
Chapter 4
Predictive Modeling and Forecast
Evaluation

In the previous chapter, we have fully focused on parameter estimation θ ∈ � and
the estimation of functions θ �→ γ (θ) by exploiting decision rules A for estimating
Y n �→ ̂θ = A(Y n) or Y n �→ γ̂ (θ) = A(Y n), respectively. The derivations in
that chapter analyzed the quality of decision rules in terms of loss functions which
compare, e.g., the action ̂θ = A(Y n) to the true parameter θ . The Cramér–Rao
information bound considers this in terms of a square loss function. In actuarial
modeling, parameter estimation is only part of the problem, and the second part is
to predict new random variables Y . These new random variables should be thought
as claims in the future that we try to predict (and price) using decision rules being
developed based on past information Y n = (Y1, . . . , Yn)

�. In this case, we would
like to study how a decision rule A(Y n) generalizes to new data Y , and we then
call the decision rule rather a predictor for Y . This capability of suitable decision
rules to generalize to new (unseen) data is analyzed in Sect. 4.1. Such an analysis
often relies on (numerical) techniques such as cross-validation, which is examined
in Sect. 4.2, or the bootstrap technique, being presented in Sect. 4.3, below. In this
chapter, we denote past observations by Y n = (Y1, . . . , Yn)

� supported on Y, and
the (real-valued) random variables to be predicted are denoted by Y with support
Y ⊂ R. Often we have Y = Y × · · · × Y .

4.1 Generalization Loss

We start by considering the most commonly used expected generalization loss
(GL) which is the mean squared error of prediction (MSEP). The MSEP is based
on the square loss function, and it can be seen as a distribution-free approach to
measure expected GL. In subsequent sections we will study distribution-adapted
GL approaches. Expected GL measurement with MSEP is considered to be general
knowledge and we do not give a specific reference in this section. Distribution-
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adapted versions are mainly based on the strictly consistent scoring framework of
Gneiting–Raftery [163] and Gneiting [162]. In particular, we will discuss deviance
losses in Sect. 4.1.2 that are strictly consistent scoring functions for mean estimation
and, hence, provide proper scoring rules.

4.1.1 Mean Squared Error of Prediction

We denote by Y n = (Y1, . . . , Yn)
� (past) observations on which predictors and

decision rules A : Y → A are based on. The new observation that we would like
to predict is denoted by Y having support Y ⊂ R. In the previous chapter we have
used decision rule the A(Y n) to estimate an unknown quantity γ (θ). In this section
we will use this decision rule to directly predict the new (unseen) observation Y .

Theorem 4.1 (Mean Squared Error of Prediction, MSEP) Assume that
Y n and Y are independent. Assume that the predictor A : Y → A ⊆ R,
Y n �→ A(Y n) has finite second moment, and that the real-valued random
variable Y has finite second moment, too. The MSEP of predictorA to predict
Y is given by

E

[

(Y − A(Y n))
2
]

= (E [Y ] − E [A(Y n)])2 + Var(A(Y n)) + Var(Y ).

(4.1)

Proof of Theorem 4.1 We compute

E

[

(A(Y n) − Y)2
]

= E

[

(A(Y n) − E[Y ] + E[Y ] − Y)2
]

= E

[

(A(Y n) − E[Y ])2
]

+ E

[

(E[Y ] − Y)2
]

+2 E [(A(Y n) − E[Y ]) (E[Y ] − Y)]

= E

[

(E [Y ] − E [A(Y n)] + E [A(Y n)] − A(Y n))2
]

+ Var(Y )

= (E [Y ] − E [A(Y n)])
2 + Var(A(Y n)) + Var(Y ),

where on the second last line we use the independence between Y n and Y . This
finishes the proof. �	

Remarks 4.2 (Expected Generalization Loss)

• The quantity E[(Y − A(Y n))
2] is an expected GL because it measures how well

the decision rule (predictor) A(Y n) generalizes to new (unseen) data Y . As loss
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function we use the square loss function

L : Y × A → R+, (y, a) �→ L(y, a) = (y − a)2. (4.2)

Therefore, this expected GL is called MSEP.
• MSEP (4.1) is called expected GL. If we condition on Y n, then we call it GL. For

the square loss function the GL (conditional MSEP) is given by

E

[

(Y − A(Y n))
2
∣

∣

∣Y n

]

= (E [Y ] − A(Y n))
2 + Var(Y ), (4.3)

where we have used independence between Y and Y n.
• We do not distinguish the terms ‘prediction’ and ‘forecast’. Sometimes the

literature makes a subtle difference between the two, the latter involving a
temporal component and the former not. In the context of prediction/forecasting
a loss function (4.2) is also called scoring function. We also use these two terms
interchangeably in the context of prediction/forecasting.

• The MSEP in Theorem 4.1 decouples into three terms:

– The first term (E [Y ] − E [A(Y n)])2 is the (squared) bias. Obviously, good
decision rules A(Y n) under the MSEP should be unbiased for E[Y ]. If we
compare this to the previous chapter, we note that now the bias is measured
w.r.t. the mean of the new observation Y . Additionally, there might be a slight
difference to the previous chapter if Y n and Y do not belong to the same
parameter θ ∈ � (if we work in a parametrized family): the risk function
in (3.3) considers R(θ,A) = Eθ [L(θ,A(Y n))] with both components of the
loss function L belonging to the same parameter value θ . For the MSEP we
replace θ in L(θ,A(Y n)) by the new observation Y that might originate from
a different distribution (or from a randomized θ in a Bayesian case).

– The second term Var(A(Y n)) is called estimation variance or statistical error.
– The last term Var(Y ) is called process variance or irreducible risk. It reflects

the pure randomness received from the fact that we try to predict random
variables Y with deterministic means E[Y ].

