see Bailey and Jung [22, 206], where the balance property
is enforced for marginal sums of all categorical levels in parameter estimation.
However, if we have scarce levels in categorical variables, this approach needs
careful consideration. �

Binary Feature Components

Binary feature components do not need a treatment different from the categorical
ones, they are Bernoulli variables which can be encoded as 0 or 1. This is exactly
dummy coding for K = 2 levels.

Continuous Feature Components

Continuous feature components are already real-valued. Therefore, from the view-
point of ‘variable types’, the continuous feature components do not need any
pre-processing because they are already in the right format to be included in scalar
products.

Nevertheless, in many cases, also continuous feature components need feature
engineering because only in rare cases they directly fit the functional form (5.20).
We give an example. Consider car drivers that have different driving experience and
different driving skills. To explain experience and skills we typically choose the age
of driver as explanatory variable. Modeling the claim frequency as a function of the
age of driver, we often observe a U-shaped function, thus, a function that is non-
monotone in the age of driver variable. Since the link function g needs to be strictly
monotone, this regression problem cannot be modeled by (5.20), directly including
the age of driver as a feature because this leads to monotonicity of the regression
function in the age of driver variable.

Typically, in such situations, the continuous variable is discretized to categorical
classes. In the driver’s age example, we build age classes. These age classes
are then treated as categorical variables using dummy coding (5.21). We will
give examples below. These age classes should fulfill the requirement of being
sufficiently homogeneous in the sense that insurance policies that fall into the
same class should have a similar propensity to claims. This implies that we would
like to have many small homogeneous classes. However, the classes should be
sufficiently large, otherwise parameter estimation involves high uncertainty, see
also Example 5.12. Thus, there is a trade-off to sufficiently meet both of these two
requirements.

A disadvantage of this discretization approach is that neighboring age classes
will not be recognized by the regression function because, per se, dummy coding
is based on nominal variables not having any topology. This is also illustrated by
the fact, that all categorical levels (excluding the reference level) have, in view
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of embedding (5.21), the same mutual Euclidean distance. Therefore, in some
applications, one prefers a different approach by rather trying to find an appropriate
functional form. For instance, we can pre-process a strictly positive raw feature
component x̃l to a higher-dimensional functional form

x̃l �→ β1x̃l + β2x̃
2
l + β3x̃

3
l + β4 log(̃xl), (5.24)

with regression parameter (β1, . . . , β4)
�, i.e., we have a polynomial function of

degree 3 plus a logarithmic term in this choice. If one does not want to choose
a specific functional form, one often chooses natural cubic splines. This, together
with regularization, leads to the framework of generalized additive models (GAMs),
which is popular family of regression models besides GLMs; for literature on GAMs
we refer to Hastie–Tibshirani [182], Wood [384], Ohlsson–Johansson [290], Denuit
et al. [99] and Wüthrich–Buser [392]. In these notes we will not further pursue
GAMs.

Example 5.13 (Multiplicative Model) If we choose the log-link function η =
g(μ) = log(μ) we receive a multiplicative regression function

x �→ μ(x) = exp〈β, x〉 = exp{β0}
q∏

j=1

exp
{
βjxj

}
.

That is, all feature components xj enter the regression function in an exponential
form. In general insurance, one may have specific variables for which it is explicitly
known that they should enter the regression function as a power function. Having a
raw feature x̃l we can pre-process it as x̃l �→ xl = log(̃xl). This implies

μ(x) = exp〈β, x〉 = exp{β0} x̃
βl

l

q∏
j=1,j �=l

exp
{
βjxj

}
,

which gives a power term of order βl . The GLM estimates in this case the power
parameter that should be used for x̃l . If the power parameter is known, then one
can even include this component as an offset; offsets are discussed in Sect. 5.2.3,
below. �

Interactions

Naturally, GLMs only allow for an additive structure in the linear predictor. Similar
to continuous feature components, such an additive structure may not always be
suitable and one wants to model more complex interaction terms. Such interactions
need to be added manually by the modeler, for instance, if we have two raw feature
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components x̃l and x̃k, we may want to consider a functional form

(̃xl, x̃k) �→ β1x̃l + β2x̃k + β3x̃l x̃k + β4x̃
2
l x̃k,

with regression parameter (β1, . . . , β4)
�.

More generally, this manual feature engineering of adding interactions and of
specifying functional forms (5.24) can be understood as a new representation of raw
features. Representation learning in relation to deep learning is going to be discussed
in Sect. 7.1, and this discussion is also related to Mercer’s kernels.

5.2.3 Offsets

In many heterogeneous portfolio problems with observations Y = (Y1, . . . , Yn)�,
there are known prior differences between the individual risks Yi , for instance, the
time exposure varies between the different policies i. Such known prior differences
can be integrated into the predictors, and this integration typically does not involve
any additional model parameters. A simple way is to use an offset (constant) in
the linear predictor of a GLM. Assume that each observation Yi is equipped with a
feature xi ∈ X and a known offset oi ∈ R such that the linear predictor ηi takes the
form

(xi , oi) �→ g(μi) = ηi = η(xi , oi) = oi + 〈β, xi〉, (5.25)

for all 1 ≤ i ≤ n. An offset oi does not change anything from a structural viewpoint,
in fact, it could be integrated into the feature xi with a regression parameter that is
identically equal to 1.

Offsets are frequently used in Poisson models with the (canonical) log-link
choice to model multiplicative time exposures in claim frequency modeling. Under
the log-link choice we receive from (5.25) the following mean function

(xi , oi) �→ μ(xi , oi ) = exp{η(xi , oi)} = exp{oi + 〈β, xi〉} = exp{oi} exp〈β, xi〉.

In this version, the offset oi provides us with an exposure exp{oi} that acts
multiplicatively on the regression function. If wi = exp{oi} measures time, then
wi is a so-called pro-rata temporis (proportional in time) exposure.

Remark 5.14 (Boosting) A popular machine learning technique in statistical mod-
eling is boosting. Boosting tries to step-wise adaptively improve a regression
model. Offsets (5.25) are a simple way of constructing boosted models. Assume
we have constructed a predictive model using any statistical model, and denote the
resulting estimated means of Yi by μ̂i

(0). The idea of boosting is that we select
another statistical model and we try to see whether this second model can still find
systematic structure in the data which has not been found by the first model. In view
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of (5.25), we include the first model into the offset and we build a second model
around this offset, that is, we may explore a GLM

μ̂i
(1) = g−1

(
g(μ̂i

(0)) + 〈β, x i〉
)

.

If the first model is perfect we come up with a regression parameter β = 0,
otherwise the linear predictor 〈β, x i〉 of the second model starts to compensate
for weaknesses in μ̂i

(0). Of course, this boosting procedure can then be iterated
and one should stop boosting before the resulting model starts to over-fit to the
data. Typically, this approach is applied to regression trees instead of GLMs, see
Ferrario–Hämmerli [125], Section 7.4 in Wüthrich–Buser [392], Lee–Lin [241] and
Denuit et al. [100].

5.2.4 Lab: Poisson GLM for Car Insurance Frequencies

We present a first GLM example. This example is based on French motor third
party liability (MTPL) insurance claim counts data. The data is described in detail
in Chap. 13.1; an excerpt of the available MTPL data is given in Listing 13.2. For the
moment we only consider claim frequency modeling. We use the following data: Ni

describes the number of claims, vi ∈ (0, 1] describes the duration of the insurance
policy, and x̃i describes the available raw feature information of insurance policy i,
see Listing 13.2.

We are going to model the claim counts Ni with a Poisson GLM using the
canonical link function of the Poisson model. In the Poisson approach there are two
different ways to account for the duration of the insurance policy. Either we model
Yi = Ni/vi with the Poisson model of the EDF, see Sect. 2.2.2 and Remarks 2.13
(reproductive form), or we directly model Ni with the Poisson distribution from the
EF and treat the log-duration as an offset variable oi = log vi . In the first approach
we have for the log-link choice g(·) = h(·) = log(·) and dispersion ϕ = 1

Yi = Ni/vi ∼ f (yi; θi, vi) = exp

{
yi〈β, xi〉 − e〈β,xi 〉

1/vi

+ a(yi; vi)

}
, (5.26)

where xi ∈ X is the suitably pre-processed feature information of insurance policy
i, and with canonical parameter θi = η(xi ) = 〈β, xi〉. In the second approach we
include the log-duration as offset into the regression function and model Ni with
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the Poisson distribution from the EF. Using notation (2.2) this gives us

Ni ∼ f (ni; θi) = exp
{
ni (log vi + 〈β, xi〉) − elog vi+〈β,xi 〉 + a(ni)

}
(5.27)

= exp

{
ni

vi
〈β, xi〉 − e〈β,xi〉

1/vi

+ a(ni) + ni log vi

}
,

with canonical parameter θi = η(xi , oi) = oi + 〈β, xi〉 = log vi + 〈β, xi〉 for
observation ni = viyi . That is, we receive the same model in both cases (5.26)
and (5.27) under the canonical log-link choice for the Poisson GLM.

Finally, we make the assumption that all observations Ni are independent. There
remains the pre-processing of the raw features x̃i to features xi so that they can be
used in a sensible way in the linear predictors ηi = η(xi , oi) = oi + 〈β, xi〉.

Feature Engineering

Categorical and Binary Variables: Dummy Coding

For categorical and binary variables we use dummy coding as described in
Sect. 5.2.2. We have two categorical variables VehBrand and Region, as well
as a binary variable VehGas, see Listing 13.2. We choose the first level as
reference level, and the remaining levels are characterized by (K − 1)-dimensional
embeddings (5.21). This provides us with K − 1 = 10 parameters for VehBrand,
K − 1 = 21 parameters for Region and K − 1 = 1 parameter for VehGas.

Figure 5.3 shows the empirical marginal frequencies λ = ∑
Ni/

∑
vi on all

levels of the categorical feature components VehBrand, Region and VehGas.
Moreover, the blue areas (in the colored version) give confidence bounds of

±2
√

λ/
∑

vi (under a Poisson assumption), see Example 3.22. The more narrow
these confidence bounds, the bigger the volumes

∑
vi behind these empirical

marginal estimates.
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Fig. 5.3 Empirical marginal frequencies on each level of the categorical variables (lhs)
VehBrand, (middle) Region, and (rhs) VehGas
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Continuous Variables

We consider feature engineering of the continuous variables Area, VehPower,
VehAge, DrivAge, BonusMalus and log-Density (Density on the log
scale); note that we map the Area codes (A, . . . , F ) �→ (1, . . . , 6). Some of these
variables do not show any monotonicity nor log-linearity in the empirical marginal
frequency plots, see Fig. 5.4.

These non-monotonicity and non-log-linearity suggest in a first step to build
homogeneous classes for these feature components and use dummy coding for the
resulting classes. We make the following choices here (motivated by the marginal
graphs of Fig. 5.4):

• Area: continuous log-linear feature component for {A, . . . , F} �→ {1, . . . , 6};
• VehPower: discretize into categorical classes where we merge vehicle power

groups bigger and equal to 9 (totally K = 6 levels);
• VehAge: we build categorical classes [0, 6), [6, 13), [13,∞) (totally K = 3

levels);
• DrivAge: we build categorical classes [18, 21), [21, 26), [26, 31), [31, 41),

[41, 51), [51, 71), [71,∞) (totally K = 7 levels);
• BonusMalus: continuous log-linear feature component (we censor at 150);
• Density: log-density is chosen as continuous log-linear feature component.

This encoding is slightly different from Noll et al. [287] because of different data
cleaning. The discretization has been chosen quite ad-hoc by just looking at the
empirical plots; as illustrated in Section 6.1.6 of Wüthrich–Buser [392] regression
trees may provide an algorithmic way of choosing homogeneous classes of sufficient
volume. This provides us with a feature space (the initial component stands for the
intercept xi,0 = 1 and the order of the terms is the same as in Listing 13.2)

X ⊂ {1} × R × {0, 1}5 × {0, 1}2 × {0, 1}6 × R × {0, 1}10 × {0, 1} × R × {0, 1}21,

of dimension q +1 = 1+1+5+2+6+1+10+1+1+21 = 49. The R code [307]
for this pre-processing of continuous variables is shown in Listing 5.1, categorical
variables do not need any special treatment because variables of factor type are
consider internally in R by dummy coding; we call this model Poisson GLM1.

Choice of Learning and Test Samples

To measure predictive performance we follow the generalization approach as
proposed in Chap. 4. This requires that we partition our entire data into learning
sample L and test sample T , see Fig. 4.1. Model selection and model fitting will
be done on the learning sample L, only, and the test sample T is used to analyze
the generalization of the fitted models to unseen data. We partition the data at
random (non-stratified) in a ratio of 9 : 1, and we are going to hold on to the same
partitioning throughout this monograph whenever we study this example. The R
code used is given in Listing 5.2.



136 5 Generalized Linear Models

0.000.050.100.150.20

ob
se

rv
ed

 fr
eq

ue
nc

y 
pe

r a
re

a 
co

de
 g

ro
up

s

ar
ea

 c
od

e 
gr

ou
ps

frequency

A
B

C
D

E
F

0.000.050.100.150.20

ob
se

rv
ed

 fr
eq

ue
nc

y 
pe

r v
eh

ic
le

 p
ow

er
 g

ro
up

s

ve
hi

cl
e 

po
w

er
 g

ro
up

s

frequency

4
5

6
7

8
9

10
11

12
13

14
15

0.000.050.100.150.20

ob
se

rv
ed

 fr
eq

ue
nc

y 
pe

r v
eh

ic
le

 a
ge

 g
ro

up
s

ve
hi

cl
e 

ag
e 

gr
ou

ps

frequency

0
1

2
3

4
5

6
7

8
9

11
13

15
17

19

0.00.10.20.30.4

ob
se

rv
ed

 fr
eq

ue
nc

y 
pe

r d
riv

er
's

 a
ge

 g
ro

up
s

dr
iv

er
's

 a
ge

 g
ro

up
s

frequency

18
23

28
33

38
43

48
53

58
63

68
73

78
83

88

0.00.10.20.30.40.50.6ob
se

rv
ed

 fr
eq

ue
nc

y 
pe

r b
on

us
−m

al
us

 le
ve

l g
ro

up
s

bo
nu

s−
m

al
us

 le
ve

l g
ro

up
s

frequency

50
60

70
80

90
10

0
11

0
12

0
13

0
14

0
15

0

0.000.050.100.150.20ob
se

rv
ed

 fr
eq

ue
nc

y 
pe

r d
en

si
ty

 (l
og

−s
ca

le
) g

ro
up

s

de
ns

ity
 (

lo
g−

sc
al

e)
 g

ro
up

s

frequency

0
1

2
3

4
5

6
7

8
9

10

F
ig

.5
.4

E
m

pi
ri

ca
l

m
ar

gi
na

l
fr

eq
ue

nc
ie

s
of

th
e

co
nt

in
uo

us
va

ri
ab

le
s:

to
p

ro
w

(l
hs

)
A
r
e
a

,
(m

id
dl

e)
V
e
h
P
o
w
e
r

,
(r

hs
)
V
e
h
A
g
e

,
an

d
bo

tt
om

ro
w

(l
hs

)
D
r
i
v
A
g
e

,
(m

id
dl

e)
B
o
n
u
s
M
a
l
u
s

,
(r

hs
)

lo
g-
D
e
n
s
i
t
y

,
i.e

.,
D
e
n
s
i
t
y

on
th

e
lo

g
sc

al
e;

no
te

th
at

D
r
i
v
A
g
e

an
d
B
o
n
u
s
M
a
l
u
s

ha
ve

a
di

ff
er

en
t
y

-s
ca

le
in

th
es

e
pl

ot
s



5.2 Actuarial Applications of Generalized Linear Models 137

Listing 5.1 Pre-processing of features for model Poisson GLM1 in R

1 dat$AreaGLM <- as.integer(dat$Area)
2 dat$VehPowerGLM <- as.factor(pmin(dat$VehPower, 9))
3 dat$VehAgeGLM <- as.factor(cut(dat$VehAge, c(0,5,12,101),
4 labels = c("0-5","6-12","12+"),
5 include.lowest = TRUE))
6 dat$DrivAgeGLM <- as.factor(cut(dat$DrivAge, c(18,20,25,30,40,50,70,101),
7 labels = c("18-20","21-25","26-30","31-40","41-50",
8 "51-70","71+"), include.lowest = TRUE))
9 dat$BonusMalusGLM <- pmin(dat$BonusMalus, 150)

10 dat$DensityGLM <- log(dat$Density)

Table 5.2 shows the summary of the chosen partition into learning and test
samples

L = {
(Yi = Ni/vi, xi , vi ) : i = 1, . . . , n = 610′206

}
,

and

T =
{
(Y

†
t = N

†
t /v

†
t , x

†
t , v

†
t ) : t = 1, . . . , T = 67′801

}
.

In contrast to Sect. 4.2 we also include feature information and exposure information
to L and T .

Listing 5.2 Partition of the data to learning sample L and test sample T

1 RNGversion("3.5.0") # we use R version 3.5.0 for this partition
2 set.seed(500)
3 ll <- sample(c(1:nrow(dat)), round(0.9*nrow(dat)), replace = FALSE)
4 learn <- dat[ll,]
5 test <- dat[-ll,]

Table 5.2 Choice of learning data set L and test data set T ; the empirical frequency on both
data sets is similar (last column), and the split of the policies w.r.t. the numbers of claims is also
rather similar

Numbers of observed claims Empirical

0 1 2 3 4 5 frequency

Learning sample L 96.32% 3.47% 0.19% 0.01% 0.0006% 0.0002% 7.36%

Test sample T 96.31% 3.50% 0.18% 0.01% 0.0015% 0.0015% 7.35%
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Maximum-Likelihood Estimation and Results

The remaining step is to perform MLE to estimate regression parameter β ∈ R
q+1.

This can be done either by maximizing the Poisson log-likelihood function or by
minimizing the Poisson deviance loss. In view of (4.9) and Example 4.27, the
Poisson deviance loss on the learning data L is given by

β �→ D(L,β) = 2

n

n∑
i=1

vi

(
μ(xi ) − Yi − Yi log

(
μ(xi )

Yi

))
≥ 0, (5.28)

where the terms under the summation are set equal to viμ(xi ) for Yi = 0, see (4.8),
and we have GLM regression function

x �→ μ(x) = μβ(x) = exp〈β, x〉.

That is, we work under the canonical link with the canonical parameter being equal
to the linear predictor. The MLE of β is found by minimizing (5.28). This is done
with Fisher’s scoring method. In order to receive a non-degenerate solution we need
to ensure that we have sufficiently many claims Yi > 0, otherwise it might happen
that the MLE provides a (degenerate) solution at the boundary of the effective

domain �. We denote the MLE by β̂
MLE
L = β̂

MLE
, because it has been estimated

on the learning data L, only. This gives us estimated regression function

x �→ μ̂(x) = μ
β̂

MLE
L

(x) = exp〈β̂MLE
L , x〉.

We emphasize that we only use the learning data L for this model fitting. In view of
Definition 4.24 we receive in-sample and out-of-sample Poisson deviance losses

D(L, β̂
MLE
L ) = 2

n

n∑
i=1

vi

(
μ̂(xi ) − Yi − Yi log

(
μ̂(xi )

Yi

))
≥ 0,

D(T , β̂
MLE
L ) = 2

T

T∑
t=1

v
†
t

(
μ̂(x

†
t ) − Y

†
t − Y

†
t log

(
μ̂(x

†
t )

Y
†
t

))
≥ 0.

We implement this GLM on the data of Listing 5.1 (and including the categorical
features) in R using the function glm [307], a short overview of the results is
presented in Listing 5.3. This overview presents the regression model implemented,

an excerpt of the parameter estimates β̂
MLE
L , standard errors which are received

from the square-rooted diagonal entries of the inverse of the estimated Fisher’s

information matrix In(β̂
MLE
L ), see (5.17); the remaining columns will be described

in Sect. 5.3.2 on the Wald test (5.33). The bottom line of the output says that Fisher’s
scoring algorithm has converged in 6 iterations, it gives the in-sample deviance loss

nD(L, β̂
MLE
L ) called Residual deviance (not being scaled by the number of
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Listing 5.3 Results in model Poisson GLM1 using the R command glm

1 Call:
2 glm(formula = ClaimNb ~ VehPowerGLM + VehAgeGLM + DrivAgeGLM +
3 BonusMalusGLM + VehBrand + VehGas + DensityGLM + Region +
4 AreaGLM, family = poisson(), data = learn, offset = log(Exposure))
5
6 Deviance Residuals:
7 Min 1Q Median 3Q Max
8 -1.4728 -0.3256 -0.2456 -0.1383 7.7971
9

10 Coefficients:
11 Estimate Std. Error z value Pr(>!z!)
12 (Intercept) -4.8175439 0.0579296 -83.162 < 2e-16 ***
13 VehPowerGLM5 0.0604293 0.0229841 2.629 0.008559 **
14 VehPowerGLM6 0.0868252 0.0225509 3.850 0.000118 ***
15 . . .
16 . . .
17 RegionR93 0.1388160 0.0294901 4.707 2.51e-06 ***
18 RegionR94 0.1918538 0.0938250 2.045 0.040874 *
19 AreaGLM 0.0407973 0.0200818 2.032 0.042199 *
20 ---
21 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
22
23 (Dispersion parameter for poisson family taken to be 1)
24
25 Null deviance: 153852 on 610205 degrees of freedom
26 Residual deviance: 147069 on 610157 degrees of freedom
27 AIC: 192818
28
29 Number of Fisher Scoring iterations: 6

Table 5.3 Run times, number of parameters, AICs, in-sample and out-of-sample deviance losses,
tenfold cross-validation losses with empirical standard deviation in brackets, see also (4.36), (units
are in 10−2) and the in-sample average frequency of the null model (Poisson intercept model, see
Example 4.27) and of model Poisson GLM1

Run # AIC In-sample Out-of-sample Tenfold CV Aver.

time Param. loss on L loss on T loss D̂CV freq.