• All three terms on the right-hand side of (4.1) are non-negative. The MSEP
optimal predictor for Y is its expected value E[Y ]. For this choice, the first two
terms (squared bias and estimation variance) vanish, and we are only left with
the irreducible risk. Since this MSEP optimal predictor is typically unknown it
is replaced by a decision rule A(Y n) that is based on past experience Y n. This
decision rule is used to predict Y , but it can also be seen as an estimator for
E[Y ]. A good decision rule A(Y n) is unbiased for E[Y ], making the first term on
the right-hand side of (4.1) equal to zero, and at the same time trying to make
the estimation variance small. Typically, this cannot be achieved simultaneously
and, therefore, there is a trade-off between bias and estimation variance in most
applied statistical problems.
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• We emphasize that in financial applications we typically aim for unbiased
estimators for E[Y ], we especially refer to Sect. 7.4.2 that studies the balance
property in network regression models under a stationary portfolio assumption.
Here, this stationarity may, e.g., translate into a (stronger) i.i.d. assumption on
Y1, . . . , Yn, Y . Unbiasedness then implies that the predictor A(Y n) is optimal
in (4.1) if it meets the Cramér–Rao information bound, see Theorem 3.13.

Theorem 4.1 considers the MSEP which implicitly assumes that the square loss
function is the objective (scoring) function of interest. The square loss function may
be considered as being distribution-free, but it is motivated by a Gaussian model for
Y n and Y , respectively; this will be justified in Remarks 4.6, below. If we use the
square loss function for observations different from Gaussian ones it might under-
or over-weigh particular characteristics in these observations because they may not
look very Gaussian (e.g. more heavy-tailed). Therefore, we should always choose a
scoring function that fits the problem considered, for instance, a square loss function
is not appropriate if we model claim counts following a Poisson distribution. We
close this section with the example of the EDF.

Example 4.3 (MSEP Within the EDF) We choose a fixed single-parameter linear
EDF satisfying Assumption 2.6 and having a steep cumulant function κ , see
Theorem 2.19 and Remark 2.20. Assume we have independent random variables
Y1, . . . , Yn, Y belonging to this EDF having densities, see Example 3.5,

Yi ∼ f (yi; θ, vi/ϕ) = exp

{

yiθ − κ(θ)

ϕ/vi

+ a(yi; vi/ϕ)

}

, (4.4)

and similarly for Y ∼ f (y; θ, v/ϕ). Note that all random variables share the same
canonical parameter θ ∈ �̊. The MLE of μ ∈ M based on Y n = (Y1, . . . , Yn)

� is
found by solving, see (3.4)–(3.5),

μ̂MLE = μ̂MLE(Y n) = arg max
μ̃∈M

�Y n(μ̃) (4.5)

= arg max
μ̃∈M

n
∑

i=1

Yih(μ̃) − κ(h(μ̃))

ϕ/vi

,

with canonical link h = (κ ′)−1. Since the cumulant function κ is strictly convex and
assumed to be steep, there exists a unique solution μ̂MLE ∈ M. If μ̂MLE ∈ M we
have a proper solution providinĝθMLE = h(μ̂MLE) ∈ �, otherwise μ̂MLE provides
a degenerate model. This decision rule Y n �→ μ̂MLE = μ̂MLE(Y n) is now used
to predict the (independent) new random variable Y and to estimate the unknown
parameters θ and μ, respectively. That is, we use the following predictor for Y

Y n �→ ̂Y = ̂Eθ [Y ] = E
̂θMLE [Y ] = μ̂MLE = μ̂MLE(Y n).
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Note that this predictor ̂Y is used to predict an unobserved (new) random variable
Y , and it is itself a random variable as a function of (independent) past observations
Y n. We calculate the MSEP in this model. Using Theorem 4.1 we obtain

Eθ

[

(

Y − μ̂MLE
)2
]

=
(

Eθ [Y ] − Eθ

[

μ̂MLE
])2 + Varθ

(

μ̂MLE
)

+ Varθ (Y )

= (

κ ′(θ) − κ ′(θ)
)2 + ϕκ ′′(θ)

∑n
i=1 vi

+ ϕκ ′′(θ)

v
(4.6)

= (κ ′′(θ))2

I(θ)
+ ϕκ ′′(θ)

v
,

see (3.25) for Fisher’s information I(θ). In this calculation we have used that the
MLE μ̂MLE is UMVU for μ = κ ′(θ) and that Y n and Y come from the same
EDF with the same canonical parameter θ ∈ �̊. As a result, we are only left
with estimation variance and process variance, moreover, the estimation variance
asymptotically vanishes as

∑n
i=1 vi → ∞. �

4.1.2 Unit Deviances and Deviance Generalization Loss

The main estimation technique used in these notes is MLE introduced in Def-
inition 3.4. At this stage, MLE is un-related to any specific scoring function L

because it has been received by maximizing the log-likelihood function. In this
section we discuss the deviance loss function (as a scoring function) and we
highlight its connection to the Bregman divergence introduced in Sect. 2.3. Based
on the deviance loss function choice we rephrase Theorem 4.1 in terms of this
scoring function. A theoretical foundation to these considerations will be given in
Sect. 4.1.3, below.

For the derivations in this section we rely on the same single-parameter linear
EDF as in Example 4.3, having a steep cumulant function κ . The MLE of μ = κ(θ)

is found by solving, see (4.5),

μ̂MLE = μ̂MLE(Y n) = arg max
μ̃∈M

n
∑

i=1

Yih(μ̃) − κ(h(μ̃))

ϕ/vi

∈ M,

with canonical link h = (κ ′)−1. This decision rule Y n �→ μ̂MLE = μ̂MLE(Y n)

is now used to predict the (new) random variable Y and to estimate the unknown
parameters θ and μ, respectively. We aim at studying the expected GL under a
distribution-adapted loss function choice potentially different from the square loss
function. Below we will justify this second choice more extensively.
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For the saturated model the common canonical parameter θ of the independent
random variables Y1, . . . , Yn in (4.4) is replaced by individual canonical parameters
θi , 1 ≤ i ≤ n. These individual canonical parameters are estimated with individual
MLEs. The individual MLEs are given by, respectively,

̂θMLE
i = (κ ′)−1 (Yi) = h (Yi) and μ̂MLE

i = Yi ∈ M,

the latter always exists because of strict convexity and steepness of κ . Since the
MLE μ̂MLE

i = Yi maximizes the log-likelihood, we receive for any μ ∈ M the
inequality

0 ≤ 2
(

logf (Yi; h (Yi) , vi/ϕ) − logf (Yi; h(μ), vi/ϕ)

)

= 2
vi

ϕ

(

Yih (Yi) − κ (h (Yi)) − Yih (μ) + κ (h (μ))
)

(4.7)

= vi

ϕ
d (Yi , μ) .

The function (y, μ) �→ d(y, μ) ≥ 0 is the unit deviance introduced in (2.25),
extended to C, and it is zero if and only if y = μ, see Lemma 2.22. The latter
is also an immediate consequence of the fact that the MLE is unique within EDFs.

Remark 4.4 The unit deviance d(y, μ) has only been considered on C̊ × M
in (2.25). Having steepness of cumulant function κ implies C̊ = M, see Theo-
rem 2.19, and in the absolutely continuous EDF case, we always have Yi ∈ M, a.s.,
which makes (4.7) well-defined for all observations Yi , a.s. In the discrete or the
mixed EDF case, an observation Yi can be at the boundary of M. In that case (4.7)
must be calculated from

d (Yi , μ) = 2

(

sup
˜θ∈�

[

Yi˜θ − κ
(

˜θ
)] − Yih (μ) + κ (h (μ))

)

. (4.8)

This applies, e.g., to the Poisson or Bernoulli cases for observation Yi = 0, in these
cases we obtain unit deviances 2μ and −2log(1 − μ), respectively.

The previous considerations (4.7)–(4.8) have been studying one single obser-
vation Yi of Y n. Aggregating over all observations in Y n (and additionally using
independence between the individual components of Y n) we arrive at the so-called
deviance loss function
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D(Y n, μ)
def.= 1

n

n
∑

i=1

vi

ϕ
d (Yi , μ) (4.9)

= 2

n

n
∑

i=1

vi

ϕ

(

Yih (Yi) − κ (h (Yi)) − Yih (μ) + κ (h (μ))

)

≥ 0.

The deviance loss function D(Y n, μ) subtracts twice the log-likelihood �Y n (μ)

from the one of the saturated model. Thus, it introduces a sign flip compared to (4.5).
This immediately gives us the following corollary.

Corollary 4.5 (Deviance Loss Function) The MLE problem (4.5) is equiva-
lent to solving

μ̂MLE = arg max
μ̃∈M

�Y n (μ̃) = arg min
μ̃∈M

D(Y n, μ̃). (4.10)

Remarks 4.6

• Formula (4.10) replaces a maximization problem by a minimization problem
with objective function D(Y n, μ) being bounded below by zero. We can use
this deviance loss function as a loss function not only for parameter estimation,
but also as a scoring function for analyzing GLs within the EDF (similarly to
Theorem 4.1).

• We draw the link to the KL divergence discussed in Sect. 2.3. In formula (2.26)
we have shown that the unit deviance is equal to the KL divergence (up to
scaling with factor 2), thus, equivalently, MLE aims at minimizing the average
KL divergence over all observations Y n

̂θMLE = arg min
˜θ∈�

1

n

n
∑

i=1

DKL

(

f (·; h(Yi), vi/ϕ)

∣

∣

∣

∣

∣

∣f (·;˜θ, vi/ϕ)
)

,
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by finding an optimal parameter ̂θMLE somewhere ‘in the middle’ of the
observation ̂θMLE

1 = h(Y1), . . . ,̂θ
MLE
n = h(Yn). This then provides us with,

see (2.27),

n
∏

i=1

f
(

Yi;˜θ, vi/ϕ
) =

[

n
∏

i=1

f (Yi; h (Yi) , vi/ϕ)

]

e
− 1

2

∑n
i=1

vi
ϕ
d(Yi ,κ

′(˜θ)) (4.11)

∝ exp

{

−
n
∑

i=1

DKL

(

f (·; h(Yi), vi/ϕ)

∣

∣

∣

∣

∣

∣f (·;˜θ, vi/ϕ)
)

}

,

where ∝ highlights that we drop all terms that do not involve˜θ . This describes the
change in joint likelihood by varying the canonical parameter ˜θ over its domain
�. The first line of (4.11) is in the spirit of minimizing a weighted square loss, but
the Gaussian square is replaced by the unit deviance d. The second line of (4.11)
is in the spirit of information geometry considered in Sect. 2.3, where we try to
find a canonical parameter ˜θ that has a small KL divergence to the n individual
models being parametrized by h(Y1), . . . , h(Yn), thus, the MLE ̂θMLE provides
an optimal balance over the entire set of (independent) observations Y1, . . . , Yn

w.r.t. the KL divergence.
• In contrast to the square loss function, the deviance loss function D(Y n, μ)

respects the distributional properties of Y n, see (4.11). That is, if the underlying
distribution allows for larger or smaller claims, this fact is appropriately valued
in the deviance loss function (supposed that we have chosen the right family of
distributions; model uncertainty will be studied in Sect. 11.1, below).

• Assume we work in the Gaussian model. In this model we have κ(θ) = θ2/2
and canonical link h(μ) = μ, see Sect. 2.1.3. This provides unit deviance in the
Gaussian case d (y, μ) = (y − μ)2, which is exactly the square loss function for
action space A = M. Thus, the square loss function is most appropriate in the
Gaussian case.