Poisson null – 1 199’506 25.213 25.445 25.213(0.234) 7.36%

Poisson GLM1 16 s 49 192’818 24.101 24.146 24.121(0.245) 7.36%

observations), as well as Akaike’s Information Criterion (AIC), see Sect. 4.2.3 for
AIC. Note that we have implemented Poisson version (5.27) with the exposures
entering the offset, see lines 2–4 of Listing 5.3; this is important for understanding
AIC being calculated on the (unscaled) claim counts Ni .

Table 5.3 summarizes the results of model Poisson GLM1 and it compares the
figures to the null model (only having an intercept β0); the null model has already
been introduced in Example 4.27. We present the run time needed to fit the model,3

the number of regression parameters q + 1 in β ∈ R
q+1, AIC, in-sample and

out-of-sample deviance losses, as well as tenfold cross-validation losses on the

3 All run times are measured on a personal laptop Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz
1.99 GHz with 16 GB RAM, and they only correspond to fitting the model (or the corresponding
step) once, i.e., they do not account for multiple runs, for instance, for K-fold cross-validation.
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learning data L. For tenfold cross-validation we always use the same (non-stratified)
partition of L (in all examples in this monograph), and in bracket we show the
empirical standard deviation received by (4.36). Tenfold cross-validation would not
be necessary in this case because we have test data T on which we can evaluate the
out-of-sample deviance GL. We present both figures to back-test whether tenfold
cross-validation works properly in our example. We observe that the out-of-sample

deviance losses D(T , β̂
MLE
L ) are within one empirical standard deviation of the

tenfold cross-validation losses D̂CV, which supports this methodology of model
comparison.

From Table 5.3 we conclude that we should prefer model Poisson GLM1 over
the null model, this decision is supported by a smaller AIC, a smaller out-of-sample

deviance loss D(T , β̂
MLE
L ) as well as a smaller cross-validation loss D̂CV. The last

column of Table 5.3 confirms that the estimated model meets the balance property
(we work with the canonical link here). Note that this balance property should be
fulfilled for two reasons. Firstly, we would like to have the overall portfolio price on
the right level, and secondly, deviance losses should only be compared on the same
overall frequency, see Example 4.10.

Before we continue to introduce more models to challenge model Poisson
GLM1, we are going to discuss statistical tools for model evaluation. Of course,
we would like to know whether model Poisson GLM1 is a good model for this data
or whether it is just the better model of two bad options.

Remark 5.15 (Prior and Posterior Information) Pricing literature distinguishes
between prior feature information and posterior feature information, see Verschuren
[372]. Prior feature information is available at the inception of the (new) insurance
contract before having any claims history. This includes, for instance, age of driver,
vehicle brand, etc. For policy renewals, past claims history is available and prices
of policy renewals can also be based on such posterior information. Past claims
history has led to the development of so-called bonus-malus systems (BMS) which
often are in the form of multiplicative factors to the base premium to reward and
punish good and bad past experience, respectively. One stream of literature studies
optimal designs of BMS, we refer to Loimaranta [255], De Pril [91], Lemaire [245],
Denuit et al. [102], Brouhns et al. [57] Pinquet [304], Pinquet et al. [305], Tzougas
et al. [360] or Ágoston–Gyetvai [4]. Another stream of literature studies how one
can optimally extract predictive information from an existing BMS, see Boucher–
Inoussa [46], Boucher–Pigeon [47] and Verschuren [372].

The latter is basically what we also do in the above example: note that we include
the variable BonusMalus into the feature information and, thus, we use past
claims information to predict future claims. For new policies, the bonus-malus level
is at 100%, and our information does not allow to clearly distinguish between new
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policies and policy renewals for drivers that have posterior information reflected by
a bonus-malus level of 100%. Since young drivers are more likely new customers we
expect interactions between the driver’s age variable and the bonus-malus level, this
intuition is supported by Fig. 13.12 (lhs). In order to improve our model, we would
require more detailed information about past claims history. Remark that we do
not strictly distinguish between prior and posterior information, here. If we go over
to a time-series consideration, where more and more claims experience becomes
available of an individual driver, we should clearly distinguish the different sets of
information, because otherwise it may happen that in prior and posterior pricing
factors we correct twice for the same factor; an interesting paper is Corradin et
al. [82].

We also mention that a new source of posterior information is emerging through
the collection of telematics car driving data. Telematics car driving data leads to a
completely new way of posterior information rate making (experience rating), we
refer to Ayuso et al. [17–19], Boucher et al. [42], Lemaire et al. [246] and Denuit
et al. [98]. We mention the papers of Gao et al. [152, 154] and Meng et al. [271]
who directly extract posterior feature information from telematics car driving data
in order to improve rate making. This approach combines a Poisson GLM with a
network extractor for the telematics car driving data.

5.3 Model Validation

One of the purposes of Chap. 4 has been to describe measures to analyze how well
a fitted model generalizes to unseen data. In a proper generalization analysis this
requires learning data L for in-sample model fitting and a test sample T for an
out-of-sample generalization analysis. In many cases, one is not in the comfortable
situation of having a test sample. In such situations one can use AIC that tries to
correct the in-sample figure for model complexity or, alternatively, K-fold cross-
validation as used in Table 5.3.

The purpose of this section is to introduce diagnostic tools for fitted models; these
are often based on unit deviances d(Yi , μi), which play the role of squared residuals
in classical linear regression. Moreover, we discuss parameter and model selection,
for instance, by step-wise backward elimination or forward selection using the
analysis of variance (ANOVA) or the likelihood ratio test (LRT).

5.3.1 Residuals and Dispersion

Within the EDF we distinguish two different types of residuals. The first type of
residuals are based on the unit deviances d(Yi , μi) studied in (4.7). The deviance
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residuals are given by

rD
i = sign(Yi − μi)

√
vi

ϕ
d (Yi, μi).

Secondly, Pearson’s residuals are given by, see also (4.12),

rP
i =

√
vi

ϕ

Yi − μi√
V (μi)

.

In the Gaussian case the two residuals coincide. This indicates that Pearson’s
residuals are most appropriate in the Gaussian case because they respect the
distributional properties in that case. For other distributions, Pearson’s residuals
can be markedly skewed, as stated in Section 2.4.2 of McCullagh–Nelder [265],
and therefore may fail to have properties similar to Gaussian residuals. An other
issue occurs in Pearson’s residuals when the denominator involves an estimated
standard deviation

√
V (μ̂i), for instance, if we work in a small frequency Poisson

problem. Estimation uncertainty in small denominators of Pearson’s residuals may
substantially distort the estimated residuals. For this reason, we typically work with
(the more robust) deviance residuals; this is related to the discussion in Chap. 4 on
MSEPs versus expected deviance GLs, see Remarks 4.6.

The squared residuals provide unit deviance and weighted square loss, respec-
tively,

(rD
i )2 = vi

ϕ
d (Yi , μi) and (rP

i )2 = vi

ϕ

(Yi − μi)
2

V (μi)
,

the latter corresponds to Pearson’s χ2-statistic, see (4.12).

Example 5.16 (Residuals in the Poisson Case) In the Poisson case, Pearson’s χ2-
statistic is for vi = ϕ = 1 given by

(rP
i )2 = (Yi − μi)

2

μi

,

because we have variance function V (μ) = μ. A second order Taylor expansion
around Yi on the scale μ

1/3
i (for μi) provides approximation to the unit deviances in

the Poisson case, see formula (6.4) and Figure 6.2 in McCullagh–Nelder [265],

d (Yi , μi) ≈ 9Y
1/3
i

(
Y

1/3
i − μ

1/3
i

)2
. (5.29)

This emphasizes the different behaviors around the observation Yi of the two types
of residuals in the Poisson case. The scale μ

1/3
i has been motivated in McCullagh–
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Fig. 5.5 Log-likelihoods 	Y (μ) in Y = 1 as a function of μ plotted against (lhs) μ1/3 in the
Poisson case, (middle) μ−1/3 in the gamma case with shape parameter α = 1, and (rhs) μ−1 in the
inverse Gaussian case with α = 1

Nelder [265] by providing a symmetric behavior around the mode in Yi = 1 of the
resulting log-likelihood function, see Fig. 5.5 (lhs).

�

The explicit calculation of the residuals requires knowledge of the dispersion
parameter ϕ > 0. In the Poisson Example 5.16 this dispersion parameter has been
set equal to 1 because the Poisson model does neither allow for under- nor for
over-dispersion. Typically, this is not the case for other models, and this requires
determination of the dispersion parameter if we want to simulate from these other
models. So far, this dispersion parameter has been treated as a nuisance parameter
and, in fact, it canceled in MLE (because it was assumed to be constant), see
Proposition 5.1.

If we need to estimate the dispersion parameter, we can either do this within
MLE, see Remarks 5.2, or we can use Pearson’s or the deviance estimates,
respectively,

ϕ̂P = 1

n − (q + 1)

n∑
i=1

(Yi − μ̂i)
2

V (μ̂i)/vi

and ϕ̂D = 1

n − (q + 1)

n∑
i=1

vid (Yi, μ̂i ) ,

(5.30)

where μ̂i = μ̂(xi ) are the MLE estimated means involving q + 1 estimated

parameters β̂
MLE ∈ R

q+1. We briefly motivate these choices. Firstly, Pearson’s
estimate ϕ̂P is consistent for ϕ. Note that in the Gaussian case this is just the standard
estimate for the variance parameter. Justification of the deviance dispersion estimate
is more challenging. Consider the unscaled deviance with μ̂n = (μ̂1, . . . , μ̂n)

�,
see (4.9),

nϕD(Y n, μ̂n) =
n∑

i=1

vid (Yi , μ̂i) .
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Fig. 5.6 Expected unit deviance vEμ[d(Y, μ)] in the Poisson case as a function of E[N] =
E[vY ] = vμ; the two plots only differ in the scale on the x-axis

This statistic is under certain assumptions asymptotically ϕχ2
n−(q+1)-distributed,

where χ2
n−(q+1) denotes a χ2-distribution with n−(q+1) degrees of freedom. Thus,

this approximation gives us an expected value of ϕ(n−(q+1)). This exactly justifies
the deviance dispersion estimate (5.30) in these cases. However, as stated in the last
paragraph of Section 2.3 of McCullagh–Nelder [265], often a χ2-approximation is
not suitable even as n → ∞. We give an example.

Example 5.17 (Poisson Unit Deviances) The deviance statistics in the Poisson
model with means μn = (μ1, . . . , μn)

� is given by

D(Y n,μn) = 1

n

n∑
i=1

vid (Yi , μi) = 1

n

n∑
i=1

2vi

(
μi − Yi − Yi log

(
μi

Yi

))
,

note that in the Poisson model we have (by definition) ϕ = 1. We evaluate the
expected value of this deviance statistics. It is given by

Eμn

[
D(Y n,μn)

] = 1

n

n∑
i=1

2viEμi

[
μi − Yi − Yi log

(
μi

Yi

)]
= 1

n

n∑
i=1

2Eμi

[
Ni log

(
Ni

viμi

)]
,

with Ni
ind.∼ Poi(viμi).

In Fig. 5.6 we plot the expected unit deviance vμ �→ vEμ[d(Y, μ)] in the Poisson
model. In our example of Table 5.3, we have Eμ[vY ] = vμ ≈ 3.89%, which results
in an expected unit deviance of vEμ[d(Y, μ)] ≈ 25.52·10−2 < 1. This is in line with
the losses in Table 5.3. Thus, the expected deviance nEμn

[
D(Y n,μn)

] ≈ n/4 < n.
Therefore it is substantially smaller than n. But this implies that nD(Y n,μn) cannot
be asymptotically χ2

n−(q+1)-distributed because the latter has an expected of value
n−(q+1) ≈ n for n → ∞. In fact, the deviance dispersion estimate is not consistent
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in this example, and for a consistent estimate one should rely on Pearson’s deviance
estimate.

In order to have an asymptotic χ2-distribution we need to have large volumes
v because then a saddlepoint approximation holds that allows to approximate the
(scaled) unit deviances by χ2-distributions, see Sect. 5.5.2, below. �

5.3.2 Hypothesis Testing

Consider a sub-vector βr ∈ R
r of the GLM parameter β ∈ R

q+1, for r < q + 1.
We would like to understand if we can set this sub-vector βr = 0, and at the same
time we do not lose any generalization power. Thus, we investigate whether there is
a simpler nested GLM that provides a similar prediction accuracy. If this is the case,
preference should be given to the simpler model because the bigger model seems
over-parametrized (has redundancy, is not parsimonious). This section is based on
Section 2.2.2 of Fahrmeir–Tutz [123].

Geometric Interpretation We begin by giving a geometric interpretation. We start
from the full model being expressed by the design matrixX ∈ R

n×(q+1). This design
matrix together with the link function g generates a (q + 1)-dimensional manifold
M ⊂ R

n given by, see (5.19) and Fig. 5.2,

M =
{
μ = g−1(Xβ) = (g−1〈β, x1〉, . . . , g−1〈β, xn〉)� ∈ R

n
∣∣∣ β ∈ R

q+1
}

⊂ R
n.

The MLE β̂
MLE

is determined by the point in M that minimizes the distance to Y ,
where distance between Y and M is measured component-wise by vi

ϕ
d(Yi , μi) with

μ ∈ M, i.e., w.r.t. the KL divergence.
Assume, now, that we want to drop the components βr in β, i.e., we want to drop

these columns from the design matrix resulting in a smaller design matrix Xr ∈
R

n×(q+1−r). This generates a (q + 1 − r)-dimensional nested manifold Mr ⊂ M
described by

Mr =
{
μ = g−1(Xrβ) ∈ R

n
∣∣∣ β ∈ R

q+1−r
}

⊂ M.

If the distance of Y to Mr and M is roughly the same, we should go for
the smaller model. In the Gaussian case of Example 5.9 this can be explained
by the Pythagorean theorem applied to successive orthogonal projections. In the
general unit deviance case, this has to be studied in terms of information geometry
considering the KL divergence, see Sect. 2.3.
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Likelihood Ratio Test (LRT) We consider the testing problem of the null hypoth-
esis H0 against the alternative hypothesis H1

H0 : βr = 0 against H1 : βr �= 0. (5.31)

Denote by β̂
MLE

the MLE under the full model and by β̂
MLE
(−r) the MLE under the

null hypothesis model. Define the (log-)likelihood ratio test (LRT) statistics

� = −2
(
	Y (β̂

MLE
(−r) ) − 	Y (β̂

MLE
)
)

≥ 0.

The inequality holds because the null hypothesis model is nested in the full model,
henceforth, the latter needs to have a bigger log-likelihood value in the MLE. If
the LRT statistics � is large, the null hypothesis should be rejected because the
reduced model is not competitive compared to the full model. More mathematically,
under similar conditions as for the asymptotic normality results of the MLE of
β in (5.17), we have that under the null hypothesis H0 the LRT statistics � is
asymptotically χ2-distributed with r degrees of freedom. Therefore, we should
reject the null hypothesis in favor of the full model if the resulting p-value of �

under the χ2
r -distribution is too small. These results remain true if the unknown

dispersion parameter ϕ is replaced by a consistent estimator ϕ̂, e.g., Pearson’s
dispersion estimate ϕ̂P (from the bigger model).

The LRT statistics � may not be properly defined in over-dispersed situations
where the distributional assumptions are not fully specified, for instance, in an over-
dispersed Poisson model. In such situations, one usually divides the log-likelihood
(of the Poisson model) by the estimated over-dispersion and then uses the resulting
scaled LRT statistics � as an approximation to the unspecified model.

Wald Test Alternatively, we can use the Wald statistics. The Wald statistics uses
a second order approximation to the log-likelihood and, therefore, is only based
on the first two moments (and not on the entire distribution). Define the matrix
Ir ∈ R

r×(q+1) such that βr = Irβ, i.e., matrix Ir selects exactly the components of
β that are included in βr (and which are set to 0 under the null hypothesis H0 given
in (5.31)).

Asymptotic normality (5.17) motivates consideration of the Wald statistics

W = (Ir β̂
MLE − 0)�

(
IrI(β̂

MLE
)−1I�

r

)−1
(Ir β̂

MLE − 0). (5.32)

The Wald statistics measures the distance between the MLE in the full model
Ir β̂

MLE
restricted to the components of βr and the null hypothesis H0 (being

βr = 0). The estimated Fisher’s information matrix I(β̂
MLE

) is used to bring
all components onto the same unit scale (and to account for collinearity). The
Wald statistics W is asymptotically χ2

r -distributed under the same assumptions as
for (5.17) to hold. Thus, the null hypothesis H0 should be rejected if the resulting p-
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value of W under the χ2
r -distribution is too small. Note that this test does not require

calculation of the MLE in the null hypothesis model, i.e., this test is computationally
more attractive than the LRT because we only need to fit one model. Again, an
unknown dispersion parameter ϕ in Fisher’s information matrix I(β) is replaced by
a consistent estimator ϕ̂ (from the bigger model).

In the special case of considering only one component of β, i.e., if βr = βk with
r = 1 and for one selected component 0 ≤ k ≤ q , the Wald statistics reduces to

Wk = (β̂MLE
k )2

σ̂ 2
k

or Tk = W
1/2
k = β̂MLE

k

σ̂k

, (5.33)

with diagonal entries of the inverse of the estimated Fisher’s information matrix

given by σ̂ 2
k = (I(β̂

MLE
)−1)k,k , 0 ≤ k ≤ q . The square-roots of these estimates are

provided in column Std. Error of the R output in Listing 5.3.
In this case the Wald statistics Wk is equal to the square of the t-statistics Tk;

this t-statistics is provided in column z value of the R output of Listing 5.3.
Remark that Fisher’s information matrix involves the dispersion parameter ϕ. If
this dispersion parameter is estimated with a consistent estimator ϕ̂ we have a t-
statistics. For known dispersion parameter the t-statistics reduces to a z-statistics,
i.e., the corresponding p-values can be calculated from a normal distribution instead
of a t-distribution. In the Poisson case, the dispersion ϕ = 1 is known, and for this
reason, we perform a z-test (and not a t-test) in the last column of Listing 5.3; and
we call Tk a z-statistics in that case.

5.3.3 Analysis of Variance

In the previous section, we have presented tests that allow for model selection in
the case of nested models. More generally, if we have a full model, say, based
on regression parameter β ∈ R

q+1 we would like to select the “best” sub-
model according to some selection criterion. In most cases, it is computationally
not feasible to fit all sub-models if q is large, therefore, this is not a practical
solution. For large models and data sets step-wise procedures are a feasible tool.
Backward elimination starts from the full model, and then recursively drops feature
components which have high p-values in the corresponding Wald statistics (5.32)
and (5.33). Performing this recursively will provide us with hierarchy of nested
models. Forward selection works just in the opposite direction, that is, we start with
the null model and we include feature components one after the other that have a
low p-value in the corresponding Wald statistics.
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Remarks 5.18

• The order of the inclusion/exclusion of the feature components matters in this
selection algorithms because we do not have additivity in this selection process.
For this reason, often backward elimination and forward selection is combined
in an alternating way.

• This process as well as the tests from Sect. 5.3.2 are based on a fixed pre-
processing of features. If the feature pre-processing is done differently, all
analysis needs to be repeated for this new model. Moreover, between two dif-
ferent models we need to apply different tools for model selection (if they are not
nested), for instance, AIC, cross-validation or an out-of-sample generalization
analysis.

• For categorical variables with dummy coding we should apply the forward
selection or the backward elimination simultaneously on the entire dummy coded
vector of a categorical variable. This will include or exclude this variable; if we
only apply the Wald test to one component of the dummy vector, then we test
whether this level should be merged with the reference level.

Typically, in practice, a so-called analysis of variance (ANOVA) table is studied.
The ANOVA table is mainly motivated by the Gaussian model with orthogonal
data. The Gaussian assumption implies that the deviance loss is equal to the
square loss and the orthogonality implies that the square loss decouples in an
additive way w.r.t. the feature components. This implies that one can explicitly
study the contribution of each feature component to the decrease in square loss;
an example is given in Section 2.3.2 of McCullagh–Nelder [265]. In non-Gaussian
and non-orthogonal situations one loses this additivity property and, as mentioned
in Remarks 5.18, the order of inclusion matters. Therefore, for the ANOVA table
we pre-specify the order in which the components are included and then we analyze
the decrease of deviance loss by the inclusion of additional components.

Example 5.19 (Poisson GLM1, Revisited) We revisit the MTPL claim frequency
example of Sect. 5.2.4 to illustrate the variable selection procedures. Based on the
model presented in Listing 5.3 we run an ANOVA analysis using the R command
anova, the results are presented in Listing 5.4.