• As explained above, we use unit deviances d(y, μ) as a measure of discrepancy.
Alternatively, as in the introduction to this section, see (4.6), we can consider
Pearson’s χ2-statistic which corresponds to the weighted square loss function

X2(y, μ) = (y − μ)2

V (μ)
, (4.12)

where μ �→ V (μ) is the variance function of the chosen EDF. Similarly, to
the deviance loss function (4.9), we can aggregate these Pearson’s χ2-statistics
X2(Yi, μ) over all observations Yi in Y n to receive a second overall measure of
discrepancy. In the Gaussian case the deviance loss and Pearson’s χ2-statistic
coincide and have a χ2-distribution, for other distributions asymptotic results are
available.

In the non-Gaussian case, (4.12) is not always robust. For instance, if we
work in the Poisson model, we have variance function V (μ) = μ. Our examples
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below will have low claim frequencies which implies that μ will be small. The
appearance of a small μ in the denominator of (4.12) will imply that Pearson’s
χ2-statistic is not very robust in small frequency applications, in particular, if we
need to estimate this μ from Y n. Therefore, we refrain from using (4.12).

Naturally, in analogy to Theorem 4.1 and derivation (4.6), the above consider-
ations motivate us to consider expected GLs under unit deviances within the EDF.
We use the decision rule μ̂MLE(Y n) ∈ A = M to predict a new observation Y .

The expected deviance GL is defined and given by

Eθ

[

d
(

Y, μ̂MLE(Y n)
)]

= Eθ [d (Y,μ)] + 2Eθ

[

Yh(μ) − κ (h(μ)) − Yh(μ̂MLE(Y n)) + κ
(

h(μ̂MLE(Y n))
)]

= Eθ [d (Y,μ)] + E
(

μ, μ̂MLE(Y n)
)

, (4.13)

the last identity uses independence between Y n and Y , and with estimation
risk function

E
(

μ, μ̂MLE(Y n)
)

= Eθ

[

d
(

μ, μ̂MLE(Y n)
)]

> 0, (4.14)

we use steepness of the cumulant function, C = conv(T) = M, and Lemma 2.22
for the strict positivity of the estimation risk function. Thus, for the estimation risk
function E we replace Y by μ in the unit deviance and the expectation Eθ is only
over the observations Y n. This looks like a very convincing generalization of the
MSEP, however, one needs to ensure that all terms in (4.13) exist.

Theorem 4.7 (Expected Deviance Generalization Loss) Assume that Y n

and Y are independent and belong to the same linear EDF having the same
canonical parameter θ ∈ �̊ and having strictly convex and steep cumulant
function κ . Choose a predictor A : Y → A = M, Y n �→ A(Y n) and assume
that all expectations in the following formula exist. The expected deviance GL
of predictor A to predict Y is given by

Eθ [d (Y,A(Y n))] = Eθ [d (Y, μ)] + E (μ,A(Y n)) ≥ Eθ [d (Y, μ)] .
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Remarks 4.8

• Eθ [d(Y, μ)] plays the role of the pure process variance (irreducible risk) of
Theorem 4.1. This term does not involve any parameter estimation bias and
uncertainty because it is based on the true parameter θ and μ = κ ′(θ),
respectively. In Sect. 4.1.3, below, we are going to justify the appropriateness
of this object as a tool for forecast evaluation. In particular, because the unit
deviance is strictly consistent for the mean functional, the true mean μ = μ(θ)

minimizes Eθ [d(Y, μ)], see (4.28), below.
• The second term E (μ,A(Y n)) measures parameter estimation bias and uncer-

tainty of decision rule A(Y n) versus the true parameter μ = κ ′(θ). The first
remark is that we can do this for any decision rule A, i.e., we do not necessarily
need to consider the MLE. The second remark is that we can no longer get a clear
cut differentiation between a bias term and a parameter estimation uncertainty
term for deviance loss functions not coming from the Gaussian distribution. We
come back to this in Remarks 7.17, below, where we give more characterization
to the individual terms of the expected deviance GL.

• An issue in applying Theorem 4.7 to the MLE decision rule A(Y n) = μ̂MLE(Y n)

is that, in general, it does not lead to a finite estimation risk function. For instance,
in the Poisson case we have with positive probability μ̂MLE(Y n) = 0, which
results in an infinite estimation risk. In order to avoid this, we need to bound
away the decision rule form the boundary of M and �, respectively. In the
Poisson case this can be achieved by considering a decision rule A(Y n) =
max{μ̂MLE(Y n), ε} for a fixed given ε ∈ (0, μ = κ ′(θ)). This decision rule
has a bias which asymptotically vanishes as n → ∞. Moreover, consistency and
asymptotic normality tells us that this lower bound does not affect prediction for
large sample sizes n (with large probability).

• Similar to (4.3), we can also consider the deviance GL, given Y n. Under
independence of Y n and Y we have deviance GL

Eθ [d (Y,A(Y n))| Y n] = Eθ [d (Y, μ)| Y n] + d(μ,A(Y n)) (4.15)

≥ Eθ [d (Y, μ)] .

Thus, here we directly compare A(Y n) to the true parameter μ.

Example 4.9 (Estimation Risk Function in the Gaussian Case) We consider the
Gaussian case with cumulant function κ(θ) = θ2/2 and canonical link h(μ) = μ.
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The estimation risk function is in the Gaussian case for a square integrable predictor
A(Y n) given by

E (μ,A(Y n)) = Eθ [d (μ,A(Y n))]

= 2
(

μh(μ) − κ (h(μ)) − μEθ [h(A(Y n))] + Eθ [κ (h(A(Y n)))]
)

= μ2 − 2μEθ [A(Y n)] + Eθ

[

(A(Y n))
2
]

= (μ − Eθ [A(Y n)])2 + Varθ (A(Y n)).

These are exactly the squared bias and the estimation variance, see (4.1). Thus, in the
Gaussian case, the MSEP and the expected deviance GL coincide. Moreover, adding
a deterministic bias c ∈ R to A(Y n) increases the estimation risk function, supposed
that A(Y n) is unbiased for μ. We emphasize the latter as this is an important
property to have, and we refer to the next Example 4.10 for an example where this
property fails to hold. �

Example 4.10 (Estimation Risk Function in the Poisson Case) We consider the
Poisson case with cumulant function κ(θ) = eθ and canonical link h(μ) = logμ.
The estimation risk function is given by (subject to existence)

E (μ,A(Y n)) = 2
(

μlog(μ) − μ − μEθ

[

log(A(Y n))
] + Eθ [A(Y n)]

)

. (4.16)

Assume that decision rule A(Y n) is non-deterministic and unbiased for μ. Using
Jensen’s inequality these assumptions imply for the estimation risk function

E (μ,A(Y n)) = 2μ
(

log(μ) − Eθ

[

log(A(Y n))
]

)

> 0.

We now add a small deterministic bias c ∈ R to the unbiased estimator A(Y n) for
μ. This gives us estimation risk function, see (4.16) and subject to existence,

E (μ,A(Y n) + c) = 2
(

μlog(μ) − μEθ

[

log(A(Y n) + c)
]+ c

)

.

Consider the derivative w.r.t. bias c in 0, we use Jensen’s inequality on the last line,

∂

∂c
E (μ,A(Y n) + c)

∣

∣

∣

∣

c=0
= 2

(

− μEθ

[

1

A(Y n) + c

]

+ 1

)∣

∣

∣

∣

c=0

= −2μEθ

[

1

A(Y n)

]

+ 2

< −2μ
1

Eθ [A(Y n)]
+ 2 = 0. (4.17)
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Thus, the estimation risk becomes smaller if we add a small bias to the (non-
deterministic) unbiased predictor A(Y n). This issue has been raised in Denuit et
al. [97]. Of course, this is a very unfavorable property, and it is rather different from
the Gaussian case in Example 4.9. It is essentially driven by the fact that parameter
estimation is based on a finite sample, which implies a strict inequality in (4.17)
for the finite sample estimate A(Y n). A conclusion of this example is that if we use
expected deviance GLs for forecast evaluation we need to insist on having unbiased
predictors. This will become especially important for more complex regression
models, see Sect. 7.4.2, below.

More generally, one can prove this result of a smaller estimation risk function for
a small positive bias for any EDF member with power variance function V (μ) = μp

with p ≥ 1, see also (4.18) below. The proof uses the Fortuin–Kasteleyn–Ginibre
(FKG) inequality [133] providing Eθ [A(Yn)

1−p] < Eθ [A(Yn)]Eθ [A(Y n)
−p] =

μEθ [A(Y n)
−p] to receive (4.17) for power variance parameters p ≥ 1. �

Remarks 4.11 (Conclusion from Examples 4.9 and 4.10 and a Further Remark)

• Working with expected deviance GLs for evaluating forecasts requires some care
because a bigger bias in the (finite sample) estimate A(Y n) may provide a smaller
estimation risk function E(μ,A(Y n)). For this reason, we typically insist on
having unbiased predictors/forecasts. The latter is also an important requirement
in financial applications to guarantee that the overall price is set to the right level,
we refer to the balance property in Corollary 3.19 and to Sect. 7.4.2, below.

• In Theorems 4.1 and 4.7 we use independence between the predictor A(Y n)

and the random variable Y to receive the split of the expected deviance GL
into irreducible risk and estimation risk function. In regression models, this
independence between the predictor A(Y n) and the random variable Y may
no longer hold. In that case we will still work with the expected deviance GL
Eθ [d(Y,A(Y n))], but a clear split between estimation and forecasting will no
longer be possible, see Sect. 4.2, below.

The next example gives the most important unit deviances in actuarial modeling.

Example 4.12 (Unit Deviances) We give the most prominent examples of unit
deviances within the single-parameter linear EDF. We recall unit deviance (2.25)

d(y, μ) = 2
(

yh(y) − κ (h(y)) − yh(μ) + κ (h(μ))

)

≥ 0.

In Sect. 2.2 we have met the examples given in Table 4.1.
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Table 4.1 Unit deviances of selected distributions commonly used in actuarial science

Distribution Cumulant function κ(θ) Unit deviance d(y, μ)

Gaussian θ2/2 (y − μ)2

Gamma −log(−θ) 2 ((y − μ)/μ + log(μ/y))

Inverse Gaussian −√−2θ (y − μ)2/(μ2y)

Poisson eθ 2 (μ − y − ylog(μ/y))

Negative-binomial −log(1 − eθ ) 2
(

ylog
(

y
μ

)

− (y + 1)log
(

y+1
μ+1

))

Tweedie’s CP ((1−p)θ)
2−p
1−p

2−p
, p ∈ (1, 2) 2

(

y
y1−p−μ1−p

1−p
− y2−p−μ2−p

2−p

)

Bernoulli log(1 + eθ ) 2 (−ylogμ − (1 − y)log(1 − μ))

If we focus on Tweedie’s distributions having power variance functions V (μ) =
μp, see Table 2.1, we get a unified expression for the unit deviances for p ∈ {0} ∪
(1, 2) ∪ (2,∞)

d(y, μ) = 2

(

y
y1−p − μ1−p

1 − p
− y2−p − μ2−p

2 − p

)

(4.18)

= 2

(

y2−p

(1 − p)(2 − p)
− yμ1−p

1 − p
+ μ2−p

2 − p

)

.

For the remaining power variance cases we have: p = 1 corresponds to the Poisson
case, p = 2 gives the gamma case, the cases p < 0 do not have a steep cumulant
function, and, moreover, there are no EDF models for p ∈ (0, 1), see Theorem 2.18.