Listing 5.4 shows the hierarchy of models starting from the null model by
sequentially including feature components one by one. The column Df gives the
number of regression parameters involved and the column Deviance the decrease
of deviance loss by the inclusion of this feature component. The biggest model
improvements are provided by the bonus-malus level and driver’s age, this is not
surprising in view of the empirical analysis in Figs. 5.3 and 5.4, and in Chap. 13.1.
At the other end we have the Area code which only seems to improve the model
marginally. However, this does not imply, yet, that this variable should be dropped.
There are two points that need to be considered: (1) maybe feature pre-processing
of Area has not been done in an appropriate way and the variable is not in the
right functional form for the chosen link function; and (2) Area is the last variable
included in the model in Listing 5.4 and, maybe, there are already other variables
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Listing 5.4 ANOVA table of model Poisson GLM1

1 Analysis of Deviance Table
2
3 Model: poisson, link: log
4
5 Response: ClaimNb
6
7 Terms added sequentially (first to last)
8
9

10 Df Deviance Resid. Df Resid. Dev
11 NULL 610205 153852
12 VehPowerGLM 5 73.7 610200 153779
13 VehAgeGLM 2 179.7 610198 153599
14 DrivAgeGLM 6 1199.4 610192 152400
15 BonusMalusGLM 1 4300.6 610191 148099
16 VehBrand 10 240.3 610181 147859
17 VehGas 1 82.4 610180 147776
18 DensityGLM 1 512.1 610179 147264
19 Region 21 191.3 610158 147073
20 AreaGLM 1 4.1 610157 147069

that take over the role of Area in smaller models which is possible if we have
correlations between the feature components. In our data, Area and Density are
highly correlated. For this reason, we exchange the order of these two components
and run the same analysis again, we call this model Poisson GLM1B (which of
course provides the same predictive model as Poisson GLM1).

Listing 5.5 ANOVA table of model Poisson GLM1B

1 Analysis of Deviance Table
2
3 Model: poisson, link: log
4
5 Response: ClaimNb
6
7 Terms added sequentially (first to last)
8
9

10 Df Deviance Resid. Df Resid. Dev
11 NULL 610205 153852
12 VehPowerGLM 5 73.7 610200 153779
13 VehAgeGLM 2 179.7 610198 153599
14 DrivAgeGLM 6 1199.4 610192 152400
15 BonusMalusGLM 1 4300.6 610191 148099
16 VehBrand 10 240.3 610181 147859
17 VehGas 1 82.4 610180 147776
18 AreaGLM 1 505.0 610179 147271
19 Region 21 192.4 610158 147079
20 DensityGLM 1 10.1 610157 147069

Listing 5.5 shows the ANOVA table if we exchange the order of these two
variables. We observe that the magnitudes of the decrease of the deviance loss
has switched between the two variables. Overall, Density seems slightly more
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predictive, and we may consider dropping Area from the model, also because the
correlation between Density and Area is very high.

If we want to perform backward elimination (sequentially drop one variable after
the other) we can use the R command drop1. For small models this is doable, for
larger models it is computationally demanding.

Listing 5.6 drop1 analysis of model Poisson GLM1

1 Single term deletions
2
3 Model:
4 ClaimNb ~ VehPowerGLM + VehAgeGLM + DrivAgeGLM + BonusMalusGLM +
5 VehBrand + VehGas + DensityGLM + Region + AreaGLM
6 Df Deviance AIC LRT Pr(>Chi)
7 <none> 147069 192818
8 VehPowerGLM 5 147152 192892 83.4 < 2.2e-16 ***
9 VehAgeGLM 2 147283 193028 214.1 < 2.2e-16 ***

10 DrivAgeGLM 6 147603 193341 534.5 < 2.2e-16 ***
11 BonusMalusGLM 1 150970 196718 3901.5 < 2.2e-16 ***
12 VehBrand 10 147298 193027 228.9 < 2.2e-16 ***
13 VehGas 1 147213 192961 144.5 < 2.2e-16 ***
14 DensityGLM 1 147079 192826 10.1 0.001459 **
15 Region 21 147259 192967 190.7 < 2.2e-16 ***
16 AreaGLM 1 147073 192820 4.1 0.042180 *
17 ---
18 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

In Listing 5.6 we present the results of this drop1 analysis. Both, according to
AIC and according to the LRT, we should keep all variables in the model. Again,
Area and Density provide the smallest LRT statistics � which illustrates the
high collinearity between these two variables (note that the values in Listing 5.6 are
identical to the ones in Listings 5.4 and 5.5, respectively).

We conclude that in model Poisson GLM1 we should keep all feature com-
ponents, and a model improvement can only be obtained by a different feature
pre-processing, by a different regression function or by a different distributional
model. �

5.3.4 Lab: Poisson GLM for Car Insurance Frequencies,
Revisited

Continuous Coding of Non-monotone Feature Components

We revisit model Poisson GLM1 studied in Sect. 5.2.4 for MTPL claim frequency
modeling, and we consider additional competing models by using different feature
pre-processing. From Example 5.19, above, we conclude that we should keep all
variables in the model if we work with model Poisson GLM1.
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Table 5.4 Contingency table of observed number of policies against predicted number of
policies with given claim counts ClaimNb

Numbers of claims ClaimNb

0 1 2 3 4 5

Observed number of policies 587’772 21’198 1’174 57 4 1

Predicted number of policies 587’325 22’064 779 34 3 0.3

We calculate Pearson’s dispersion estimate which provides ϕ̂P = 1.6697 > 1.
This indicates that the model is not fully suitable for our data because in a Poisson
model the dispersion parameter should be equal to 1. There may be two reasons
for this over-dispersion: (1) the Poisson assumption is not appropriate because,
for instance, the tail of the observations is more heavy-tailed, or (2) the Poisson
assumption is appropriate but the regression function has not been chosen in a fully
suitable way (maybe also due to missing feature information).

We believe that in our example the observed over-dispersion is a mixture of
the two reasons (1) and (2). Surely, the regression structure can be improved since
our feature pre-processing is non-optimal and since the chosen regression function
only considers multiplicative interactions between the feature components (we have
chosen the log-link regression function without adding interaction terms to the
regression function).

Table 5.4 gives a contingency table. We observe that we have much more policies
with more than 1 claim compared to what is predicted by the fitted model. As a
result, a χ2-test rejects this Poisson model because the resulting p-value is close
to 0.

In our data, we have a rather large number of policies with short exposures vi ,
and further analysis suggests that these short exposures are not suitably modeled.
We will not invest more time into improving the exposure modeling. As mentioned
in the appendix, there seem to be a couple of issues how the exposures are displayed
and how policy renewals are accounted for in this data. However, it is difficult
(almost impossible) to clean the data for better exposure measures without more
detailed information about the data collection process.

Our next aim is to model continuous feature components differently, if their raw
form does not match the linear predictor assumption. In Poisson GLM1 we have
categorized such components and then used dummy coding for the resulting classes,
see Sect. 5.2.4. Alternatively, we can use different functional forms, for instance, we
can use for DrivAge the following pre-processing

DrivAge �→ βl DrivAge+ βl+1 log(DrivAge) +
4∑

j=2

βl+j (DrivAge)j .

(5.34)
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Table 5.5 Run times, number of parameters, AICs, in-sample and out-of-sample deviance losses,
tenfold cross-validation losses (units are in 10−2) and in-sample average frequency of the null
model (intercept model) and of different Poisson GLMs

Run # In-sample Out-of-sample Tenfold CV Aver.

time Param. AIC loss on L loss on T loss D̂CV freq.

Poisson null – 1 199’506 25.213 25.445 25.213 7.36%

Poisson GLM1 16s 49 192’818 24.101 24.146 24.121 7.36%

Poisson GLM2 15s 48 192’753 24.091 24.113 24.110 7.36%

Poisson GLM3 15s 50 192’716 24.084 24.102 24.104 7.36%

This replaces the K = 7 categorical age classes of model Poisson GLM1 by
5 continuous functions of the variable DrivAge, and the number of regression
parameters is reduced from K − 1 = 6 to 5. We call this model Poisson GLM2.

Besides improving the modeling of the feature components we can also start
to add interactions beyond the multiplicative ones. For instance, Fig. 13.12 in
Chap. 13 may indicate that there is an interaction term between BonusMalus
and DrivAge. New young drivers enter the bonus-malus system at level 100,
and it takes some years free of accidents to reach the lowest bonus-malus level
of 50. Whereas for senior drivers a bonus-malus level of 100 may indicate that they
have had a bad claim experience because otherwise they would be on the lowest
bonus-malus level, see also Remark 5.15. We are adding the following interaction
to Poisson GLM2 and we call the resulting model Poisson GLM3

βl′ BonusMalus · DrivAge+ βl′+1BonusMalus · (DrivAge)2. (5.35)

From Table 5.5 we observe that this leads to a further small model improvement.
We mention that this model improvement can also be observed in a decrease of
Pearson’s dispersion estimate to ϕ̂P = 1.6644. Noteworthy, all model selection
criteria AIC, out-of-sample generalization loss and cross-validation come to the
same conclusion in this example.

The tedious task of the modeler now is to find all these systematic effects and
bring them in an appropriate form into the model. Here, this is still possible because
we have a comparably small model. However, if we have hundreds of feature
components, such a manual analysis becomes intractable. Other regression models
such as network regression models should be preferred, or at least should be used
to find systematic effects. But, one should also keep in mind that the (final) chosen
model should be as simple as possible (parsimonious).

Remarks 5.20

• An advantage of GLMs is that these regression models can deal with collinearity
in feature components. Nevertheless, the results should be carefully checked if
the collinearity in feature components is very high. If we have a high collinearity
between two feature components then we may observe large values with opposite
signs in the corresponding regression parameters compensating each other. The



5.3 Model Validation 153

Listing 5.7 drop1 analysis of model Poisson GLM2

1 Single term deletions
2
3 Model:
4 ClaimNb ~ VehPowerGLM + VehAgeGLM + DrivAge + log(DrivAge) +
5 I(DrivAge^2) + I(DrivAge^3) + I(DrivAge^4) + BonusMalusGLM +
6 VehBrand + VehGas + DensityGLM + Region + AreaGLM
7 Df Deviance AIC LRT Pr(>Chi)
8 <none> 147005 192753
9 VehPowerGLM 5 147087 192825 82.4 2.671e-16 ***

10 VehAgeGLM 2 147225 192969 220.3 < 2.2e-16 ***
11 DrivAge 1 147157 192902 151.9 < 2.2e-16 ***
12 log(DrivAge) 1 147190 192935 184.8 < 2.2e-16 ***
13 I(DrivAge^2) 1 147123 192869 118.1 < 2.2e-16 ***
14 I(DrivAge^3) 1 147094 192840 89.0 < 2.2e-16 ***
15 I(DrivAge^4) 1 147071 192816 65.5 5.687e-16 ***
16 BonusMalusGLM 1 150907 196653 3902.0 < 2.2e-16 ***
17 VehBrand 10 147232 192959 226.5 < 2.2e-16 ***
18 VehGas 1 147148 192893 142.8 < 2.2e-16 ***
19 DensityGLM 1 147015 192761 10.1 0.001498 **
20 Region 21 147193 192899 188.0 < 2.2e-16 ***
21 AreaGLM 1 147009 192755 4.1 0.043123 *
22 ---
23 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

resulting GLM will not be very robust, and a slight change in the observations
may change these regression parameters completely. In this case one should drop
one of the two highly collinear feature components. This problem may also occur
if we include too many terms in functional forms like in (5.34).

• A tool to find suitable functional forms of regression functions in continuous
feature components are the partial residual plots of Cook–Croos-Dabrera [80]. If
we want to analyze the first feature component x1 of x, we can fit a GLM to the
data using the entire feature vector x. The partial residuals for component x1 are
defined by, see formula (8) in Cook–Croos-Dabrera [80],

r
partial
i = (Yi − μ(xi ))g

′(μ(xi )) + β1xi,1 for 1 ≤ i ≤ n,

where g is the chosen link function and g(μ(xi )) = 〈β, x i〉. These partial
residuals offset the effect of feature component x1. The partial residual plot shows
r

partial
i against xi,1. If this plot shows a linear structure then including x1 linearly

is justified, and any other functional form may be detected from that plot.

Under-Sampling and Over-Sampling

Often run times are an issue in model fitting, in particular, if we want to exper-
iment with different models, different feature codings, etc. Under-sampling is an
interesting approach that can be applied in imbalanced situations (like in our claim
frequency data situation) to speed up calculations, and still receiving accurate
approximations. We briefly describe under-sampling in this subsection.
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Under-sampling is based on the idea that we do not need to consider all n =
610′206 insurance policies for model fitting, and we can still receive accurate
results. For this we select all insurance policies that have at least 1 claim; in our
data these are 22’434 insurance policies, we call this data set L∗≥1. The motivation
for selecting these insurance policies is that these are exactly the policies that have
information about the drivers causing claims. These selected insurance policies need
to be complemented with policies that do not cause any claims. We select at random
(under-sample) 22’434 insurance policies of drivers without claims, we call this
data set L∗

0. Merging the two sets we receive data L∗ = L∗
0 ∪ L∗≥1 comprising

44’868 insurance policies. This data is balanced from the viewpoint of claim causing
policies because exactly half of the policies in L∗ suffers a claim and the other half
does not. The idea now is to fit a GLM only on this learning data L∗, and because
we only consider 44’868 insurance policies the fitting should be fast.

There is still one point to be considered, namely, in the new learning data L∗
policies with claims are over-represented (because we work in a low frequency
problem). This motivates that we adjust the time exposures vi in L∗

0 accordingly
by multiplying as follows

vi �→ v∗
i = vi

∑n
j=1 vj1{Nj =0}∑

vj ∈L∗
0
vj

.

Thus, we stretch the exposures of the policies without claims in L∗; for our data this
factor is 26.17. This then provides us with an empirical frequency on L∗ of 7.36%
which is identical to the observed frequency on the entire learning data L.

We fit model Poisson GLM3 on this reduced (and exposure adjusted) learning
data L∗, the results are presented on the last line of Table 5.6. This model can be
fitted in 1s, and by construction it fulfills the balance property. The resulting in-
sample and out-of-sample losses (evaluated on the entire data L and T ) are very
close to model Poisson GLM3 which verifies that the model fitted only on the
learning data L∗ gives a good approximation. We do not provide AIC because the
data used is not identical to the data used to fit the other models. The tenfold cross-

Table 5.6 Run times, number of parameters, AICs, in-sample and out-of-sample deviance losses,
tenfold cross-validation losses (units are in 10−2) and in-sample average frequency of the null
model (intercept model) and of different Poisson GLMs, the last row uses under-sampling in model
Poisson GLM3

Run # In-sample Out-of-sample Tenfold CV Aver.

time param. AIC loss on L loss on T loss D̂CV freq.

Poisson null – 1 199’506 25.213 25.445 25.213 7.36%

Poisson GLM1 16 s 49 192’818 24.101 24.146 24.121 7.36%

Poisson GLM2 15 s 48 192’753 24.091 24.113 24.110 7.36%

Poisson GLM3 15 s 50 192’716 24.084 24.102 24.104 7.36%

under-sampling 1 s 50 – 24.098 24.108 24.120 7.36%
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validation loss is a little bit bigger which seems to be a consequence of applying
the non-stratified version to only 44’868 insurance policies, i.e., this higher cross-
validation loss shows that we fit the model on less data which provides higher
uncertainty in model fitting. This finishes this example.

The presented method is called under-sampling because we under-sample from
the insurance policies without claims to make both classes (policies with claims and
policies without claims) equally large. Alternatively, to achieve a class balance we
could also over-sample from the minority class by duplicating policies. This has a
similar effect, but it increases run times. Importantly, if we under- or over-sample we
have to adjust the exposures correspondingly. Otherwise we obtain a biased model
that is not useful for pricing, the same applies to methods such as the synthetic
minority oversampling technique (SMOTE) and similar techniques.

Alternatively, to under-sampling we could also fit a so-called zero-truncated
Poisson (ZTP) model to the data by only fitting a model on the insurance policies
that suffer at least one claim, and adjusting the distribution to the observations
Ni |{Ni≥1}. This is rather similar to a hurdle Poisson model and we come back to
this in Example 6.19, below.

5.3.5 Over-Dispersion in Claim Counts Modeling

Mixed Poisson Distribution

In the previous example we have seen that the considered Poisson GLMs do not fully
fit our data, at least not with the chosen feature engineering, because there is over-
dispersion in the data (relative to the chosen models). This may give rise to consider
models that allow for over-dispersion. Typically, such over-dispersed models are
constructed starting from the Poisson model, because the Poisson model enjoys
many nice properties as we have seen above. A natural extension is to introduce the
family of mixed Poisson models, where the frequency is not modeled with a single
parameter but rather with a whole family of parameters described by an underlying
mixing distribution.

In the dual mean parametrization the Poisson distribution for Y = N/v reads as

Y ∼ f (y; λ, v) = e−vλ (vλ)vy

(vy)! for y ∈ N0/v,

where the mean parameter is given by λ = κ ′(θ) = exp{θ}, and θ denotes the
canonical parameter; on purpose we use for the mean notation λ instead of μ, here,
the reason will become clear below. This model satisfies for the first two moments
of N = vY

Eλ [N] = vκ ′(θ) = vλ and Varλ (N) = vκ ′′(θ) = vλ = Eλ [N] ,

with dispersion parameter ϕ = 1. A mixed Poisson distribution is obtained
by mixing/integrating over different frequency parameters λ > 0. We choose a
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distribution π on R+ (strictly positively supported), and define the new distribution

Y = N/v ∼ fπ (y; v) =
∫
R+

f (y; λ, v) dπ(λ) =
∫
R+

e−vλ (vλ)vy

(vy)! dπ(λ).

(5.36)

If π is not concentrated in a single point, the tower property immediately implies

Eπ [N] < Varπ (N) , (5.37)

supposed that the moments exist, we refer to Lemma 2.18 in Wüthrich [387]. Hence,
mixing over different frequency parameters allows us to receive over-dispersion. Of
course, this concept can also be applied to mixing over the canonical parameter θ in
the EF (instead of the mean parameter).

This leads to the framework of Bayesian credibility models which are widely
used and studied in actuarial science, we refer to the textbook of Bühlmann–Gisler
[58]. We have already met this idea in the Bayesian decision rule of Example 3.3
which has led to the Bayesian estimator in Definition 3.6.

Negative-Binomial Model

In the case of the Poisson model, the gamma distribution is a particularly attractive
mixing distribution for λ because it allows for a closed-form solution in (5.36),
and fπ=�(y; v) will be a negative-binomial distribution.4 One can choose differ-
ent parametrizations of this mixing distribution, and they will provide different
scalings in the resulting negative-binomial distribution. We choose the following

parametrization π(λ)
(d)= �(vα, vα/μ) for mean parameter μ > 0 and shape

parameter vα > 0. This implies, see (5.36),

fNB(y; μ, v, α) =
∫
R+

e−vλ (vλ)vy

(vy)!
(vα/μ)vα

�(vα)
λvα−1e−vαλ/μdλ

= �(vy + vα)

(vy)!�(vα)

vvy(vα/μ)vα

(v + vα/μ)vy+vα

=
(

vy + vα − 1

vy

) (
eθ
)vy (

1 − eθ
)vα

,

4 The gamma distribution is the conjugate prior to the Poisson distribution. As a result, the posterior
distribution, given observations, will again be a gamma distribution with posterior parameters, see
Section 8.1 of Wüthrich [387]. This Bayesian model has been introduced to the actuarial literature
by Bichsel [32].
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setting for canonical parameter θ = log(μ/(μ + α)) < 0. This is the negative-
binomial distribution we have already met in (2.5). A single-parameter linear EDF
representation is given by, we set unit dispersion parameter ϕ = 1,

Y ∼ fNB(y; θ, v, α) = exp

{
yθ + α log(1 − eθ )

1/v
+ log

(
vy + vα − 1

vy

)}
,

(5.38)

where this is a density w.r.t. the counting measure on N0/v. The cumulant function
and the canonical link, respectively, are given by

κ(θ) = −α log(1 − eθ) and θ = h(μ) = log

(
μ

μ + α

)
∈ � = (−∞, 0).

Note that α > 0 is treated as nuisance parameter (which is a fixed part of the
cumulant function, here). The first two moments of the claim count N = vY are
given by

vμ = Eθ [N] = vα
eθ

1 − eθ
, (5.39)

Varθ (N) = Eθ [N]
(

1 + eθ

1 − eθ

)
= Eθ [N]

(
1 + μ

α

)
> Eθ [N]. (5.40)

This shows that we receive a fixed over-dispersion of size μ/α, which (in this
parametrization) does not depend on the exposure v; this is the reason for choosing

a mixing distribution π(λ)
(d)= �(vα, vα/μ). This parametrization is called NB2

parametrization.

Remarks 5.21

• We emphasize that the effective domain � = (−∞, 0) is one-sided bounded.
Therefore, the canonical link for the linear predictor will not work in general
because the linear predictor x �→ η(x) can be both-sided unbounded in a GLM
setting. Instead, we use the log-link for g(·) in our example below, with the
downside that one loses the balance property.

• The unit deviance in this negative-binomial EDF model is given by

(y, μ) �→ d(y, μ) = 2

[
y log

(
y

μ

)
− (y + α) log

(
y + α

μ + α

)]
,

we also refer to Table 4.1 for α = 1. We emphasize that this is the unit deviance
in a single-parameter linear EDF, and we only aim at estimating canonical
parameter θ ∈ � and mean parameter μ ∈ M, respectively, whereas α > 0 is
treated as a given nuisance parameter. This is important because the unit deviance
relies on the saturated model which, in general, estimates a one-dimensional
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parameter θ and μ, respectively, from the one-dimensional observation Y . The
nuisance parameter is not affected by the consideration of the saturated model,
and it is treated as a fixed part of the cumulant function, which is not estimated
at this stage. An important consequence of this is that model comparison using
deviance residuals only works for identical nuisance parameters.

• We mention that we receive over-dispersion in (5.40) though we have dispersion
parameter ϕ = 1 in (5.38). Alternatively, we could do the duality transformation
y �→ ỹ = y/α for nuisance parameter α > 0; this gives the reproductive form of
the negative-binomial model NB2, see also Remarks 2.13. This provides us with
a density on N0/(vα), set ϕ̃ = 1/α,

Ỹ ∼ fNB(ỹ; θ, v/ϕ̃) = exp

{
ỹθ + log(1 − eθ )

1/(vα)
+ log

(
vαỹ + vα − 1

vαỹ

)}
.

The cumulant function and the canonical link, respectively, are now given by

κ(θ) = − log(1 − eθ) and θ = h(μ̃) = log

(
μ̃

μ̃ + 1

)
∈ � = (−∞, 0).

The first two moments are for θ ∈ � given by

μ̃ = Eθ [Ỹ ] = eθ

1 − eθ
,

Varθ (Ỹ ) = ϕ̃

v
κ ′′(θ) = 1

vα
μ̃ (1 + μ̃) .

Thus, we receive the reproductive EDF representation with dispersion parameter
ϕ̃ = 1/α and variance function V (μ̃) = μ̃(1 + μ̃). Moreover, N = vY = vαỸ .

• The negative-binomial model with the NB1 parametrization uses the mixing

distribution π(λ)
(d)= �(μv/α, v/α). This leads to mean Eθ [N] = vμ and

variance Varθ (N) = Eθ [N](1 + α). In this parametrization, μ enters the gamma
function as �(μv/α) in the gamma density which does not allow for an EDF
representation. This parametrization has been called NB1 by Cameron–Trivedi
[63] because both terms in the variance Varθ (N) = vμ + vμα are linear in μ. In
contrast, in the NB2 parametrization the second term has a square vμ2/α in μ,
see (5.40). Further discussion is provided in Greene [171].

Nuisance Parameter Estimation

All previous statements have been based on the assumption that α > 0 is a
given nuisance parameter. If α needs to be estimated too, then, we drop out
of the EF. In this case, an iterative estimation procedure is applied to the EDF
representation (5.38). One starts with a fixed nuisance parameter α(0) and fits the
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negative-binomial GLM with MLE which provides a first set of MLE β̂
(1) =

β̂
(1)

(α(0)). Based on this estimate the nuisance parameter is updated α(0) �→ α(1) by

maximizing the log-likelihood in α for given β̂
(1)

. Iteration of this procedure then
leads to a joint estimation of regression parameter β and nuisance parameter α. Both
MLE steps in this algorithm increase the joint log-likelihood.

Remark 5.22 (Implementation of the Negative-Binomial GLM in R) Implementa-
tion of the negative-binomial model needs some care. There are two R procedures
glm and glm.nb that can be used to fit negative-binomial GLMs, the latter being
built on the former. The procedure glm is just the classical R procedure [307] that
is usually used to fit GLMs within the EDF, it requires to set

family=negative.binomial(theta, link="log").

This parametrization considers the single-parameter linear EF on N (for mean μ ∈
M)

fNB(n; μ,theta) =
(

n + theta − 1

n

)(
μ

μ + theta

)n (
1 − μ

μ + theta

)theta

,

where theta > 0 denotes the nuisance parameter. The tricky part now is that we
have to bring in the different exposures vi of all policies 1 ≤ i ≤ n. That is, we
would like to have for claim counts ni = viyi , see (5.38),

fNB(yi; μi, vi , α) =
(

viyi + viα − 1

viyi

)(
viμi

viμi + viα

)viyi
(

1 − viμi

viμi + viα

)viα

=
(

viyi + viα − 1

viyi

)[(
μi

μi + α

)yi
(

1 − μi

μi + α

)α]vi

.

The square bracket can be implemented in glm as a scaled and weighted regression
problem, see Listing 5.8 with theta = α. This approach provides the correct GLM

parameter estimates β̂
MLE

for given α, however, the outputted AIC values cannot
be compared to the Poisson case. Note that the Poisson case of Table 5.5 considers
observations Ni whereas Listing 5.8 uses Yi = Ni/vi . For this reason we calculate
the log-likelihood and AIC by an own implementation.

The same remark applies to glm.nb, and also nuisance parameter estimation
cannot be performed by that routine under different exposures vi . Therefore, we
have implemented an iterative estimation algorithm ourselves, alternating glm of
Listing 5.8 for given α and a maximization routine optimize to find the optimal
α for given β using (5.38). We have applied this iteration in Example 5.23, below,
and it has converged in 5 iterations.

Example 5.23 (Negative-Binomial Distribution for Claim Counts) We revisit the
MTPL claim frequency GLM example of Sect. 5.3.4, but we replace the Poisson
distribution by the negative-binomial one. We start with the negative-binomial (NB)
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Listing 5.8 Implementation of model NB GLM3

1 d.glmnb <- glm(ClaimNb/Exposure ~ VehPowerGLM + VehAgeGLM
2 + log(DrivAge) + I(DrivAge^3) + I(DrivAge^4)
3 + BonusMalusGLM*DrivAge + BonusMalusGLM*I(DrivAge^2)
4 + VehBrand + VehGas + DensityGLM + Region + AreaGLM,
5 data=learn, weights=Exposure,
6 family=negative.binomial(alpha, link="log"))

Table 5.7 Run times, number of parameters, AICs, in-sample and out-of-sample deviance losses
(units are in 10−2) and in-sample average frequency of the null models (Poisson and negative-
binomial) and the Poisson and negative-binomial GLMs. The optimal model is highlighted in
boldface

Run # In-sample Out-of-sample Aver.

time Param. AIC loss on L loss on T freq.

Poisson null – 1 199’506 25.213 25.445 7.36%

Poisson GLM3 15 s 50 192’716 24.084 24.102 7.36%

NB null α̂MLE
null = 1.059 – 2 198’466 20.357 20.489 7.36%

NB null α̂MLE
NB = 1.810 – 1 198’564 21.796 21.948 7.36%

NB GLM3 α̂MLE
NB = 1.810 85s 51 192’113 20.722 20.674 7.38%

null model. The NB null model has two parameters, the homogeneous (overall)
frequency and the nuisance parameter. MLE of the homogeneous overall frequency
is identical to the one in the Poisson null model, and MLE of the nuisance parameter
provides α̂MLE

null = 1.059. This is substantially smaller than infinity and suggests
over-dispersion. The results are presented on the third line of Table 5.7. We observe
a smaller AIC of the NB null model against the Poisson null model which says that
we should allow for over-dispersion.

We now focus on the NB GLM. The feature pre-processing is done exactly as
in model Poisson GLM3, and we choose the log-link for g. We call this model
NB GLM3. The iterative estimation procedure outlined above provides a nuisance
parameter estimate α̂MLE

NB = 1.810. This is bigger than in the NB null model because
the regression structure explains some part of the over-dispersion, however, it is
still substantially smaller than infinity which justifies the inclusion of this over-
dispersion parameter.

The last line of Table 5.7 gives the result of model NB GLM3. From AIC we
conclude that we favor the negative-binomial GLM over the Poisson GLM since
AIC decreases from 192’716 to 192’113. The in-sample and out-of-sample deviance
losses can only be compared within the same models, i.e., the models that have the
same cumulant function. This also applies to the negative-binomial models which
have cumulant function κ(θ) = −α log(1 − eθ). Thus, to compare the NB null
model and model NB GLM3, we need to choose the same nuisance parameter α.
For this reason we added this second NB null model to Table 5.7. This second NB
null model no longer uses the MLE α̂MLE

null , therefore, the corresponding AIC only
includes one estimated parameter.
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Fig. 5.7 Poisson logged
predictors
vs. negative-binomial logged
predictors

Table 5.8 Out-of-sample deviance losses: forecast dominance. The optimal model is highlighted
in boldface

Poisson NB deviance NB deviance

Model deviance α̂MLE
null = 1.059 α̂MLE

NB = 1.810

Null model 25.445 20.489 21.948

Poisson GLM3 24.102 19.266 20.678

NB GLM3 α̂MLE
NB = 1.810 24.100 19.262 20.674

As mentioned above, deviance losses can only be compared under exactly the
same cumulant function (including the same nuisance parameters). If we want to
have a more robust model selection, we can consider forecast dominance according
to Definition 4.20. Being less ambitious, here, we consider forecast dominance
only for the three considered cumulant functions Poisson, negative-binomial with
α̂MLE

null = 1.059 and negative-binomial with α̂MLE
NB = 1.810. The out-of-sample

deviance losses are given in Table 5.8 in the different columns. According to this
forecast dominance analysis we also give preference to model NB GLM3, but model
Poisson GLM3 is pretty close.

Figure 5.7 compares the logged predictors log(μ̂i ), 1 ≤ i ≤ n, of the models
Poisson GLM3 and NB GLM3. We see a huge similarity in these predictors, only
high frequency policies are judged slightly differently by the NB model compared
to the Poisson model.

Table 5.9 gives the predicted number of claims against the observed ones. We
observe that model NB GLM3 predicts more accurately the number of policies with
2 or less claims, but it over-estimates the number of policies with more than 2 claims.
This may also be related to the fact that the estimated in-sample frequency has a
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Table 5.9 Contingency table of observed number of policies against predicted number of policies
with given claim counts ClaimNb

Numbers of claims ClaimNb

0 1 2 3 4 5

Observed number of policies 587’772 21’198 1’174 57 4 1

Poisson predicted number of policies 587’325 22’064 779 34 3 0.3

NB predicted number of policies 587’902 20’982 1’200 100 15 4

positive bias in model NB GLM3, see Table 5.7. That is, since we do not work with
the canonical link, we do not have the balance property.

Listing 5.9 drop1 analysis of model NB GLM3

1 Single term deletions
2
3 Model:
4 ClaimNb/Exposure ~ VehPowerGLM + VehAgeGLM + DrivAge + log(DrivAge) +
5 I(DrivAge^2) + I(DrivAge^3) + I(DrivAge^4) + BonusMalusGLM *
6 DrivAge + BonusMalusGLM * I(DrivAge^2) + BonusMalusGLM +
7 VehBrand + VehGas + DensityGLM + Region + AreaGLM
8 Df Deviance AIC scaled dev. Pr(>Chi)
9 <none> 126446 171064

10 VehPowerGLM 5 126524 171102 48.266 3.134e-09 ***
11 VehAgeGLM 2 126655 171190 130.070 < 2.2e-16 ***
12 log(DrivAge) 1 126592 171153 91.057 < 2.2e-16 ***
13 I(DrivAge^3) 1 126527 171112 50.483 1.202e-12 ***
14 I(DrivAge^4) 1 126508 171100 38.381 5.820e-10 ***
15 VehBrand 10 126658 171176 132.098 < 2.2e-16 ***
16 VehGas 1 126583 171147 85.232 < 2.2e-16 ***
17 DensityGLM 1 126456 171068 6.137 0.01324 *
18 Region 21 126622 171132 109.838 5.042e-14 ***
19 AreaGLM 1 126450 171064 2.411 0.12049
20 DrivAge:BonusMalusGLM 1 126484 171085 23.481 1.262e-06 ***
21 I(DrivAge^2):BonusMalusGLM 1 126490 171089 27.199 1.836e-07 ***
22 ---
23 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

We close this example by providing the drop1 analysis in Listing 5.9. From
this analysis we conclude that the feature component Area should be dropped.
Of course, this confirms the high collinearity between Density and Area which
implies that we do not need both variables in the model. We remark that the AIC
values in Listing 5.9 are not on our scale, as stated in Remark 5.22. �

5.3.6 Zero-Inflated Poisson Model

In many applications it is the case that the Poisson distribution does not fully fit
the claim counts data because there are too many policies with zero claims, i.e.,
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policies with Y = 0, compared to a Poisson assumption. This topic has attracted
some attention in the recent actuarial literature, see, e.g., Boucher et al. [43–45],
Frees et al. [137], Calderín-Ojeda et al. [62] and Lee [239]. An obvious solution to
this problem is to ‘artificially’ increase the probability of a zero claim compared to
a Poisson model, this is the proposal introduced by Lambert [232]. Y has a zero-
inflated Poisson (ZIP) distribution if the probability weights of Y are given by (set
v = 1)

fZIP(y; θ, π0) =
{

π0 + (1 − π0)e
−μ for y = 0,

(1 − π0)e
−μ μy

y! for y ∈ N,

for π0 ∈ (0, 1), μ = eθ > 0, and for the Poisson probability weights we refer
to (2.4). For π0 > 0 the weight of a zero claim Y = 0 is increased (inflated)
compared to the original Poisson distribution.

Remarks 5.24

• The ZIP distribution has different interpretations. It can be interpreted as a
hierarchical model where we have a latent variable Z which indicates with
probability π0 that we have an excess zero, and with probability 1 − π0 we have
an ordinary Poisson distribution, i.e. for y ∈ N0

Pθ [Y = y|Z = z] =
{
1{y=0} for z = 0,

e−μ μy

y! for z = 1,
(5.41)

with P[Z = 0] = 1 − P[Z = 1] = π0.
The latter shows that we can also understand it as a mixture of two distribu-

tions, namely, of the Poisson distribution and of a single point measure in y = 0
with mixing probability π0. Mixture distributions are going to be discussed in
Sect. 6.3.1, below. In this sense, we can also interpret the model as a mixed
Poisson model with mixing distribution π(λ) being a Bernoulli distribution
taking values 0 and μ with probability π0 and 1 − π0, respectively, see (5.36),
and the former parameter λ = 0 leads to a degenerate Poisson model.

• We have introduced the ZIP model, but this approach is neither limited to the
Poisson model nor the zeros. For instance, we could also consider an inflated
negative-binomial model where both the zeros and the ones are inflated with
probabilities π0, π1 > 0 such that π0 + π1 < 1.

• Hurdle models are an alternative way to model excess zeros. Hurdle models
have been introduced by Cragg [83], and they also allow for too little zeros.
A hurdle (Poisson) model mixes a lower-truncated (Poisson) count distribution
with a point mass in zero

fhurdle Poisson(y; θ, π0) =
{

π0 for y = 0,

(1 − π0)
e−μ μy

y!
1−e−μ for y ∈ N,

(5.42)



164 5 Generalized Linear Models

for π0 ∈ (0, 1) and μ > 0. For π0 > e−μ the weight of a zero claim is increased
and for π0 < e−μ it is decreased. This distribution is called a hurdle distribution,
because we first need to overcome the hurdle at zero to come to the Poisson
model. Lower-truncated distributions are studied in Sect. 6.4, below, and mixture
distributions are discussed in Sect. 6.3.1. In general, fitting lower-truncated
distributions is challenging because the density and the distribution function
should both have tractable forms to perform MLE for truncated distributions.
The Expectation-Maximization (EM) algorithm is a useful tool to perform
model fitting under truncation. We come back to the hurdle Poisson model in
Example 6.19, below, and it is also closely related to the zero-truncated Poisson
(ZTP) model discussed in Remarks 6.20.

The first two moments of a ZIP random variable Y ∼ fZIP(·; θ, π0) are given by

Eθ,π0 [Y ] = (1 − π0)μ,

Varθ,π0(Y ) = (1 − π0)μ + (π0 − π2
0 )μ2 = Eθ,π0 [Y ] (1 + π0μ) ,

these calculations easily follow with the latent variable Z interpretation from above.
As a consequence, we receive an over-dispersed model with over-dispersion π0μ

(the latter also follows from the fact that we consider a mixed Poisson distribution
with a Bernoulli mixing distribution having weights π0 in 0 and 1 − π0 in μ > 0,
see (5.37)).

Unfortunately, MLE does not allow for explicit solutions in this model. The score

equations of Yi
i.i.d.∼ fZIP(·; θ, π0) are given by

∇(π0,μ)	Y (π0, μ) = ∇(π0,μ)

n∑
i=1

log
(
π0 + (1 − π0)e

−μ
)
1{Yi=0}

+ ∇(π0,μ)

n∑
i=1

log

(
(1 − π0)e

−μ μy

y!
)
1{Yi>0} = 0.

The R package pscl [401] has a function called zeroinflwhich uses the general
purpose optimizer optim to find the MLEs in the ZIP model. Alternatively, we
could explore the EM algorithm for mixture distributions presented in Sect. 6.3,
below.

In insurance applications, the ZIP application can be problematic if we have
different exposures vi > 0 for different insurance policies i. In the Poisson GLM
case with canonical link choice we typically integrate the different exposures into
the offset, see (5.27). However, it is not clear whether and how we should integrate
the different exposures into the zero-inflation probability π0. It seems natural to
believe that shorter exposures should increase π0, but the explicit functional form of
this increase can be debated, some options are discussed in Section 5 of Lee [239].
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Listing 5.10 Implementation of model ZIP GLM3

1 d.ZIP <- zeroinfl(ClaimNb ~ VehPowerGLM + VehAgeGLM
2 + log(DrivAge) + I(DrivAge^3) + I(DrivAge^4)
3 + BonusMalusGLM*DrivAge + BonusMalusGLM*I(DrivAge^2)
4 + VehBrand + VehGas + DensityGLM + Region
5 + AreaGLM | 1,
6 data=learn, offset=log(Exposure), dist=’poisson’, link=’logit’,
7 start=list(count=glm3$coefficients, zero=c(-0.4153)) )

Table 5.10 Run times, number of parameters, AICs, in-sample and out-of-sample deviance
losses (units are in 10−2) and in-sample average frequency of the null models (Poisson, negative-
binomial and ZIP) and the Poisson, negative-binomial and ZIP GLMs. The optimal model is
highlighted in boldface

Run # AIC In-sample Out-of-sample Aver.

time Param. loss on L loss on T freq.

Poisson null – 1 199’506 25.213 25.445 7.36%

Poisson GLM3 15 s 50 192’716 24.084 24.102 7.36%

NB null α̂MLE
null = 1.059 – 2 198’466 20.357 20.489 7.36%

NB null α̂MLE
NB = 1.810 – 1 198’564 21.796 21.948 7.36%

NB GLM3 α̂MLE
NB = 1.810 85 s 51 192’113 20.722 20.674 7.38%

ZIP null 20 s 2 198’638 – – 7.43%

ZIP GLM3 (null π0) 270 s 51 192’393 – – 7.37%

In the following application, we simply choose π0 independent of the exposures, but
certainly this is not the best modeling choice.

Example 5.25 (ZIPModel for Claim Counts) We revisit the MTPL claim frequency
example of Sect. 5.3.4, but this time we fit a ZIP model. For the Poisson part we
use exactly the same GLM regression function as in model Poisson GLM3 and,
in particular, we use for the different exposures vi of the insurance policies the
offset term oi = log vi , see line 6 of Listing 5.10. This offset only acts on the
Poisson part of the ZIP GLM. The zero-inflating probability π0 is modeled with a
logistic Bernoulli model, see Sect. 2.1.2. For computational reasons, we choose the
null model for the Bernoulli part modeling the zero-inflation π0. This is indicated
by the “1” on line 5 of Listing 5.10. This 1 should be expanded if we also want to
consider a regression model for the zero-inflating probability π0 and, in particular,
if we want to integrate an offset term for the exposure. We can set this term to
offset(f), where f is a suitable transformation of the exposure. Furthermore,
successful calibration requires meaningful starting values, otherwise zeroinfl
will not find the MLEs. We start the algorithm in the parameters of model Poisson
GLM3, see line 7 of Listing 5.10. The results are presented in Table 5.10.

Firstly, we see that the run times are not fully competitive in this implementation,
even if we choose the null model for the zero-inflating probability π0, i.e., only
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Table 5.11 Out-of-sample deviance losses: forecast dominance. The optimal model is highlighted
in boldface

Poisson NB deviance NB deviance

Model deviance α̂MLE
null = 1.059 α̂MLE

NB = 1.810

Null model 25.445 20.489 21.948

Poisson GLM3 24.102 19.266 20.678

NB GLM3 α̂MLE
NB = 1.810 24.100 19.262 20.674

ZIP null model 25.446 20.490 21.949

ZIP GLM3 24.103 19.267 20.679

Table 5.12 Contingency table of observed numbers of policies against predicted numbers of
policies with given claim counts ClaimNb

Numbers of claims ClaimNb

0 1 2 3 4 5

Observed number of policies 587’772 21’198 1’174 57 4 1

Poisson predicted number of policies 587’325 22’064 779 34 3 0.3

NB predicted number of policies 587’902 20’982 1’200 100 15 4

ZIP predicted number of policies 587’829 21’094 1’191 79 9 4

one intercept parameter is involved for determining π0. Secondly, in this model we
cannot calculate deviance losses because the saturated model has two parameters for
each observation. Thirdly, the model does not satisfy the balance property though we
work with the canonical links for the Poisson part and the Bernoulli part, however,
this property gets lost under the combination of these two model parts.

Most interesting are the AIC values. We observe that the ZIP GLM improves the
Poisson GLM, but it has a bigger AIC value than the negative-binomial GLM. From
this we conclude that we give preference to the negative-binomial model in our case.