The unit deviance in the Bernoulli case is also called binary cross-entropy.
This binary cross-entropy has a categorical generalization, called multi-class cross-
entropy. Assume we have a categorical EF with levels {1, . . . , k + 1} and corre-
sponding probabilities p1, . . . , pk+1 ∈ (0, 1) summing up to 1, see Sect. 2.1.4.
We denote by Y = (1{Y=1}, . . . ,1{Y=k+1})� ∈ R

k+1 the indicator variable that
shows which level the categorical random variable Y takes; Y is called one-hot
encoding of the categorical random variable Y . Assume y is a realization of Y and
set μ = p = (p1, . . . , pk+1)

�. The categorical (multi-class) cross-entropy loss
function is given by

d(y, μ) = d(y,p) = −2
k+1
∑

j=1

yj logpj ≥ 0. (4.19)

This cross-entropy is closely related to the KL divergence between two categorical
distributions p and q on {1, . . . , k + 1}. The KL divergence from p to q is given by

DKL(q||p) =
k+1
∑

j=1

qj log

(

qj

pj

)

=
k+1
∑

j=1

qj logqj −
k+1
∑

j=1

qj logpj .
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If we replace the true (but unknown) distribution q by observation Y = y we receive
unit deviance (4.19) (scaled by 2), and the MLE is obtained by minimizing this KL
divergence, see also Example 3.10. �

Outlook 4.13 In the regression modeling, below, each response Yi will have its own
mean parameter μi = μ(β, xi ) which will be a function of its covariate information
xi , and β denotes a regression parameter to be estimated with MLE. In that case,
we modify the deviance loss function (4.9) to

β �→ D(Y n,β) = 1

n

n
∑

i=1

vi

ϕ
d (Yi , μi) = 1

n

n
∑

i=1

vi

ϕ
d (Yi , μ(β, xi )) , (4.20)

and the MLE of β can be found by solving

̂β
MLE = arg min

β

D(Y n,β). (4.21)

If Y is a new response with covariate information x and following the same EDF as
Y n, we will evaluate the corresponding expected scaled deviance GL given by

Eβ

[

v

ϕ
d
(

Y,μ(̂β
MLE

, x)
)

]

, (4.22)

where Eβ is the expectation under the true regression parameter β for Y n and Y .
This will be discussed in Sect. 5.1.7, below. If we interpret (Y, x, v) as a random
vector describing a randomly selected insurance policy from our portfolio, and being
independent of Y n (and the corresponding covariate information xi , 1 ≤ i ≤ n),

then̂β
MLE

will be independent of (Y, x, v). Nevertheless, the predictor μ(̂β
MLE

, x)

will introduce dependence between the chosen decision rule and Y through x, and
we no longer receive the split of the expected deviance GL as stated in Theorem 4.7,
for a related discussion we also refer to Remarks 7.17, below.

If we interpret (Y, x, v) as a randomly selected insurance policy, then the
expected GL (4.22) is evaluated under the joint (portfolio) distribution of (Y, x, v),

and the deviance loss D(Y n,̂β
MLE

) is an (in-sample) empirical version of (4.22). �

4.1.3 A Decision-Theoretic Approach to Forecast Evaluation

We present an excursion to a decision-theoretic approach to forecast evaluation.
This excursion gives the theoretical foundation to the unit deviance considerations
from above. This section follows Gneiting [162], Krüger–Ziegel [227] and Denuit
et al. [97], and we refrain from giving complete proofs in this section. Forecast
evaluation should involve consistent loss/scoring functions and proper scoring rules
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to encourage the forecaster to make careful assessments and honest forecasts.
Consistent loss functions are also a necessary tool to receive consistency of M-
estimators, we refer to Remarks 3.26.

Consistency and Proper Scoring Rules

Denote by C ⊆ R the convex closure of the support of a real-valued random variable
Y , and let the action space be A = C, see also (3.1). Predictions are evaluated in
terms of a loss/scoring function

L : C × A → R+, (y, a) �→ L(y, a) ≥ 0. (4.23)

Remark 4.14 In (4.23) we assume that the loss function L is bounded below by
zero. This can be an advantage in applications because it gives a calibration to the
loss function. In general, this lower bound is not a necessary condition for forecast
evaluation. If we drop this lower bound property, we rather call L (only) a scoring
function. For instance, the log-likelihood log(f (y, a)) in (3.27) plays the role of a
scoring function.

The forecaster can take the position of minimizing the expected loss to choose
her/his action rule. That is, subject to existence, an optimal action w.r.t. L is received
by

â = â(F ) = arg min
a∈A

EF [L(Y, a)] = arg min
a∈A

∫

C
L(y, a)dF (y). (4.24)

In this setup the scoring function L(y, a) describes the loss that the forecaster suffers
if she/he uses action a ∈ A and observation y ∈ C materializes. Since we do not
want to insist on uniqueness in (4.24) we rather think of set-valued functionals in
this section, which may provide solutions to problems like (4.24).1

We now reverse the line of arguments, and we start from a general set-valued
functional. Denote by F the family of distribution functions of interest supported
on C. Consider the set-valued functional

A : F → P(A), F �→ A(F ) ⊂ A, (4.25)

that maps each distribution F ∈ F to a subset A(F ) of the action space A = C,
that is, an element of the power set P(A). The main question that we want to study
in this section is the following: can we find a loss function L so that the set-valued

1 In fact, also for the MLE in Definition 3.4 we should consider a set-valued functional. We have
decided to skip this distinction to avoid any kind of complication and to not disturb the flow of
reading.
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functionalA is obtained by a loss minimization (4.24)? This motivates the following
definition.

Definition 4.15 (Strict Consistency) The loss function L : C × A → R+ is
consistent for the functional A : F → P(A) relative to the class F if

EF [L(Y, â)] ≤ EF [L(Y, a)] , (4.26)

for all F ∈ F , â ∈ A(F ) and a ∈ A. It is strictly consistent if it is consistent and
equality in (4.26) implies that a ∈ A(F ).