Considering forecast dominance according to Definition 4.20, but restricted to
the three deviance losses studied in Example 5.23, we receive Table 5.11. Also this
table gives preference to the negative-binomial GLM. However, if we consider the
table of the observed numbers of policies against the predicted numbers of claims,
see Table 5.12, we give preference to the ZIP GLM because it has the lowest χ2-
value, i.e., it reflects best (in-sample) our observations.

Figure 5.8 compares the resulting predictors on the log-scale. From this plot we
conclude that in our example the predictors of the ZIP GLM are closer to the Poisson
ones than the NB GLM predictors. In a next step, one could refine the zero-inflating
probability π0 modeling by integrating the exposure and further feature information.
This would lead to a further model improvement. We refrain here from doing so and
close this example; in Example 6.19, below, we study the hurdle Poisson model. �
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Fig. 5.8 Comparison linear
predictors of the NB and ZIP
GLMs against the ones of the
Poisson GLM

5.3.7 Lab: Gamma GLM for Claim Sizes

As a second example we consider claim size modeling within GLMs. For this
example we do not use the French MTPL claims data because the empirical
density plot in Fig. 13.15 indicates that a GLM will not fit to that data. The French
MTPL data seems to have three distinct modes, which suggests to use a mixture
distribution. Moreover, the log-log plot indicates a regularly varying tail, which
cannot be captured by the EDF on the original observation scale; we are going
to study this data in Example 6.14, below. Here, we use the Swedish motorcycle
data, previously used in the textbook of Ohlsson–Johansson [290] and described in
Chap. 13.2. From Fig. 5.9 we see that the empirical density has one mode, and the
log-log plot supports light tails, i.e., the gamma model might be a suitable choice for
this data. Therefore, we choose a gamma GLM with log-link g. As described above,
the log-link is not the canonical link for the gamma EDF distribution but it ensures
the right sign w.r.t. the linear predictor ηi = 〈β, xi〉. Working with the log-link in
the gamma model will imply that the balance property is not fulfilled.
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Fig. 5.9 (lhs) Empirical density, (middle) empirical distribution and (rhs) log-log plot of claim
amounts of the Swedish motorcycle data presented in Chap. 13.2
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Feature Engineering

We have 4 continuous feature componentsOwnerAge, RiskClass, VehAge and
BonusClass, one binary feature component Gender and a categorical compo-
nent Area, see Listing 13.4. We have decided for a minimal feature engineering; we
refer to Figs. 13.19 (rhs) and 13.20 (rhs) for descriptive plots. We use the continuous
variables directly in a log-linear fashion, we add quadratic terms for OwnerAge and
VehAge, we merge RiskClass 6 and 7, and we censor VehAge at 20. Area
is categorical, but we may interpret the Zone levels as ordinal categorical, and
mapping them to integers allows us to use them in a continuous fashion; Fig. 13.19
(middle row, rhs) shows that this is a reasonable choice. Moreover, we merge Zone
5, 6 and 7 due to small volumes and their similar behavior.

Gamma Generalized Linear Model

The Swedish motorcycle claim amount data poses the special difficulty that we
do not have individual claim observations Zi,j , but we only know the total claim

amounts Si = ∑Ni

j=1 Zi,j and the number of claims Ni on each insurance policy;
Fig. 5.9 shows average claims Si/Ni of insurance policies i with Ni > 0. In general,
this poses a problem in statistical modeling, but in the gamma model this problem
can be handled because the gamma distribution is closed under aggregation of
i.i.d. gamma claims Zi,j . In all what follows in this section, we only study insurance
policies with Ni > 0, and we label these insurance policies i accordingly.

Assume that Zi,j are i.i.d. gamma distributed with shape parameter αi and scale
parameter ci , we refer to (2.6). The mean, the variance and the moment generating
function of Zi,j are given by

E[Zi,j ] = αi

ci

, Var(Zi,j ) = αi

c2
i

and MZi,j (r) =
(

ci

ci − r

)αi

,

(5.43)

where the moment generating function requires r < ci to be finite. Assuming that
the number of claims Ni is a known positive integer ni ∈ N, we see from the
moment generating function that Si = ∑ni

j=1 Zi,j is again gamma distributed with
shape parameter niαi and scale parameter ci . We change the notation from Ni to
ni to emphasize that the number of claims is treated as a known constant (and
also to avoid using the notation of conditional probabilities, here). Finally, we scale
Yi = Si/(niαi) ∼ �(niαi, niαici). This random variable Yi has a single-parameter
EDF gamma distribution with weight vi = ni , dispersion ϕi = 1/αi and cumulant
function κ(θi) = − log(−θi), for θi ∈ � = (−∞, 0),

Yi ∼ f (y; θi, vi/ϕi) = exp

{
yθi − κ(θi)

ϕi/vi

+ a(y; vi/ϕi)

}
(5.44)

= (−θiαivi)
viαi

�(viαi)
yviαi−1 exp {−(−θiαivi)y} ,
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and the canonical parameter is θi = −ci . For our GLM analysis we treat the shape
parameter αi ≡ α > 0 as a nuisance parameter that does not depend on the specific
policy i, i.e., we set constant dispersion ϕ = 1/α, and only the scale parameter ci is
chosen policy dependent through θi = −ci .

Random variable Yi = Si/(niα) ∼ �(niα, niαci) gives the reproductive form
of the gamma EDF, see Remarks 2.13. In applications, this form is not directly
useful because under unknown shape parameter α, we cannot calculate observations
Yi = Si/(niα). For this reason, we parametrize the model differently, here. We
consider instead

Yi = Si/ni ∼ �(niα, nici). (5.45)

This (new) random variable has the same gamma EDF (5.44), we only need to
reinterpret the canonical parameter as θi = −ci/α. Then, we choose the log-link
for g which implies

μi = Eθi [Yi] = κ ′(θi) = − 1

θi
= exp{ηi} = exp〈β, xi〉,

if xi ∈ X ⊂ R
q+1 describes the pre-processed features of policy i. The gamma

GLM is now fully specified and can be fitted to the data; from Example 5.5 we
know that we have a concave maximization problem. We call this model Gamma
GLM1 (with the feature pre-processing as described above). Note that the (constant)
dispersion parameter ϕ cancels in the score equations, thus, we do not need to
explicitly specify the nuisance parameter α to estimate regression parameter β ∈
R

q+1.

Maximum Likelihood Estimation and Model Selection

Because we have only few claims data in this Swedish motorcycle example (only
m = 656 insurance policies suffer claims), we do not perform a generalization
analysis with learning and test samples. In this situation we need all data for
model fitting, and model performance is analyzed with AIC and with tenfold cross-
validation.

The in-sample deviance loss in the gamma GLM is given by

D(L, μ̂(·)) = 2

m

m∑
i=1

ni

ϕ

(
Yi − μ̂(xi )

μ̂(xi )
− log

(
Yi

μ̂(xi )

))
, (5.46)

where i runs over the policies i = 1, . . . ,m with positive claims Yi = Si/ni > 0,

and μ̂(xi ) = exp〈β̂MLE
, xi〉 is the MLE estimated regression function. Similar to

the Poisson case (5.29), McCullagh–Nelder [265] derive the following behavior
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Fig. 5.10 (lhs) Empirical density of Yi and (rhs) empirical density of Y
1/3
i

for the gamma unit deviance around its mode, see Section 7.2 and Figure 7.2 in
McCullagh–Nelder [265],

d (Yi , μi) ≈ 9Y
2/3
i

(
Y

−1/3
i − μ

−1/3
i

)2
, (5.47)

this uses that the log-likelihood is symmetric around its mode for scale μ
−1/3
i , see

Fig. 5.5 (middle). This shows that the gamma deviance scales differently around Yi

compared to the square loss function. From this we receive an approximation to the
deviance residuals (for v/ϕ = 1)

rD
i = sign(Yi − μi)

√
d (Yi , μi) ≈ 3

((
Yi

μi

)1/3

− 1

)
= 3

Y
1/3
i − μ

1/3
i

μ
1/3
i

.

(5.48)

This is the cube-root transformation derived by Wilson–Hilferty [383]. This sug-
gests that if the empirical distribution of Y

1/3
i looks roughly Gaussian we can use a

gamma distribution. Figure 5.10 gives the empirical densities of Yi on the left-hand
side and of Y

1/3
i on the right-hand side. The latter looks roughly Gaussian (except

of the second mode close to 4), this supports the use of a gamma model.
Listing 5.11 provides the summary statistics of the fitted model Gamma GLM1;

note that we integrate the number of claims ni through scaling into the weights.
We have q + 1 = 9 regression parameters, and from this summary statistics we
observe that not all variables should be kept in the model. If we perform backward
elimination using drop1 in each step, see Sect. 5.3.3, we first drop BonusClass
and then Gender, resulting in a reduced model with 7 parameters. We call this
reduced model Gamma GLM2.
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Listing 5.11 Results in model Gamma GLM1 using the R command glm

1 Call:
2 glm(formula = ClaimAmount/ClaimNb ~ OwnerAge + I(OwnerAge^2) +
3 AreaGLM + RiskClass + VehAge + I(VehAge^2) + Gender + BonusClass,
4 family = Gamma(link = "log"), data = mcdata0, weights = ClaimNb)
5
6 Deviance Residuals:
7 Min 1Q Median 3Q Max
8 -3.3683 -1.4585 -0.5979 0.4354 3.4763
9

10 Coefficients:
11 Estimate Std. Error t value Pr(>!t!)
12 (Intercept) 8.9737854 0.5532821 16.219 < 2e-16 ***
13 OwnerAge 0.1072781 0.0280862 3.820 0.000147 ***
14 I(OwnerAge^2) -0.0014508 0.0003489 -4.158 3.65e-05 ***
15 AreaGLM -0.0768512 0.0368284 -2.087 0.037303 *
16 RiskClass 0.0615575 0.0327553 1.879 0.060651 .
17 VehAge -0.2051148 0.0296184 -6.925 1.05e-11 ***
18 I(VehAge^2) 0.0062649 0.0015946 3.929 9.45e-05 ***
19 GenderMale 0.1085538 0.1673443 0.649 0.516772
20 BonusClass 0.0089004 0.0225371 0.395 0.693029
21 ---
22 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
23
24 (Dispersion parameter for Gamma family taken to be 1.536577)
25
26 Null deviance: 1368.0 on 655 degrees of freedom
27 Residual deviance: 1126.5 on 647 degrees of freedom
28 AIC: 14922
29
30 Number of Fisher Scoring iterations: 11

Table 5.13 Run times, number of parameters, AICs, Pearson’s dispersion estimate, in-sample
losses, tenfold cross-validation losses and the in-sample average claim amounts of the null model
(gamma intercept model) and the gamma GLMs

Run # AIC Dispersion In-sample Tenfold CV Average

time Param. est. ϕ̂P loss on L loss D̂CV amount

Gamma null – 1 + 1 14’416 2.057 2.085 2.091 24’641

Gamma GLM1 1s 9 + 1 14’277 1.537 1.717 1.752 25’105

Gamma GLM2 1s 7 + 1 14’274 1.544 1.719 1.747 25’130

The results of models Gamma GLM1 and Gamma GLM2 are presented in
Table 5.13. We show AICs, Pearson’s dispersion estimate, the in-sample deviance
losses on all available data, the corresponding tenfold cross-validation losses, and
the average claim amounts.

Firstly, we observe that the GLMs do not meet the balance property. This is
implied by the fact that we do not use the canonical link to avoid any sort of difficulty
of dealing with the one-sided bounded effective domain � = (−∞, 0). For pricing,
the intercept parameter β̂MLE

0 should be shifted to eliminate this bias, i.e, we need to
shift this parameter under the log-link by − log(25′130/24′641) for model Gamma
GLM2.

Secondly, the in-sample and tenfold cross-validation losses are not directly
comparable to AIC. Observe that we need to know the dispersion parameter ϕ in
order to calculate both of these statistics. For the in-sample and cross-validation
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losses we have set ϕ = 1, thus, all these figures are directly comparable. For AIC
we have estimated the dispersion parameter ϕ with MLE. This is the reason for
increasing the number of parameters in Table 5.13 by +1. Moreover, the resulting
AICs differ from the ones received from the R command glm, see, for instance,
Listing 5.11. The AIC value in Listing 5.11 does not consider all terms appropriately
due to the inclusion of weights, this is similar to Remark 5.22, it uses the
deviance dispersion estimate ϕ̂D, i.e., not the MLE and (still) increases the number
of parameters by 1 because the dispersion is estimated. For these reasons, we have
implemented our own code for calculating AIC. Both AIC and the tenfold cross-
validation losses say that we should give preference to model Gamma GLM2.

The dispersion estimate in Listing 5.11 corresponds to Pearson’s estimate

ϕ̂P = 1

m − (q + 1)

m∑
i=1

ni

(Yi − μ̂i)
2

μ̂2
i

. (5.49)

We observe that the dispersion estimate is roughly 1.5 which gives an estimate of
the shape parameter α = 1/ϕ of 2/3. A shape parameter less than 1 implies that the
density of the gamma distribution is strictly decreasing, see Fig. 2.1. Often this is a
sign that the model does not fully fit the data, and if we use this model for simulation
we may receive too many observations close to zero compared to the true data.
A shape parameter less than 1 may be implied by more heterogeneity in the data
compared to what the chosen gamma GLM allows for or by large claims that cannot
be explained by the present gamma density structure. Thus, there is some sign here
that the data is more heavy-tailed than our model choice suggests. Alternatively,
there might be some need to also model the shape parameter with a regression
model; this could be done using the vector-valued parameter EF representation of
the gamma model, see Sect. 2.1.3. In view of Fig. 5.10 (rhs) it may also be that
the feature information is not sufficient to describe the second mode in 4, thus, we
probably need more explanatory information to reduce dispersion.

In Fig. 5.11 we give the Tukey–Anscombe plot and a QQ plot. Note that the
observations for ni = 1 follow a gamma distribution with shape parameter α

and scale parameter ci = α/μi = −αθi . Thus, if we scale Yi/μi , we receive
i.i.d. gamma random variables with shape and scale parameters equal to α. This
then allows us for ni = 1 to plot the empirical distribution of Yi/μ̂i against �(α, α)

in a QQ plot where we estimate 1/α by Pearson’s dispersion estimate. The Tukey–
Anscombe plot looks reasonable, but the QQ plot shows that the gamma model
does not entirely fit the data. From this plot we cannot conclude whether the gamma
distribution is causing the problem or whether it is a missing term in the regression
structure. We only see that the data is over-dispersed, resulting in more heavy-tailed
observations than the theoretical gamma model can explain, and a compensation
by too many small observations (which is induced by over-dispersion, i.e., a shape
parameter smaller than one). In the network chapter we will refine the regression
function, keeping the gamma assumption, to understand which modeling part is
causing the difficulty.

Remark 5.26 For the calculation of AIC in Table 5.13 we have used the MLE of the
dispersion parameter ϕ. This is obtained by solving the score equation (5.11) for the



5.3 Model Validation 173

8.0 8.5 9.0 9.5 10.0 10.5 11.0

−
3

−
2

−
1

0
1

2
3

Tukey−Anscombe plot: fitted Gamma GLM2

fitted means (log−scale)

de
vi

an
ce

 r
es

id
ua

ls

0 2 4 6 8

0
2

4
6

8

QQ plot: fitted Gamma GLM2

theoretical values
ob

se
rv

ed
 v

al
ue

s
Fig. 5.11 (lhs) Tukey–Anscombe plot of the fitted model Gamma GLM2, and (rhs) QQ plot of
the fitted model Gamma GLM2

gamma case. It is given by, we set α = 1/ϕ and we calculate the MLE of α instead,

∂

∂α
	Y (β, α) =

n∑
i=1

vi

[
Yih(μ(xi )) − κ (h(μ(xi ))) + log Yi + log(αvi ) + 1 − �(αvi)

]
= 0,

where �(α) = �′(α)/�(α) is the digamma function. We calculate the second
derivative w.r.t. α, see also (2.30),

∂2

∂α2 	Y (β, α) =
n∑

i=1

vi

[
1

α
− vi�

′(αvi)

]
=

n∑
i=1

v2
i

[
1

αvi

− � ′(αvi)

]
< 0 for α > 0,

the negativity follows from Theorem 1 in Alzner [9]. In fact, the function log α −
�(α) is strictly completely monotonic for α > 0. This says that the log-likelihood
	Y (β, α) is a concave function in α > 0 and the solution to the score equation is
unique, giving the MLE of α and ϕ, respectively.

5.3.8 Lab: Inverse Gaussian GLM for Claim Sizes

We present the inverse Gaussian GLM in this section as a competing model to the
gamma GLM studied in the previous section.

Infinite Divisibility

In the gamma model above we have used that the total claim amount S = ∑n
j=1 Zj

has a gamma distribution for given claim counts N = n > 0 and i.i.d. gamma
claim sizes Zj . This property is closely related to divisibility. A random variable S

is called divisible by n ∈ N if there exist i.i.d. random variables Z1, . . . , Zn such



174 5 Generalized Linear Models

that

S
(d)=

n∑
j=1

Zj ,

and S is called infinitely divisible if S is divisible by n for all n ∈ N. The EDF
is based on parameters (θ, ω) ∈ � × W . Jørgensen [203] gives the following
interesting result.

Theorem 5.27 (Theorem 3.7 in Jørgensen [203], Without Proof) Choose a
member of the EDF with parameter set � × W . Then

• the index set W is an additive semi-group and N ⊆ W ⊆ R+, and
• the members of the chosen EDF are infinitely divisible if and only if W = R+.

This theorem tells us how to aggregate and disaggregate within EDFs, e.g.,
the Poisson, gamma and inverse Gaussian models are infinitely divisible, and the
binomial distribution is divisible by n with the disaggregated random variables
belonging to the same EDF and the same canonical parameter, see Sect. 2.2.2. In
particular, we also refer to Corollary 2.15 on the convolution property.

Inverse Gaussian Generalized Linear Model

Alternatively to the gamma GLM one often explores an inverse Gaussian GLM
which has a cubic variance function V (μ) = μ3. We bring this inverse Gaussian
model into the same form as the gamma model of Sect. 5.3.7, so that we can
aggregate claims within insurance policies. The mean, the variance and the moment
generating function of an inverse Gaussian random variable Zi,j with parameters
αi, ci > 0 are given by

E[Zi,j ] = αi

ci

, Var(Zi,j ) = αi

c3
i

and MZi,j (r) = exp

{
αi

[
ci −

√
c2
i − 2r

]}
,

where the moment generating function requires r < c2
i /2 to be finite. From the

moment generating function we see that Si = ∑ni

j=1 Zi,j is inverse Gaussian
distributed with parameters niαi and ci . Finally, we scale Yi = Si/(niαi) which
provides us with an inverse Gaussian distribution with parameters n

1/2
i α

1/2
i and

n
1/2
i α

1/2
i ci . This random variable Yi has a single-parameter EDF inverse Gaussian

distribution in its reproductive form, namely,

Yi ∼ f (y; θi, vi/ϕi) = exp

{
yθi − κ(θi)

ϕi/vi

+ a(y; vi/ϕi)

}
(5.50)

= α
1/2
i√

2π
vi

y3
exp

{
− αi

2y/vi

(
1 −√−2θiy

)2
}

,
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with cumulant function κ(θ) = −√−2θ for θ ∈ � = (−∞, 0], weight vi = ni ,
dispersion parameter ϕi = 1/αi and canonical parameter θi = −c2

i /2.
Similarly to the gamma case, this representation is not directly useful if the

parameter αi is not known. Therefore, we parametrize this model differently.
Namely, we consider

Yi = Si/ni ∼ InvGauss
(
n

1/2
i αi , n

1/2
i ci

)
. (5.51)

This re-scaled random variable has that same inverse Gaussian EDF (5.50), but
we need to re-interpret the parameters. We have dispersion parameter ϕi = 1/α2

i

and canonical parameter θi = −c2
i /(2α2

i ). For our GLM analysis we will treat
the parameter αi ≡ α > 0 as a nuisance parameter that does not depend on the
specific policy i. Thus, we have constant dispersion ϕ = 1/α2 and only the scale
parameter ci is assumed to be policy dependent through the canonical parameter
θi = −c2

i /(2α2).
We are now in the same situation as in the gamma case in Sect. 5.3.7. We choose

the log-link for g which implies

μi = Eθi [Yi ] = κ ′(θi) = 1√−2θi

= exp{ηi} = exp〈β, x i〉,

for xi ∈ X ⊂ R
q+1 describing the pre-processed features of policy i. We use the

same feature pre-processing as in model Gamma GLM2, and we call this resulting
model IG GLM2. Again the constant dispersion parameter ϕ = 1/α2 cancels in the
score equations, thus, we do not need to explicitly specify the nuisance parameter
α to estimate the regression parameter β ∈ R

q+1. However, there is an important
difference to the gamma GLM, namely, as stated in Example 5.6, we do not have a
concave maximization problem and Fisher’s scoring method needs a suitable initial
value. We start the fitting algorithm in the parameters of model Gamma GLM2.