As stated in Theorem 1 of Gneiting [162], a loss function L is consistent for the
functional A relative to the class F if and only if, given any F ∈ F , every â ∈ A(F )

is an optimal action under L in the sense of (4.24).
We give an example. Assume we start from the functional F �→ A(F ) = EF [Y ]

that maps each distribution F to its expected value. In this case we do not need
to consider a set-valued functional because the expected value is a singleton (we
assume that F only contains distributions with a finite first moment). The question
then is whether we can find a loss function L such that this mean can be received by
a minimization (4.24). This question is answered in Theorem 4.19, below.

Next we relate a consistent loss function L to a proper scoring rule. A proper
scoring rule is a function R : C × F → R such that

EF [R(Y, F )] ≤ EF [R(Y,G)] , (4.27)

for all F,G ∈ F , supposed that the expectations are well-defined. A scoring rule
R analyzes the penalty R(y,G) if the forecaster works with a distribution G and
an observation y of Y ∼ F materializes. Proper scoring rules have been promoted
in Gneiting–Raftery [163] and Gneiting [162]. They are important because they
encourage the forecaster to make honest forecasts, i.e., it gives the forecaster the
incentive to minimize the expected score by following his true belief about the true
distribution, because only this minimizes the expected penalty in (4.27).

Theorem 4.16 (Gneiting [162, Theorem 3]) Assume that L is a consistent loss
function for the functionalA relative to the classF . For eachF ∈ F , let aF ∈ A(F ).
The scoring rule

R : C × F → R, (y, F ) �→ R(y, F ) = L(y, aF ),

is a proper scoring rule.

Example 4.17 Consider the unit deviance d (·, ·) : C × M → R+ for a given EDF
F = {F(·; θ, v/ϕ); θ ∈ �̊} with cumulant function κ . Lemma 2.22 says that under
suitable assumptions this unit deviance d (y, μ) is zero if and only if y = μ. We
consider the mean functional on F

A : F → A = M, Fθ = F(·; θ, v/ϕ) �→ A(Fθ ) = μ(θ),
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where μ = μ(θ) = κ ′(θ) is the mean of the chosen EDF. Choosing the unit deviance
as loss function we receive for any action a ∈ A, see (4.13),

Eθ [d (Y, a)] = Eθ [d (Y, μ)] + 2Eθ [Yh(μ) − κ (h(μ)) − Yh(a) + κ (h(a))]

= Eθ [d (Y, μ)] + 2 (μh(μ) − κ (h(μ)) − μh(a) + κ (h(a)))

= Eθ [d (Y, μ)] + d (μ, a) .

This is minimized for a = μ and it proves that the unit deviance is strictly consistent
for the mean functional A : Fθ �→ A(Fθ ) = μ(θ) relative to the chosen EDF
F = {F(·; θ, v/ϕ); θ ∈ �̊}. Using Theorem 4.16, the scoring rule

R : C × F → R, (y, Fθ ) �→ R(y, Fθ ) = d(y, μ(θ)),

is a strictly proper scoring rule, that is,

Eθ [R(Y, Fθ )] = Eθ [d(Y, μ(θ))] < Eθ

[

d(Y, μ(˜θ))
] = Eθ

[

R(Y, F
˜θ )
]

,

for any ˜θ �= θ . We conclude from this small example that the unit deviance is a
strictly consistent loss function for the mean functional on the chosen EDF, and this
provides us with a strictly proper scoring rule. �

In the above Example 4.17 we have chosen the mean functional

A : F → A = M, Fθ = F(·; θ, v/ϕ) �→ A(Fθ ) = μ(θ),

within a given EDF F = {F(·; θ, v/ϕ); θ ∈ �̊}. We have seen that

• the unit deviance d(·, ·) is a strictly consistent loss function for the mean
functional A relative to the EDF F ;

• the function (y, Fθ ) �→ R(y, Fθ ) = d(y, μ(θ)) is a strictly proper scoring
rule for the EDF F , i.e.,

Eθ [d(Y, μ(θ))] < Eθ

[

d(Y, μ(˜θ))
]

,

for any ˜θ �= θ .

The consideration of the mean functional F �→ A(F ) = EF [Y ] in Example 4.17
is motivated by the fact that we typically forecast random variables by their means.
However, more generally, we may ask the question for which functionals A : F →
P(A), relative to a given set of distributions F , there exists a loss function L that is
strictly consistent.
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Definition 4.18 (Elicitable) The functional A is elicitable relative to a given set of
distributions F if there exists a loss function L that is strictly consistent for A and
F .

Above we have seen that the mean functional is elicitable relative to the EDF
using the unit deviance loss; expected values relative to F with finite second
moments are also elicitable using the square loss function. Savage [327] more
generally identifies the Bregman divergences as being the only consistent scoring
functions for the mean functional; recall that the unit deviance is a special case of a
Bregman divergence, see (2.29). We are going to state the corresponding result.

For a general loss function L we make the following (standard) assumptions:

(L0) L(y, a) ≥ 0 and we have an equality if and only if y = a;
(L1) L(y, a) is measurable in y and continuous in a;
(L2) the partial derivative ∂L(y, a)/∂a exists and is continuous in a whenever

a �= y.

This then allows us to cite the following theorem.

Theorem 4.19 (Gneiting [162, Theorem 7]) Let F be the class of distributions on
an interval C ⊆ R having finite first moments.

• Assume the loss functionL : C×A → R satisfies (L0)–(L2) for interval C = A ⊆
R. L is consistent for the mean functional relative to the class F of compactly
supported distributions on C if and only if the loss function L is of Bregman
divergence form

Dψ(y, a) = ψ(y) − ψ(a) − ψ ′(a)(y − a),

for a convex function ψ with (sub-)gradientψ ′ on C.
• Ifψ is strictly convex on C, then the Bregman divergenceDψ is strictly consistent

for the mean functional relative to the class F on C for which both EF [Y ] and
EF [ψ(Y )] exist and are finite.
Theorem 4.19 tells us that Bregman divergences are the only consistent loss

functions for the mean functional (under some additional assumptions). Consider
the specific choice ψ(a) = a2/2 which is a strictly convex function. For this choice,
the Bregman divergence is the square loss function Dψ(y, a) = (y − a)2/2, which
is strictly consistent for the mean functional relative to the class F ⊂ L2(P). We
remark that also quantiles are elicitable, the corresponding result is going to be
stated in Theorem 5.33, below.