The in-sample deviance loss in the inverse Gaussian GLM is given by

D(L, μ̂(·)) = 1

m

m∑
i=1

ni

ϕ

(Yi − μ̂(xi ))
2

μ̂(xi )2 Yi

, (5.52)

where i runs over the policies i = 1, . . . ,m with positive claims Yi = Si/ni > 0,

and μ̂(xi ) = exp〈β̂MLE
, x i〉 is the MLE estimated regression function. The unit

deviances behave as

d (Yi, μi) = Yi

(
Y−1

i − μ−1
i

)2
, (5.53)
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Table 5.14 Run times, number of parameters, AICs, in-sample losses, tenfold cross-validation
losses and the in-sample average claim amounts of the null gamma model, model Gamma GLM2,
the null inverse Gaussian model, and model inverse Gaussian GLM2; the deviance losses use unit
dispersion ϕ = 1

Run # In-sample Tenfold CV Average

time Param. AIC loss on L loss D̂CV amount

Gamma null – 1 + 1 14’416 2.085 2.091 24’641

Gamma GLM2 1 s 7 + 1 14’274 1.719 1.747 25’130

IG null – 1 + 1 14’715 5.012 · 10−4 5.016 · 10−4 24’641

IG GLM2 1 s 7 + 1 14’686 4.793 · 10−4 4.820 · 10−4 32’268

note that the log-likelihood is symmetric around its mode for scale μ−1
i , see Fig. 5.5

(rhs). From this we receive deviance residuals (for v/ϕ = 1)

rD
i = sign(Yi − μi)

√
d (Yi , μi) = Y

1/2
i

(
μ−1

i − Y−1
i

)
.

Thus, these residuals behave as Y
1/2
i for Yi → ∞ (and fixed μ−1

i ), which is

more heavy-tailed than the cube-root behavior Y
1/3
i in the gamma case, see (5.48).

Another difference to the gamma case is that the deviance loss (5.52) is not scale-
invariant, see also (11.4), below.

We revisit the example of Table 5.13, but we replace the gamma distribution
by the inverse Gaussian distribution. The results in Table 5.14 show that the inverse
Gaussian model is not fully competitive on this data set. In view of (5.43) we observe
that the coefficient of variation (standard deviation divided by mean) is in the gamma
model given by 1/

√
α, thus, in the gamma model this coefficient of variation is

independent of the expected claim size μi and only depends on the shape parameter
α. In the inverse Gaussian model the coefficient of variation is given by

Vco(Zi,j ) =
√

Var(Zi,j )

E[Zi,j ] =
√

μi

α
,

thus, it monotonically increases in the expected claim size μi . It seems that this
structure is not fully suitable for this data set, i.e., there is no indication that the
coefficient of variation increases in the expected claim size. We come back to a
comparison of the gamma and the inverse Gaussian model in Sect. 11.1, below.

5.3.9 Log-Normal Model for Claim Sizes: A Short Discussion

Another way to improve the gamma model of Sect. 5.3.7 could be to use a log-
normal distribution instead. In the above situation this does not work because the
observations are not in the right format. If the claim observations Zi,j are log-
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normally distributed, then log(Zi,j ) are normally distributed. Unfortunately, in our
Swedish motorcycle data set we do not have individual claim observations Zi,j ,
but the provided information is aggregated over all claims per insurance policy, i.e.,
Si = ∑Ni

j=1 Zi,j . Therefore, there is no possibility here to challenge the gamma
framework of Sect. 5.3.7 with a corresponding log-normal framework, because
the log-normal framework is not closed under summation of i.i.d. log-normally
distributed random variables.

We would like to give some remarks that concern calculations on the log-scale (or
any other strictly increasing and concave transformation of the original data). For the
log-normal distribution, as well as in similar cases like the log-gamma distribution,
one works with logged observations Yi = log(Zi). This is a strictly monotone
transformation and the MLEs in the log-normal model based on observations Zi

and in the normal model based on observations Yi = log(Zi) coincide. This can be
seen from the following calculation. We start from the log-normal density on R+,
and we do a transformation of variable z > 0 �→ y = log(z) ∈ R with dy = dz/z

fLN(z; μ, σ 2)dz = 1√
2πσ 2

1

z
exp

{
− 1

2σ 2 (log(z) − μ)2
}

dz

= 1√
2πσ 2

exp

{
− 1

2σ 2 (y − μ)2
}

dy = f�(y; μ, σ 2)dy.

From this we see that the MLEs will coincide.
In many situations, one assumes that σ 2 > 0 is a given nuisance parameter,

and one models x �→ μ(x) with a GLM within the single-parameter EDF. In the
log-normal/Gaussian case one typically chooses the canonical link on the log-scale
which is the identity function. This then allows one to perform a classical linear
regression for μ(x) = 〈β, x〉 using the logged observations Y = (Y1, . . . , Yn)

� =
(log(Z1), . . . , log(Zn))

�, and the corresponding MLE is given by

β̂
MLE = (X�X)−1X�Y , (5.54)

for full rank q + 1 ≤ n design matrix X. Note that in this case we have a closed-
form solution for the MLE of β. This is called the homoskedastic case because
all observations Yi are assumed to have the same variance σ 2, otherwise, in the
heteroskedastic case, we would still have to include the covariance matrix.

Since we work with the canonical link on the log-scale we have the balance
property on the log-scale, see Corollary 5.7. Thus, we receive unbiasedness

n∑
i=1

Eβ

[
E

β̂
MLE [Yi]

]
=

n∑
i=1

Eβ

[
〈β̂MLE

, xi〉
]

=
n∑

i=1

Eβ [Yi ] =
n∑

i=1

μ(xi ).

(5.55)
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Fig. 5.12 (lhs) Tukey–Anscombe plot of the fitted Gaussian model μ̂(xi ) on the logged claim
sizes Yi = log(Zi ), and (rhs) estimated means μ̂Zi

as a function of μ̂(xi ) considering
heteroskedasticity σ̂ (xi )

If we move back to the original scale of the observations Zi we receive from the
log-normal assumption

E
(β̂

MLE
,σ 2)

[Zi] = exp
{
〈β̂MLE

, xi〉 + σ 2/2
}

.

Therefore, we need to adjust with the nuisance parameter σ 2 for the back-
transformation to the original observation scale. At this point, typically, the dif-
ficulties start. Often, a good back-transformation involves a feature dependent
variance parameter σ 2(xi ), thus, in many practical applications the homoskedas-
ticity assumption is not fulfilled, and a constant variance parameter choice leads to
a poor model on the original observation scale.

A suitable estimation of σ 2(xi ) may turn out to be rather difficult. This is
illustrated in Fig. 5.12. The left-hand side of this figure shows the Tukey–Anscombe
plot of the homoskedastic case providing unscaled (σ 2 ≡ 1) (Pearson’s) residuals
on the log-scale

rP
i = log(Zi) − μ̂(xi ) = Yi − μ̂(xi ).

The light-blue color shows an insurance policy dependent standard deviation
estimate σ̂ (xi ). In our case this estimate is non-monotone in μ̂(xi ) (which is quite
common on real data). Using this estimate we can estimate the means of the log-
normal random variables by

μ̂Zi = Ê[Zi] = exp
{
μ̂(xi ) + σ̂ (xi )

2/2
}

.
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The right-hand side of Fig. 5.12 plots these estimated means μ̂Zi against the
estimated means μ̂(xi ) on the log-scale. We observe a graph that is non-monotone,
implied by the non-monotonicity of the standard deviation estimate σ̂ (xi ) as a
function of μ̂(xi ). This non-monotonicity is not bad per se, as we still have a
proper statistical model, however, it might be rather counter-intuitive and difficult to
explain. For this reason it is advisable to directly model the expected value by one
single function, and not to decompose it into different regression functions.

Another important point to be considered is that for model selection using AIC
we have to work on the same scale for all models. Thus, if we use a gamma model to
model Zi , then for an AIC selection we need to evaluate also the log-normal model
on that scale. This can be seen from the justification in Sect. 4.2.3.

Finally, we focus on unbiasedness. Note that on the log-scale we have unbiased-
ness (5.55) through the balance property. Unfortunately, this does not carry over to
the original scale. We give a small example, where we assume that there is neither
any uncertainty about the distributional model nor about the nuisance parameter.
That is, we assume that Zi are i.i.d. log-normally distributed with parameters μ and
σ 2, where only μ is unknown. The MLE of μ is given by

μ̂MLE = 1

n

n∑
i=1

log(Zi) ∼ N (μ, σ 2/n).

In this case we have

1

n

n∑
i=1

E(μ,σ 2)

[
E(μ̂MLE,σ 2)[Zi]

] = 1

n

n∑
i=1

E(μ,σ 2)

[
exp{μ̂MLE}

]
exp{σ 2/2}

= exp
{
μ + (1 + n−1)σ 2/2

}

> exp
{
μ + σ 2/2

}
= 1

n

n∑
i=1

E(μ,σ 2) [Zi] .

Volatility in parameter estimation μ̂MLE leads to a positive bias in this case. Note
that we have assumed full knowledge of the distributional model (i.i.d. log-normal)
and the nuisance parameter σ 2 in this calculation. If, for instance, we do not know
the true nuisance parameter and we work with (deterministic) σ̃ 2 � σ 2 and n > 1,
we can get a negative bias

1

n

n∑
i=1

E(μ,σ 2)

[
E(μ̂MLE ,̃σ 2)[Zi]

] = 1

n

n∑
i=1

E(μ,σ 2)

[
exp{μ̂MLE}

]
exp{̃σ 2/2}

= exp
{
μ + σ 2/(2n) + σ̃ 2/2

}

< exp
{
μ + σ 2/2

}
= 1

n

n∑
i=1

E(μ,σ 2) [Zi] .
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This shows that working on the log-scale is rather difficult because the back-
transformation is far from being trivial, and for unknown nuisance parameter not
even the sign of the bias is clear. Similar considerations apply to the frequently used
Box–Cox transformation [48] for χ �= 1

Zi �→ Yi = Z
χ
i − 1

χ
.

For this reason, if unbiasedness is a central requirement (like in insurance pricing)
non-linear transformations should only be used with great care (and only if
necessary).

5.4 Quasi-Likelihoods

Above we have been mentioning the notion of over-dispersed Poisson models.
This naturally leads to so-called quasi-Poisson models and quasi-likelihoods. The
framework of quasi-likelihoods has been introduced by Wedderburn [376]. In this
section we give the main idea behind quasi-likelihoods, and for a more detailed
treatment and mathematical results we refer to Chapter 8 of McCullagh–Nelder
[265].

In Sect. 5.1.4 we have discussed the estimation of GLMs. This has been based
on the explicit knowledge of the full log-likelihood function 	Y (β) for given data
Y . This has allowed us to calculate the score equations s(β,Y ) = ∇β	Y (β) = 0
whose solutions (Z-estimators) contain the MLE for β. The solutions of the score
equations themselves, using Fisher’s scoring method, no longer need the explicit
functional form of the log-likelihood, but they are only based on the first and
second moments, see (5.9) and Remarks 5.4. Thus, all models where these first
two moments coincide will provide the same MLE for the regression parameter
β; this is also the explanation behind the IRLS algorithm. Moreover, the first two
moments are sufficient for prediction and uncertainty quantification based on mean
squared errors, and they are also sufficient to quantify asymptotic normality. This is
exactly what motivates the quasi-likelihood considerations, and these considerations
are also related to the quasi-generalized pseudo maximum likelihood estimator
(QPMLE) that we are going to discuss in Theorem 11.8, below.

Assume that Y is a random vector having first moment μ ∈ R
n, positive

definite variance function V (μ) ∈ R
n×n and dispersion parameter ϕ. The quasi-

(log-)likelihood function 	Y (μ) assumes that its gradient is given by

∇μ	Y (μ) = 1

ϕ
V (μ)−1 (Y − μ) .

In case of a diagonal variance function V (μ) this relates to the score (5.9). The
remaining step is to model the mean parameter μ = μ(β) ∈ R

n as a function of a
lower dimensional regression parameter β ∈ R

q+1, we also refer to Fig. 5.2. For
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this last step we assume that the Jacobian B ∈ R
n×(q+1) of dμ/dβ has full rank

q + 1. The score equations for β and given observations Y then read as

1

ϕ
B�V (μ(β))−1 (Y − μ(β)) = 0.

This is of exactly the same structure as the score equations in Proposition 5.1, and
the roots are found by using the IRLS algorithm for t ≥ 0, see (5.12),

β̂
(t) �→ β̂

(t+1) =
(
B�V (μ̂(t))−1B

)−1
B�V (μ̂(t))−1

(
Bβ̂

(t) + Y − μ̂(t)
)

,

where μ̂(t) = μ(β̂
(t)

).
We conclude with the following points about quasi-likelihoods:

• For regression parameter estimation within the quasi-likelihood framework it
is sufficient to know the structure of the first two moments μ(β) ∈ R

n and
V (μ) ∈ R

n×n as well as the score equations. Thus, we do not need to explicitly
specify a distributional family for the observations Y . This structure of the first
two moments is then sufficient for their estimation using the IRLS algorithm, i.e.,
we receive the predictors within this framework.

• Since we do not specify the full distribution of Y we can neither simulate from
this model nor can we calculate quantities where the full log-likelihood of the
model needs to be known. For example, we cannot calculate AIC in a quasi-
likelihood model.

• The quasi-likelihood model is characterized by the functional forms of μ(β) and
V (μ). The former plays the role of the link function and the linear predictor in the
GLM, and the latter plays the role of the variance function within the EDF which
is characterized through the cumulant function κ . For instance, if we assume to
have a diagonal matrix

V (μ) = diag(V (μ1), . . . , V (μn)),

then, the choice of the variance function μ �→ V (μ) describes the explicit
selection of the quasi-likelihood model. If we choose the power variance function
V (μ) = μp, p �∈ (0, 1), we have a quasi-Tweedie’s model.

• For prediction uncertainty evaluation we also need an estimate of the dispersion
parameter ϕ > 0. Since we do not know the full likelihood in this approach,
Pearson’s estimate ϕ̂P is the only option we have to estimate ϕ.

• For asymptotic normality results and hypothesis testing within the quasi-
likelihood framework we refer to Section 8.4 of McCullagh–Nelder [265].
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5.5 Double Generalized Linear Model

In the derivations above we have treated the dispersion parameter ϕ in the GLM as
a nuisance parameter. In the case of a homogeneous dispersion parameter it can be
canceled in the score equations for MLE, see (5.9). Therefore, it does not influence
MLE, and in a subsequent step this nuisance parameter can still be estimated
using, e.g., Pearson’s or deviance residuals, see Sect. 5.3.1 and Remark 5.26. In
some examples we may have systematic effects in the dispersion parameter, too.
In this case the above approach will not work because a heterogeneous dispersion
parameter no longer cancels in the score equations. This has been considered in
Smyth [341] and Smyth–Verbyla [343]. The heterogeneous dispersion situation is
of general interest for GLMs, and it is of particular interest for Tweedie’s CP GLM
if we interpret Tweedie’s distribution [358] as a CP model with i.i.d. gamma claim
sizes, see Proposition 2.17; we also refer to Jørgensen–de Souza [204], Smyth–
Jørgensen [342] and Delong et al. [94].

5.5.1 The Dispersion Submodel

We extend model assumption (5.1) by assuming that also the dispersion parameter
ϕi is policy i dependent. Assume that all random variables Yi are independent and
have densities w.r.t. a σ -finite measure ν on R given by

Yi ∼ f (yi; θi, vi/ϕi) = exp

{
yiθi − κ(θi)

ϕi/vi

+ a(yi; vi/ϕi)

}
,

for 1 ≤ i ≤ n, with canonical parameters θi ∈ �̊, exposures vi > 0 and dispersion
parameters ϕi > 0. As in (5.5) we assume that every policy i is equipped with
feature information xi ∈ X such that for a given link function g : M → R we can
model its mean as

xi �→ g(μi) = g(μ(xi )) = g
(
Eθ(xi ) [Yi ]

) = ηi = η(xi ) = 〈β, xi〉. (5.56)

This provides us with log-likelihood function for observation Y = (Y1, . . . , Yn)
�

β �→ 	Y (β) =
n∑

i=1

vi

ϕi

[
Yih(μ(xi )) − κ (h(μ(xi )))

]
+ a(Yi; vi/ϕi),

with canonical link h = (κ ′)−1. The difference to (5.7) is that the dispersion
parameter ϕi now depends on the insurance policy which requires additional
modeling. We choose a second strictly monotone and smooth link function gϕ :
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R+ → R, and we express the dispersion of policy 1 ≤ i ≤ n by

gϕ(ϕi) = gϕ(ϕ(zi )) = 〈γ , zi〉, (5.57)

where zi is the feature of policy i, which may potentially differ from xi . The
rationale behind this different feature is that different information might be relevant
for modeling the dispersion parameter, or feature information might be differently
pre-processed compared to the response Yi . We now need to estimate two regression
parameters β and γ in this approach on possibly differently pre-processed feature
information xi and zi of policy i. In general, this is not easily doable because the
term a(Yi; vi/ϕi) of the log-likelihood of Yi may have a complicated structure (or
may not be available in closed form like in Tweedie’s CP model).

5.5.2 Saddlepoint Approximation

We reformulate the EDF density using the unit deviance d(Y, μ) defined in (2.25);
we drop the lower index i for the moment. Set θ = h(μ) ∈ �̊ for the canonical link
h, then

f (y; θ, v/ϕ) = exp

{
v

ϕ
[yh(μ) − κ(h(μ))] + a(y; v/ϕ)

}

= exp

{
v

ϕ
[yh(y) − κ(h(y))] + a(y; v/ϕ)

}
exp

{
− 1

2ϕ/v
d(y, μ)

}

def.= a∗(y; ω) exp
{
−ω

2
d(y, μ)

}
, (5.58)

with ω = v/ϕ ∈ W . This corresponds to (2.27), and it brings the EDF density into
a Gaussian-looking form. A general difficulty is that the term a∗(y; ω) may have a
complicated structure or may not be given in closed form. Therefore, we consider
its saddlepoint approximation; this is based on Section 3.5 of Jørgensen [203].

Suppose that we are in the absolutely continuous EDF case and that κ is steep.
In that case Y ∈ M, a.s., and the variance function y �→ V (y) is well-defined for
all observations Y = y, a.s. Based on Daniels [87], Barndorff-Nielsen–Cox [24]
proved the following statement, see Theorem 3.10 in Jørgensen [203]: assume there
exists ω0 ∈ W such that for all ω > ω0 the density (5.58) is bounded. Then, the
following saddlepoint approximation is uniform on compact subsets of the support
T of Y

f (y; θ, v/ϕ) =
(

2πϕ

v
V (y)

)−1/2

exp

{
− 1

2ϕ/v
d(y, μ)

}
(1 + O(ϕ/v)) ,

(5.59)
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as ϕ/v → 0. What makes this saddlepoint approximation attractive is that we can
get rid of a complicated function a∗(y; ω) by a neat approximation (

2πϕ
v

V (y))−1/2

for sufficiently large volumes v, and at the same time, this does not affect the unit
deviance d(y, μ), preserving the estimation properties of μ. The discrete counterpart
is given in Theorem 3.11 of Jørgensen [203].

Using saddlepoint approximation (5.59) we receive an approximate log-
likelihood function

	Y (μ, ϕ) ≈ 1

2

[
−ϕ−1vd(Y, μ) − log (ϕ)

]
− 1

2
log

(
2π

v
V (Y )

)
.

This approximation has an attractive form for dispersion estimation because it gives

an approximate EDF for observation d
def.= vd(Y, μ), for given μ. Namely, for

canonical parameter φ = −ϕ−1 < 0 we have approximation

	Y (μ, φ) ≈ dφ − (− log (−φ))

2
− 1

2
log

(
2π

v
V (Y )

)
. (5.60)

The right-hand side has the structure of a gamma EDF for observation d with
canonical parameter φ < 0, cumulant function κϕ(φ) = − log(−φ) and dispersion
parameter 2. Thus, we have the structure of an approximate gamma model on the
right-hand side of (5.60) with, for given μ,

Eφ [d|μ] ≈ κ ′
ϕ(φ) = − 1

φ
= ϕ, (5.61)

Varφ(d|μ) ≈ 2κ ′′
ϕ(φ) = 2

1

φ2 = 2ϕ2. (5.62)

These statements say that for given μ and assuming that the saddlepoint approx-
imation is sufficiently accurate, d is approximately gamma distributed with shape
parameter 1/2 and canonical parameter φ (which relates to the dispersion ϕ in the
mean parametrization). Thus, we can estimate φ and ϕ, respectively, with a (second)
GLM from (5.60), for given mean parameter μ.

Remarks 5.28

• The accuracy of the saddlepoint approximation is discussed in Section 3.2 of
Smyth–Verbyla [343]. The saddlepoint approximation is exact in the Gaussian
and the inverse Gaussian case. In the Gaussian case, we have log-likelihood

	Y (μ, φ) = dφ − (− log (−φ))

2
− 1

2
log

(
2π

v

)
,
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with variance function V (Y ) = 1. In the inverse Gaussian case, we have log-
likelihood

	Y (μ, φ) = dφ − (− log (−φ))

2
− 1

2
log

(
2π

v
Y 3
)

,

with variance function V (Y ) = Y 3. Thus, in the Gaussian case and in the inverse
Gaussian case we have a gamma model for d with mean ϕ and shape parameter
1/2, for given μ; for a related result we also refer to Theorem 3 of Blæsild–Jensen
[38]. For Tweedie’s models with p ≥ 1, one can show that the relative error of the
saddlepoint approximation is a non-increasing function of the squared coefficient
of variation τ = ϕ

v
V (y)/y2 = ϕ

v
yp−2, leading to small approximation errors if

ϕ/v is sufficiently small; typically one requires τ < 1/3, see Section 3.2 of
Smyth–Verbyla [343].

• The saddlepoint approximation itself does not provide a density because in gen-
eral the term O(ϕ/v) in (5.59) is non-zero. Nelder–Pregibon [282] renormalized
the saddlepoint approximation to a proper density and studied its properties.

• In the gamma EDF case, the saddlepoint approximation would not be necessary
because this case can still be solved in closed form. In fact, in the gamma EDF
case we have log-likelihood, set φ = −v/ϕ < 0,

	Y (μ, φ) = φd(Y, μ) − χ(φ)

2
− log Y, (5.63)

with χ(φ) = 2(log �(−φ) + φ log(−φ) − φ). For given μ, this is an EDF
for d(Y, μ) with cumulant function χ on the effective domain (−∞, 0). This
provides us with expected value and variance

Eφ [d(Y, μ)|μ] = χ ′(φ) = 2 (−�(−φ) + log(−φ)) ≈ − 1

φ
,

Varφ(d(Y, μ)|μ) = 2χ ′′(φ) = 4

(
� ′(−φ) − 1

−φ

)
,

with digamma function � and the approximation exactly refers to the sad-
dlepoint approximation; for the variance statement we also refer to Fisher’s
information (2.30). For receiving more accurate mean approximations one can
consider higher order terms, e.g., the second order approximation is χ ′(φ) ≈
−1/φ + 1/(6φ2). In fact, from the saddlepoint approximation (5.60) and from
the exact formula (5.63) we receive in the gamma case Stirling’s formula

�(γ ) ≈ √
2πγ γ−1/2e−γ .

In the subsequent examples we will just use the saddlepoint approximation also
in the gamma EDF case.
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5.5.3 Residual Maximum Likelihood Estimation

The saddlepoint approximation (5.60) proposes to alternate MLE of β for the mean
model (5.56) and of γ for the dispersion model (5.57). Fisher’s information matrix
of the saddlepoint approximation (5.60) w.r.t. the canonical parameters θ and φ is
given by

I(θ, φ) = −Eθ,φ

(
φvκ ′′(θ) −v

(
Y − κ ′(θ)

)
−v

(
Y − κ ′(θ)

) − 1
2

1
φ2

)
=
(

v
ϕ(φ)

V (μ(θ)) 0

0 1
2Vϕ(ϕ(φ))

)
,

with variance function Vϕ(ϕ) = ϕ2, and emphasizing that we work in the canonical
parametrization (θ, φ). This is a positive definite diagonal matrix which suggests
that the algorithm alternating the β and γ estimations will have a fast convergence.
For fixed estimate γ̂ we calculate estimated dispersion parameters ϕ̂i = g−1

ϕ 〈γ̂ , zi〉
of policies 1 ≤ i ≤ n, see (5.57). These then allow us to calculate diagonal working
weight matrix

W(β) = diag

((
∂g(μi)

∂μi

)−2
vi

ϕ̂i

1

V (μi)

)
1≤i≤n

∈ R
n×n,

which is used in Fisher’s scoring method/IRLS algorithm (5.12) to receive MLE β̂,
given the estimates (ϕ̂i)i . These MLEs allow us to estimate the mean parameters
μ̂i = g−1〈β̂, xi〉, and to calculate the deviances

di = vid (Yi, μ̂i ) = 2vi

(
Yih (Yi) − κ (h (Yi)) − Yih (μ̂i ) + κ (h (μ̂i))

)
≥ 0.

Using (5.60) we know that these deviances can be approximated by gamma
distributions �(1/2, 1/(2ϕi)). This is a single-parameter EDF with dispersion
parameter 2 (as nuisance parameter) and mean parameter ϕi . This motivates the
definition of the working weight matrix (based on the gamma EDF model)

Wϕ(γ ) = diag

((
∂gϕ(ϕi)

∂ϕi

)−2 1

2

1

Vϕ(ϕi)

)
1≤i≤n

∈ R
n×n,

and the working residuals

Rϕ(d, γ ) =
(

∂gϕ(ϕi)

∂ϕi

(di − ϕi)

)�

1≤i≤n

∈ R
n.
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Fisher’s scoring method (5.12) iterates for s ≥ 0 the following recursion to receive
γ̂

γ̂ (s) �→ γ̂ (s+1) =
(
Z�Wϕ(γ̂ (s))Z

)−1
Z�Wϕ(γ̂ (s))

(
Zγ̂ (s) + Rϕ(d, γ̂ (s))

)
,

(5.64)
where Z = (z1, . . . , zn)

� is the design matrix used to estimate the dispersion
parameters.

5.5.4 Lab: Double GLM Algorithm for Gamma Claim Sizes

We revisit the Swedish motorcycle claim size data studied in Sect. 5.3.7. We expand
the gamma claim size GLM to a double GLM also modeling the systematic effects
in the dispersion parameter. In a first step we need to change the parametrization of
the gamma model of Sect. 5.3.7. In the former section we have modeled the average
claim size Si/ni ∼ �(niαi, nici), but for applying the saddlepoint approximation
we should use the reproductive form (5.44) of the gamma model. We therefore set

Yi = Si/(niαi) ∼ �(niαi , niαici ). (5.65)

The reason for the different parametrization in Sect. 5.3.7 has been that (5.65) is not
directly useful if αi is unknown because in that case the observations Yi cannot be
calculated. In this section we estimate ϕi = 1/αi which allows us to model (5.65);
a different treatment within Tweedie’s family is presented in Sect. 11.1.3. The only
difficulty is to initialize the double GLM algorithm. We proceed as follows.

(0) In an initial step we assume constant dispersion ϕi = 1/αi ≡ 1/α = 1. This
gives us exactly the mean estimates of Sect. 5.3.7 for Si/ni ∼ �(niα, nici);
note that for constant shape parameter α the mean of Si/ni can be estimated
without explicit knowledge of α (because it cancels in the score equations).
Using these mean estimates we calculate the MLE α̂(0) of the (constant) shape
parameter α, see Remark 5.26. This then allows us to determine the (scaled)
observations Y

(1)
i = Si/(ni α̂

(0)) and we initialize ϕ̂
(0)
i = 1/α̂(0).

(1) Iterate for t ≥ 1:

– estimate the mean μi of Yi using the mean GLM (5.56) based on the
observations Y

(t)
i and the dispersion estimates ϕ̂

(t−1)
i . This provides us with

μ̂
(t)
i ;

– based on the deviances d(t)
i = vid(Y

(t)
i , μ̂

(t)
i ), calculate the updated dis-

persion estimates ϕ̂
(t)
i using the dispersion GLM (5.57) and the residual

MLE iteration (5.64) with the saddlepoint approximation. Set for the updated
observations Y

(t+1)
i = Si ϕ̂

(t)
i /ni .
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Table 5.15 Number of parameters, AICs, Pearson’s dispersion estimate, in-sample losses, tenfold
cross-validation losses and the in-sample average claim amounts of the null model (gamma
intercept model) and the (double) gamma GLM

# Dispersion In-sample Tenfold CV Average

Param. AIC est. ϕ̂P loss on L loss D̂CV amount

Gamma null 1 + 1 14’416 2.057 2.085 2.091 24’641

Gamma GLM2 7 + 1 14’274 1.544 1.719 1.747 25’130

Double gamma GLM 7 + 6 14’258 – (1.721) – 26’413

In an initial double GLM analysis we use the feature information zi = xi for the
dispersion ϕi modeling (5.57). We choose for both GLMs the log-link which leads to
concave maximization problems, see Example 5.5. Running the above double GLM
algorithm converges in 4 iterations, and analyzing the resulting model we observe
that we should drop the variable RiskClass from the feature zi . We then run the
same double GLM algorithm with the feature information xi and the new zi again,
and the results are presented in Table 5.15.

The considered double GLM has parameter dimensions β ∈ R
7 and γ ∈ R

6. To
have comparability with AIC of Sect. 5.3.7, we evaluate AIC of the double GLM
in the observations Si/ni (and not in Yi ; i.e., similar to the gamma GLM). We
observe that it has an improved AIC value compared to model Gamma GLM2.
Thus, indeed, dispersion modeling seems necessary in this example (under the
GLM2 regression structure). We do not calculate in-sample and cross-validation
losses in the double GLM because in the other two models of Table 5.15 we have
set ϕ = 1 in these statistics. However, the in-sample loss of model Gamma GLM2
with ϕ = 1 corresponds to the (homogeneous) deviance dispersion estimate (up to
scaling n/(n − (q + 1))), and this in-sample loss of 1.719 can directly be compared
to the average estimated dispersion m−1 ∑m

i=1 ϕ̂i = 1.721 (in round brackets in
Table 5.15). On the downside, the double GLM has a bigger bias which needs an
adjustment.

In Fig. 5.13 (lhs) we give the normal plots of model Gamma GLM2 and the
double gamma GLM model. This plot is received by transforming the observations
to normal quantiles using the corresponding estimated gamma models. We see
quite some similarity between the two estimated gamma models. Both models
seem to have similar deficiencies, i.e., dispersion modeling improves explanation
of observations, however, either the regression function or the gamma distributional
assumption does not fully fit the data, especially for small claims. Finally, in
Fig. 5.13 (rhs) we plot the estimated dispersion parameters ϕ̂i against the logged
estimated means log(μ̂i ) (linear predictors). We observe that the estimated disper-
sion has a (weak) U-shape as a function of the expected claim sizes which indicates
that the tails cannot fully be captured by our model. This closes this example.

Remark 5.29 For the dispersion estimation ϕ̂i we use as observations the deviances
di = vid (Yi , μ̂i ), 1 ≤ i ≤ n. On a finite sample, these deviances are typically
biased due to the use of the estimated means μ̂i . Smyth–Verbyla [343] propose the
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Fig. 5.13 (lhs) Normal plot of the fitted models Gamma GLM2 and double GLM, (rhs) estimated
dispersion parameters ϕ̂i against the logged estimated means log(μ̂i ) (the orange line gives the
in-sample loss in model Gamma GLM2)

following bias correction. Consider the estimated hat matrix defined by

H = W(β̂, γ̂ )1/2X
(
X� W(β̂, γ̂ )X

)−1
X� W(β̂, γ̂ )1/2,

with the diagonal work weight matrix W(β̂, γ̂ ) depending on the estimated
regression parameters β̂ and γ̂ through μ and ϕ. Denote the diagonal entries of
the hat matrix by (hi,i )1≤i≤n. A bias corrected version of the deviances is received
by considering observations (1 − hi,i )

−1di = (1 − hi,i )
−1vid (Yi, μ̂i ), 1 ≤ i ≤ n.

We will come back to the hat matrix H in Sect. 5.6.1, below.

5.5.5 Tweedie’s Compound Poisson GLM

A popular situation for applying the double GLM framework is Tweedie’s CP
model introduced in Sect. 2.2.3, in particular, we refer to Proposition 2.17 for the
corresponding parametrization. Having claim frequency and claim sizes involved,
such a model can hardly be calibrated with one single regression function and a
constant dispersion parameter. An obvious choice is a double GLM, this is the
proposal presented in Smyth–Jørgensen [342]. In most of the cases one chooses for
both link functions g and gϕ the log-links because positivity needs to be guaranteed.
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This implies for the two working weight matrices of the double GLM

W(β) = diag

(
μ2

i

vi

ϕi

1

V (μi)

)
1≤i≤n

= diag

(
μ

2−p
i

vi

ϕi

)
1≤i≤n

,

Wϕ(γ ) = diag

(
ϕ2

i

1

2

1

Vϕ(ϕi)

)
1≤i≤n

= diag(1/2, . . . , 1/2).

The deviances in Tweedie’s CP model are given by, see (4.18),

di = vid (Yi, μ̂i ) = 2vi

(
Yi

Y
1−p
i − μ̂i

1−p

1 − p
− Y

2−p
i − μ̂i

2−p

2 − p

)
≥ 0,

and these deviances could still be de-biased, see Remark 5.29. The working
responses for the two GLMs are

R = (Yi/μi − 1)�1≤i≤n and Rϕ = (di/ϕi − 1)�1≤i≤n .

The drawback of this approach is that it only considers the (scaled) total claim
amounts Yi = Siϕi/vi as observations, see Proposition 2.17. These total claim
amounts consist of the number of claims Ni and i.i.d. individual claim sizes
Zi,j ∼ �(α, ci ), supposed Ni ≥ 1. Having observations of both claim amounts
Si and claim counts Ni allows one to build a Poisson GLM for claim counts and
a gamma GLM for claim sizes which can be estimated separately. This has also
been the reason of Smyth–Jørgensen [342] to enhance Tweedie’s model estimation
for known claim counts in their Section 4. Moreover, in Theorem 4 of Delong et
al. [94] it is proved that the two GLM approaches can be identified under log-link
choices.

5.6 Diagnostic Tools

In our examples we have studied several figures like AIC, cross-validation losses,
etc., for model and parameter selection. Moreover, we have plotted the results, for
instance, using the Tukey–Anscombe plot or the QQ plot. Of course, there are
numerous other plots and tools that can help us to analyze the results and to improve
the resulting models. We present some of these in this section.

5.6.1 The Hat Matrix

The MLE β̂
MLE

satisfies at convergence of the IRLS algorithm, see (5.12),

β̂
MLE =

(
X�W(β̂

MLE
)X
)−1

X�W(β̂
MLE

)
(
Xβ̂

MLE + R(Y , β̂
MLE

)
)

,
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with working residuals for β ∈ R
q+1

R(Y ,β) =
(

∂g(μi)

∂μi

∣∣∣∣
μi=μi(β)

(Yi − μi(β))

)�

1≤i≤n

∈ R
n.

Following Section 4.2.2 of Fahrmeir–Tutz [123], this allows us to define the so-
called hat matrix, see also Remark 5.29,

H = H(β̂
MLE

) = W(β̂
MLE

)1/2X
(
X�W(β̂

MLE
)X
)−1

X�W(β̂
MLE

)1/2 ∈ R
n×n,

(5.66)

recall that the working weight matrix W(β) is diagonal. The hat matrix H is
symmetric and idempotent, i.e. H 2 = H , with trace(H) = rank(H) = q + 1.
Therefore, H acts as a projection, mapping the observations Ỹ to the fitted values

Ỹ
def.= W(β̂

MLE
)1/2

(
Xβ̂

MLE + R(Y , β̂
MLE

)
)

�→ H Ỹ = W(β̂
MLE

)1/2Xβ̂
MLE

= W(β̂
MLE

)1/2η̂,

the latter being the fitted linear predictors. The diagonal elements hi,i of this hat
matrix H satisfy 0 ≤ hi,i ≤ 1, and values close to 1 correspond to extreme data
points i, in particular, for hi,i = 1 only observation Ỹi influences η̂i , whereas for
hi,i = 0 observation Ỹi has no influence on η̂i .

Figure 5.14 gives the resulting hat matrices of the double gamma GLM of
Sect. 5.5.4. On the left-hand side we show the diagonal entries hi,i of the claim
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Fig. 5.14 Diagonal entries hi,i of the two hat matrices of the example in Sect. 5.5.4: (lhs) for
means μ̂i and responses Yi , and (rhs) for dispersions ϕ̂i and responses di
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amount responses Yi (for the estimation of μi), and on the right-hand side the
corresponding plots for the deviance responses di (for the estimation of ϕi). These
diagonal elements hi,i are ordered on the x-axis w.r.t. the linear predictors η̂i . From
this figure we conclude that the diagonal entries of the hat matrices are bigger for
very small responses in our example, and the dispersion plot has a couple of more
special observations that may require further analysis.

5.6.2 Case Deletion and Generalized Cross-Validation

As a continuation of the previous subsection we can analyze the influence of
an individual observation Yi on the estimation of regression parameter β. This
influence is naturally measured by fitting the regression parameter based on the
full data D and based only on the observations L(−i) = D \ {Yi}, we also refer
to leave-one-out cross-validation in Sect. 4.2.2. The influence of observation Yi is
then obtained by comparing β̂

MLE
and β̂

MLE
(−i) . Since fitting n different models by

individually leaving out each observation Yi is too costly, one only explores a one-

step Fisher’s scoring update starting from β̂
MLE

that provides an approximation to

β̂
MLE
(−i) , that is,

β̂
(1)

(−i) =
(
X�

(−i)W(−i)(β̂
MLE

)X(−i)

)−1
X�

(−i)W(−i)(β̂
MLE

)
(
Xβ̂

MLE + R(Y , β̂
MLE

)
)

(−i)

=
(
X�

(−i)W(−i)(β̂
MLE

)X(−i)

)−1
X�

(−i)W(−i)(β̂
MLE

)1/2 Ỹ (−i),

where all lower indices (−i) indicate that we drop the corresponding row or/and
column from the matrices and vectors, and where Ỹ has been defined in the previous

subsection. This allows us to compare β̂
MLE

and β̂
(1)

(−i) to analyze the influence of
observation Yi .

To reformulate this approximation, we come back to the hat matrix H =
H(β̂

MLE
) = (hi,j )1≤i,j≤n defined in (5.66). It fulfills

W(β̂
MLE

)1/2Xβ̂
MLE = H Ỹ =

⎛
⎝ n∑

j=1

h1,j Ỹj , . . . ,

n∑
j=1

hn,j Ỹj

⎞
⎠

�
∈ R

n.

Thus, for predicting Yi we can consider the linear predictor (for the chosen link g)

η̂i = g(μ̂i ) = 〈β̂MLE
, xi〉 = (Xβ̂

MLE
)i = Wi,i (β̂

MLE
)−1/2

n∑
j=1

hi,j Ỹj .
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A computation of the linear predictor of Yi using the leave-one-out approximation

β̂
(1)

(−i) gives

η̂
(−i,1)
i = 〈β̂(1)

(−i), xi〉 = 1

1 − hi,i

η̂i − Wi,i (β̂
MLE

)−1/2 hi,i

1 − hi,i

Ỹi .

This allows one to efficiently calculate a leave-one-out prediction using the hat
matrix H . This also motivates to study the generalized cross-validation (GCV) loss
which is an approximation to leave-one-out cross-validation, see Sect. 4.2.2,

D̂GCV = 1

n

n∑
i=1

vi

ϕ
d
(
Yi, g

−1(η̂
(−i,1)
i )

)
(5.67)

= 2

n

n∑
i=1

vi

ϕ

[
Yih (Yi ) − κ (h (Yi)) − Yih

(
g−1(η̂

(−i,1)
i )

)
+ κ

(
h
(
g−1(η̂

(−i,1)
i )

)) ]
.

Example 5.30 (Generalized Cross-Validation Loss in the Gaussian Case) We study
the generalized cross-validation loss D̂GCV in the homoskedastic Gaussian case
vi/ϕ ≡ 1/σ 2 with cumulant function κ(θ) = θ2/2 and canonical link g(μ) =
h(μ) = μ. The generalized cross-validation loss in the Gaussian case is given by

D̂GCV = 1

n

n∑
i=1

1

σ 2

(
Yi − η̂

(−i,1)
i

)2
,

with (linear) leave-one-out predictor

η̂
(−i,1)
i = 〈β̂(1)

(−i), xi〉 =
n∑

j=1,j �=i

hi,j

1 − hi,i

Yj = 1

1 − hi,i

η̂i − hi,i

1 − hi,i

Yi .

This gives us generalized cross-validation loss in the Gaussian case

D̂GCV = 1

n

n∑
i=1

1

σ 2

(
Yi − η̂i

1 − hi,i

)2

,

with β independent hat matrix

H = X
(
X�X

)−1
X�.
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The generalized cross-validation loss is used, for instance, for generalized addi-
tive model (GAM) fitting where an efficient and fast cross-validation method is
required to select regularization parameters. Generalized cross-validation has been
introduced by Craven–Wahba [84] but these authors replaced hi,i by

∑n
j=1 hj,j /n.

It holds that
∑n

j=1 hj,j = trace(H) = q + 1, thus, using this approximation we
receive

D̂GCV ≈ 1

n

n∑
i=1

1

σ 2

(
Yi − η̂i

1 −∑n
j=1 hj,j /n

)2

= n

(n − (q + 1))2

n∑
i=1

(Yi − η̂i)
2

σ 2

= n

n − (q + 1)

ϕ̂P

σ 2 ,

with ϕ̂P being Pearson’s dispersion estimate in the Gaussian model, see (5.30). �

We give a numerical example based on the gamma GLM for the claim sizes
studied in Sect. 5.3.7.

Example 5.31 (Leave-One-Out Cross-Validation) The aim of this example is to
compare the generalized cross-validation loss D̂GCV to the leave-one-out cross-
validation loss D̂loo, see (4.34), the former being an approximation to the latter.
We do this for the gamma claim size model studied in Sect. 5.3.7. In this example
it is feasible to exactly calculate the leave-one-out cross-validation loss because we
have only 656 claims.

The results are presented in Table 5.16. Firstly, the different cross-validation
losses confirm that the model slightly (in-sample) over-fits to the data, which is
not a surprise when estimating 7 regression parameters based on 656 observations.
Secondly, the cross-validation losses provide similar numbers with leave-one-out
being slightly bigger than tenfold cross-validation, here. Thirdly, the generalized
cross-validation loss D̂GCV manages to approximate the leave-one-out cross-
validation loss D̂loo very well in this example.

Table 5.17 gives the corresponding results for model Poisson GLM1 of
Sect. 5.2.4. Firstly, in this example with 610’206 observations it is not feasible
to calculate the leave-one-out cross-validation loss (for computational reasons).
Therefore, we rely on the generalized cross-validation loss as an approximation.
From the results of Table 5.17 it seems that this approximation (rather) under-
estimates the loss (compared to tenfold cross-validation). Indeed, this is an
observation that we have made also in other examples. �

Table 5.16 Comparison of
different cross-validation
losses for model Gamma
GLM2

Gamma GLM2

In-sample loss D(L, μ̂MLE
L ) 1.719

Tenfold CV loss D̂CV 1.747

Leave-one-out CV loss D̂loo 1.756

Generalized CV loss D̂GCV 1.758
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Table 5.17 Comparison of
different cross-validation
losses for model Poisson
GLM1

Poisson GLM1

In-sample loss D(L, μ̂MLE
L ) 24.101

Tenfold CV loss D̂CV 24.121

Leave-one-out CV loss D̂loo N/A

Generalized CV loss D̂GCV 24.105

5.7 Generalized Linear Models with Categorical Responses

The reader will have noticed that the discussion of GLMs in this chapter has
been focusing on the single-parameter linear EDF case (5.1). In many actuarial
applications we also want to study examples of the vector-valued parameter
EF (2.2). We briefly discuss the categorical case since this case is frequently used.

5.7.1 Logistic Categorical Generalized Linear Model

We recall the EF representation of the categorical distribution studied in Sect. 2.1.4.
We choose as ν the counting measure on the finite set Y = {1, . . . , k+1}. A random
variable Y taking values in Y is called categorical, and the levels y ∈ Y can either
be ordinal or nominal. This motivates dummy coding of the categorical random
variable Y providing

T (Y ) = (1{Y=1}, . . . ,1{Y=k})� ∈ {0, 1}k, (5.68)

thus, k + 1 has been chosen as reference level. For the canonical parameter
θ = (θ1, . . . , θk)

� ∈ � = R
k we have cumulant function and mean functional,

respectively,

κ(θ) = log

⎛
⎝1 +

k∑
j=1

eθj

⎞
⎠ , p = Eθ [T (Y )] = ∇θκ(θ) = eθ

1 +∑k
j=1 eθj

.

With these choices we receive the EF representation of the categorical distribution
(set θk+1 = 0)

dF (y; θ ) = exp

⎧⎨
⎩θ�T (y) − log

⎛
⎝1 +

k∑
j=1

eθj

⎞
⎠
⎫⎬
⎭ dν(y) =

k+1∏
l=1

(
eθl∑k+1

j=1 eθj

)1{y=l}
dν(y).

The covariance matrix of T (Y ) is given by

�(θ ) = Varθ (T (Y )) = ∇2
θ κ(θ) = diag (p) − pp� ∈ R

k×k.
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Assume that we have feature information x ∈ X ⊂ {1} × R
q for response variable

Y . This allows us to lift this categorical model to a GLM. The logistic GLM assumes
for p = (p1, . . . , pk)

� ∈ (0, 1)k a regression function, 1 ≤ l ≤ k,

x �→ pl = pl(x) = Pβ[Y = l] = exp〈β l , x〉
1 +∑k

j=1 exp〈βj , x〉 , (5.69)

for regression parameter β = (β�
1 , . . . ,β�

k )� ∈ R
k(q+1). Equivalently, we can

rewrite these regression probabilities relative to the reference level, that is, we
consider linear predictors for 1 ≤ l ≤ k

ηl(x) = log

(
Pβ[Y = l]

Pβ[Y = k + 1]
)

= 〈β l, x〉. (5.70)

Note that this naturally gives us the canonical link h which we have already derived
in Sect. 2.1.4. Define the matrix for feature x ∈ X ⊂ {1} × R

q

X =

⎛
⎜⎜⎜⎜⎜⎝

x� 0 0 · · · 0
0 x� 0 · · · 0
0 0 x� · · · 0
...

...
...

. . .
...

0 0 0 · · · x�

⎞
⎟⎟⎟⎟⎟⎠

∈ R
k×k(q+1). (5.71)

This gives linear predictor and canonical parameter, respectively, under the canoni-
cal link h

θ = h(p(x)) = η(x) = Xβ = (〈β1, x〉, . . . , 〈βk, x〉)� ∈ � = R
k. (5.72)

5.7.2 Maximum Likelihood Estimation in Categorical Models

Assume we have n independent observations Yi following the logistic categorical
GLM (5.69) with features xi ∈ R

q+1 and Xi ∈ R
k×k(q+1), respectively, for 1 ≤

i ≤ n. The joint log-likelihood function is given by, we use (5.72),

β �→ 	Y (β) =
n∑

i=1

(Xiβ)�T (Yi) − κ(Xiβ).

This provides us with score equations

s(β,Y ) = ∇β	Y (β) =
n∑

i=1

X�
i

[
T (Yi) − ∇θκ(Xiβ)

] =
n∑

i=1

X�
i [T (Yi) − p(xi )] = 0,
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with logistic regression function (5.69) for p(x). For the score equations with
canonical link we also refer to the second case in Proposition 5.1. Next, we calculate
Fisher’s information matrix, we also refer to (3.16),

In(β) = −Eβ

[
∇2

β	Y (β)
]

=
n∑

i=1

X�
i �i(β)Xi ,

with covariance matrix of T (Yi)

�i(β) = ∇2
θ κ(Xiβ) = diag (p(xi )) − p(xi )p(xi )

�.

We rewrite the score in a similar way as in Sect. 5.1.4. This requires for general link
g(p) = η and inverse link p = g−1(η), respectively, the following block diagonal
matrix

W(β) = diag

((
∇ηg

−1(η)

∣∣∣
η=Xiβ

)
�i(β)−1

(
∇ηg

−1(η)

∣∣∣
η=Xiβ

)�)
1≤i≤n

= diag

((
∇pg(p)

∣∣
p=g−1(Xiβ)

)�
�i(β)

(
∇pg(p)

∣∣
p=g−1(Xiβ)

))−1

1≤i≤n

, (5.73)

and the working residuals

R(Y ,β) =
((

∇pg(p)
∣∣
p=g−1(Xiβ)

)�
(T (Yi) − p(xi ))

)
1≤i≤n

. (5.74)

Because we work with the canonical link g = h and g−1 = ∇θκ , we can use the
simplified block diagonal matrix

W(β) = diag (�1(β), . . . , �n(β)) ∈ R
kn×kn,

and the working residuals

R(Y ,β) =
(
�i(β)−1 (T (Yi) − p(xi ))

)
1≤i≤n

∈ R
kn.

Finally, we define the design matrix

X =

⎛
⎜⎜⎜⎝

X1

X2
...

Xn

⎞
⎟⎟⎟⎠ ∈ R

kn×k(q+1).



198 5 Generalized Linear Models

Putting everything together we receive the score equations

s(β,Y ) = ∇β	Y (β) = X�W(β)R(Y ,β) = 0. (5.75)

This is now exactly in the same form as in Proposition 5.1. Fisher’s scoring
method/IRLS algorithm then allows us to recursively calculate the MLE of β ∈
R

k(q+1) by

β̂
(t) �→ β̂

(t+1) =
(
X�W(β̂

(t)
)X
)−1

X�W(β̂
(t)

)
(
Xβ̂

(t) + R(Y , β̂
(t)

)
)

.

We have asymptotic normality of the MLE (under suitable regularity conditions)

β̂
MLE
n

(d)≈ N (β,In(β)−1),

for large sample sizes n. This allows us to apply the Wald test (5.32) for back-
ward parameter elimination. Moreover, in-sample and out-of-sample losses can
be analyzed with unit deviances coming from the categorical cross-entropy loss
function (4.19).

Remarks 5.32 The above derivations have been done for the categorical distribution
under the canonical link choice. However, these considerations hold true for more
general links g within the vector-valued parameter EF. That is, the block diagonal
matrix W(β) in (5.73) and the working residuals R(Y ,β) in (5.74) provide score
equations (5.75) for general vector-valued parameter EF examples, and where we
replace the categorical probability p by the mean μ = Eβ [T (Y )].

5.8 Further Topics of Regression Modeling

There are several special topics and tools in regression modeling that we have not
discussed, yet. Some of them will be considered in selected chapters below, and
some points are mentioned here, without going into detail.

5.8.1 Longitudinal Data and Random Effects

The GLMs studied above have been considering cross-sectional data, meaning that
we have fixed one time period t and studied this time period in an isolated fashion.
Time-dependent extensions are called longitudinal or panel data. Consider a time
series of data (Yi,t , x i,t ) for policies 1 ≤ i ≤ n and time points t ≥ 1. For the
prediction of response variable Yi,t we may then regress on the individual past
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history of policy i, given by the data

Di,t = {
Yi,1, . . . , Yi,t−1, xi,1, . . . , xi,t

}
.

In particular, we may explore the distribution of Yi,t , conditionally given Di,t ,

Yi,t |Di,t
∼ F(·|Di,t ; θ),

for canonical parameter θ ∈ � and F(·|Di,t ; θ) being a member of the EDF. For a
GLM we choose a link function g and make the assumption

g
(
Eβ [Yi,t |Di,t ]

) = 〈β, zi,t 〉, (5.76)

where zi,t ∈ R
q+1 is a (q + 1)-dimensional and σ(Di,t )-measurable feature vector,

and regression parameter β ∈ R
q+1 describes the common systematic effects across

all policies 1 ≤ i ≤ n. This gives a generalized auto-regressive model, and if we
have the Markov property

F(·|Di,t ; θ)
(d)= F(·|Yi,t−1, xi,t ; θ) for all t ≥ 2 and θ ∈ �,

we obtain a generalized auto-regressive model of order 1. These longitudinal models
allow one to model experience rating, for instance, in car insurance where the
past claims history directly influences the future insurance prices, we refer to
Remark 5.15 on bonus-malus systems (BMS).

The next level of complexity is obtained by extending regression structure (5.76)
by policy i specific random effects Bi such that we may postulate

g
(
Eβ [Yi,t |Di,t ,B i]

) = 〈β, zi,t 〉 + 〈B i ,wi,t 〉, (5.77)

with σ(Di,t )-measurable feature vector wi,t . Regression parameter β then describes
the fixed systematic effects that are common over the entire portfolio 1 ≤ i ≤ n

and B i describes the policy dependent random effects (assumed to be normalized
E[Bi ] = 0). Typically one assumes that B1, . . . ,Bn are centered and i.i.d. Such
effects are called static random effects because they are not time-dependent, and
they may also be interpreted in a Bayesian sense.

Finally, extending these static random effects to dynamic random effects B i,t ,
t ≥ 1, leads to so-called state-space models, the linear state-space model being the
most popular example and being fitted using the Kalman filter [207].

5.8.2 Regression Models Beyond the GLM Framework

There are several ways in which the GLM framework can be modified.
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Siblings of Generalized Linear Regression Functions

The most common modification of GLMs concerns the regression structure, namely,
that the scalar product in the linear predictor

x �→ g(μ) = η = 〈β, x〉,

is replaced by another regression function. A popular alternative is the framework
of generalized additive models (GAMs). GAMs go back to Hastie–Tibshirani
[181, 182] and the standard reference is Wood [384]. GAMs consider the regression
functions

x �→ g(μ) = η = β0 +
∑
j

βj sj (xj ), (5.78)

where sj : R → R are natural cubic splines. Natural cubic splines sj are obtained
by concatenating cubic functions in so-called nodes. A GAM can have as many
nodes in each cubic spline sj as there are different levels xi,j in the data 1 ≤ i ≤ n.
In general, this leads to very flexible regression models, and to control in-sample
over-fitting regularization is applied, for regularization we also refer to Sect. 6.2.
Regularization requires setting a tuning parameter, and an efficient determination of
this tuning parameter uses generalized cross-validation, see Sect. 5.6. Nevertheless,
fitting GAMs can be very computational, already for portfolios with 1 million
policies and involving 20 feature components the calibration can be very slow.
Moreover, regression function (5.78) does not (directly) allow for a data driven
method of finding interactions between feature components. For these reasons, we
do not further study GAMs in this monograph.

A modification in the regression function that is able to consider interactions
between feature components is the framework of classification and regression trees
(CARTs). CARTs have been introduced by Breiman et al. [54] in 1984, and they
are still used in its original form today. Regression trees aim to partition the feature
space X into a finite number of disjoint subsets Xt , 1 ≤ t ≤ T , such that all policies
(Yi, x i ) in the same subset xi ∈ Xt satisfy a certain homogeneity property w.r.t. the
regression task (and the chosen loss function). The CART regression function is
then defined by

x �→ μ(x) =
T∑

t=1

μ̂t 1{x∈Xt },

where μ̂t is the homogeneous mean estimator on Xt . These CARTs are popular
building blocks for ensemble methods where different regression functions are
combined, we mention random forests and boosting algorithms that mainly rely
on CARTs. Random forests have been introduced by Breiman [52], and boosting
has been popularized by Valiant [362], Kearns–Valiant [209, 210], Schapire [328],
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Freund [139] and Freund–Schapire [140]. Today boosting belongs to the most
powerful predictive regression methods, we mention the XGBoost algorithm of
Chen–Guestrin [71] that has won many competitions. We will not further study
CARTs and boosting in these notes because these methods also have some
drawbacks. For instance, resulting regression functions are not continuous nor do
they easily allow to extrapolate data beyond the (observed) feature space, e.g., if we
have a time component. Moreover, they are more difficult in the use of unstructured
data such as text data. For more on CARTs and boosting in actuarial science we
refer to Denuit et al. [100] and Ferrario–Hämmerli [125].

Other Distributional Models

The theory above has been relying on the EDF, but, of course, we could also study
any other family of distribution functions. A clear drawback of the EDF is that
it only considers light-tailed distribution functions, i.e., distribution functions for
which the moment generating function exists around the origin. If the data is more
heavy-tailed, one may need to transform this data and then use the EDF on the
transformed data (with the drawback that one loses the balance property) or one
chooses another family of distribution functions. Transformations have already been
discussed in Remarks 2.11 and Sect. 5.3.9. Another two families of distributions that
have been studied in the actuarial literature are the generalized beta of the second
kind (GB2) distribution, see Venter [369], Frees et al. [137] and Chan et al. [66], and
inhomogeneous phase type (IHP) distributions, see Albrecher et al. [8] and Bladt
[37]. The GB2 family is a 4-parameter family, and it nests several examples such
as the gamma, the Weibull, the Pareto and the Lomax distributions, see Table B1 in
Chan et al. [66]. The density of the GB2 distribution is for y > 0 given by

f (y; a, b, α1, α2) =
|a|
b

( y
b

)aα1−1

B(α1, α2)
(
1 + ( y

b

)a)α1+α2
(5.79)

=
|a|
y

B(α1, α2)

( ( y
b

)a
1 + ( y

b

)a
)α1

(
1

1 + ( y
b

)a
)α2

,

with scale parameter b > 0, shape parameters a ∈ R and α1, α2 > 0, and beta
function

B(α1, α2) = �(α1)�(α2)

�(α1 + α2)
.

Consider a modified logistic transformation of variable y �→ z = (y/b)a/(1 +
(y/b)a) ∈ (0, 1). This gives us the beta density

f (z; α1, α2) = zα1−1(1 − z)α2−1

B(α1, α2)
.
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Thus, the GB2 distribution can be obtained by a transformation of the beta
distribution. The latter provides that a GB2 distributed random variable Y can be

simulated from Y
(d)= b(Z/(1 − Z))1/a with Z ∼ Beta(α1, α2).

A GB2 distributed random variable Y has first moment

Ea,b,α1,α2[Y ] = B(α1 + 1/a, α2 − 1/a)

B(α1, α2)
b,

for −α1a < 1 < α2a. Observe that for a > 0 we have that the survival function of
Y is regularly varying with tail index α2a > 0. Thus, we can model Pareto-like tails
with the GB2 family; for regular variation we refer to (1.3).

As proposed in Frees et al. [137], one can introduce a regression structure for
b > 0 by choosing a log-link and setting

log
(
Ea,b,α1,α2[Y ]) = log

(
B(α1 + 1/a, α2 − 1/a)

B(α1, α2)

)
+ 〈β, x〉.

MLE of β may pose some challenge because it depends on nuisance parameters
a, α1, α2. In a recent paper Li et al. [251], there is a proposal to extend this GB2
regression to a composite regression model; composite models are discussed in
Sect. 6.4.4, below. This closes this short section, and for more examples we refer
to the literature.

5.8.3 Quantile Regression

Pinball Loss Function

The GLMs introduced above aim at estimating the means μ(x) = Eθ(x)[Y ] of
random variables Y being explained by features x. Since mean estimation can
be rather sensitive in situations where we have large claims, the more robust
quantile regression has attracted some attention, recently. Quantile regression has
been introduced by Koenker–Bassett [220]. The idea is that instead of estimating
the mean μ of a random variable Y , we rather try to estimate its τ -quantile for
given τ ∈ (0, 1). The τ -quantile is given by the generalized inverse F−1(τ ) of the
distribution function F of Y , that is,

F−1(τ ) = inf {y ∈ R; F(y) ≥ τ } . (5.80)

Consider the pinball loss function for y ∈ C (convex closure of the support of Y )
and actions a ∈ A = R

(y, a) �→ Lτ (y, a) = (y − a)
(
τ − 1{y−a<0}

) ≥ 0. (5.81)
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This provides us with the expected loss for Y ∼ F and action a ∈ A

EF [Lτ (Y, a)] = EF

[
(Y − a)

(
τ − 1{Y<a}

)]
= (τ − 1)EF

[
(Y − a)1{Y<a}

]+ τEF

[
(Y − a)1{Y≥a}

]

= (τ − 1)

∫ a

−∞
(y − a)dF (y) + τ

∫ ∞

a

(y − a)dF (y).

The aim is to find an optimal action â(F ) that minimizes this expected loss,
see (4.24),

â(F ) ∈ A(F ) = arg min
a∈A

EF [Lτ (Y, a)] .

Note that for the time being we do not know whether the solution to this
minimization problem is a singleton. For this reason, we state the solution (subject
to existence) as a set-valued functional A, see (4.25).

We calculate the score equation of the expected loss using the Leibniz rule

∂

∂a
EF [Lτ (Y, a)] = −(τ − 1)

∫ a

−∞
dF(y) − τ

∫ ∞

a

dF (y)

= −(τ − 1)F (a) − τ (1 − F(a)) = F(a) − τ
!= 0.

Assume the distribution F is continuous. This implies F(F−1(τ )) = τ , and we have

F−1(τ ) ∈ A(F ) = arg min
a∈A

EF [Lτ (Y, a)] .

In fact, using the pinball loss, we have just seen that the τ -quantile is elicitable
within the class of continuous distributions, see Definition 4.18.

For a more general result we need a more general definition of a (set-valued)
τ -quantile

Qτ (F) =
{
y ∈ R; lim

z↑y
F (z) ≤ τ ≤ F(y)

}
. (5.82)

This defines a closed interval and its lower endpoint corresponds to the generalized
inverse F−1(τ ) given in (5.80). In complete analogy to Theorem 4.19 on the
elicitability of the mean functional, we have the following statement for the τ -
quantile; this result goes back to Thomson [351] and Saerens [326].

Theorem 5.33 (Gneiting [162, Theorem 9], Without Proof) Let F be the class of
distribution functions on an interval C ⊆ R and choose quantile level τ ∈ (0, 1).

• The τ -quantile (5.82) is elicitable relative to F .
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• Assume the loss function L : C × A → R+ satisfies (L0)-(L2) on page 92 for
interval C = A ⊆ R. L is consistent for the τ -quantile (5.82) relative to the class
F of compactly supported distributions on C if and only if L is of the form

L(y, a) = (G(y) − G(a))
(
τ − 1{y−a<0}

)
,

for a non-decreasing function G on C.
• If G is strictly increasing on C and if EF [G(Y)] exists and is finite for all F ∈

F , then the above loss function L is strictly consistent for the τ -quantile (5.82)
relative to the class F .

Theorem 5.33 characterizes the strictly consistent loss functions for quantile
estimation, the pinball loss being the special case G(y) = y.

Quantile Regression

The idea behind quantile regression is that we build a regression model for the τ -
quantile. Assume we have a datum (Y, x) whose conditional τ -quantile, given x ∈
{1} × R

q , can be described by the regression function

x �→ g
(
F−1

Y |x(τ )
)

= 〈βτ , x〉,

for a strictly monotone and smooth link function g : C → R, and for a regression
parameter βτ ∈ R

q+1. The aim now is to estimate this regression parameter from
independent data (Yi, x i ), 1 ≤ i ≤ n. The pinball loss Lτ , given in (5.81), provides
us with the following optimization problem

β̂τ = arg min
β∈Rq+1

n∑
i=1

Lτ

(
Yi, g

−1〈β, xi〉
)

.

This then allows us to estimate the corresponding τ -quantile as a function of the
feature information x. For τ = 1/2 we estimate the median by

F̂−1
Y |x(1/2) = g−1 〈̂β1/2, x

〉
.

We conclude from this short section that we can regress any quantity a(F ) that is
elicitable, i.e., for which a loss function exists that is strictly consistent for a(F )

on F ∈ F . For more on quantile regression we refer to the monograph of Uribe–
Guillén [361], and an interesting paper is Dimitriades et al. [106]. We will study
quantile regression within deep networks in Chap. 11.2, below.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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