The second bullet point of Theorem 4.19 immediately implies that the unit
deviance d(·, ·) is a strictly consistent loss function for the mean functional within
the chosen EDF, see also (2.29) and Example 4.17. In particular, for θ ∈ �̊

μ = μ(θ) = arg min
a∈M

Eθ [d(Y, a)] . (4.28)
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Explicit evaluation of (4.28) requires that the true distribution Fθ of Y is known.
Since, typically, this is not the case, we need to evaluate it empirically. Assume
that the random variables Yi are independent and Fθ distributed, with Fθ belonging
to the fixed EDF providing the corresponding unit deviance d. Then, the objective
function in (4.28) is approximated by, a.s.,

D(Y n, a) = 1

n

n
∑

i=1

vi

ϕ
d(Yi , a) → Eθ

[

v

ϕ
d(Y, a)

]

as n → ∞. (4.29)

The convergence statement follows from the strong law of large numbers applied
to the i.i.d. random variables (Yi , vi), i ≥ 1, and supposed that the right-hand side
of (4.29) exists. Thus, the deviance loss function (4.9) is an empirical version of the
expected deviance loss function, and this approach is successful if we can exchange
the ‘argmin’ operator of (4.28) and the limit n → ∞ in (4.29). This closes the circle
and brings us back to the M-estimator considered in Remarks 3.26 and 3.29, and
which also links forecast evaluation and M-estimation.

Forecast Dominance

A consequence of Theorem 4.19 is that there are infinitely many strictly consistent
loss functions for the mean functional, and, in principle, we could choose any
of these for forecast evaluation. Choosing the unit deviance d that matches the
distribution Fθ of the observations Y n and Y , respectively, gives us the MLE μ̂MLE,
and we have seen that the MLE μ̂MLE is not only unbiased for μ = κ ′(θ), but it
also meets the Cramér–Rao information bound. That is, it is UMVU within the data
generating model reflected by the true unit deviance d. This provides us (in the finite
sample case) with a natural candidate for d in (4.29) and, thus, a canonical proper
scoring rule for (out-of-sample) forecast evaluation.

The previous statements have all been done under the assumption that there is
no uncertainty about the underlying family of distribution functions that generates
Y and Y n, respectively. Uncertainty was limited to the true canonical parameter θ

and the true mean μ(θ). This situation changes under model uncertainty. Krüger–
Ziegel [227] study the question of having multiple strictly consistent loss functions
in the situation where there is no natural candidate choice. Different choices may
give different rankings to different (finite sample) predictors. Assume we have
two predictors μ̂1 and μ̂2 for a random variable Y . Similarly to the definition of
the expected deviance GL, we understand these predictors μ̂1 and μ̂2 as random
variables, and we assume that all considered random variables have a finite first
moment. Importantly, we do not assume independence between μ̂1, μ̂2 and Y ,
and in regression models we typically receive dependence between predictors μ̂

and random variables Y through the features (covariates) x, see also Outlook 4.13.
Following Krüger–Ziegel [227] and Ehm et al. [119] we define forecast dominance
as follows.
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Definition 4.20 (Forecast Dominance) Predictor μ̂1 dominates predictor μ̂2 if

E
[

Dψ(Y, μ̂1)
] ≤ E

[

Dψ(Y, μ̂2)
]

,

for all Bregman divergences Dψ with (convex) ψ supported on C, the latter being
the convex closure of the supports of Y , μ̂1 and μ̂2.

If we work with a fixed member of the EDF, e.g., the gamma distribution, then
we typically study the corresponding expected deviance GL for forecast evaluation
in one single model, see Theorem 4.7 and (4.29). This evaluation may involve
model risk in the decision making process, and forecast dominance provides a robust
selection criterion.

Krüger–Ziegel [227] build on Theorem 1b and Corollary 1b of Ehm et al. [119] to
prove the following theorem (which prevents from considering all convex functions
ψ).

Theorem 4.21 (Theorem 2.1 of Krüger–Ziegel [227]) Predictor μ̂1 dominates
predictor μ̂2 if and only if for all τ ∈ C

E
[

(Y − τ )1{μ̂1>τ }
] ≥ E

[

(Y − τ )1{μ̂2>τ }
]

. (4.30)

Denuit et al. [97] argue that in insurance one typically works with Tweedie’s
distributions having power variances V (μ) = μp with power variance parameters
p ≥ 1. This motivates the following weaker form of forecast dominance.

Definition 4.22 (Tweedie’s Forecast Dominance) Predictor μ̂1 Tweedie-
dominates predictor μ̂2 if

E
[

dp(Y, μ̂1)
] ≤ E

[

dp(Y, μ̂2)
]

,

for all Tweedie’s unit deviances dp with power variance parameters p ≥ 1, we
refer to (4.18) for p ∈ (1,∞) \ {2} and Table 4.1 for the Poisson and gamma cases
p ∈ {1, 2}.

Recall that Tweedie’s unit deviances dp are a subclass of Bregman divergences,
see (2.29). Define the following function for power variance parameters p ≥ 1

Υp(μ) =
{

logμ for p = 2,
μ2−p

2−p
otherwise.

Denuit et al. [97] prove the following proposition.

Proposition 4.23 (Proposition 4.1 of Denuit et al. [97]) Predictor μ̂1 Tweedie-
dominates predictor μ̂2 if

E
[

Υp(μ̂1)
] ≤ E

[

Υp(μ̂2)
]

for all p ≥ 1,
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and

E
[

Y1{μ̂1>τ }
] ≥ E

[

Y1{μ̂2>τ }
]

for all τ ∈ C.

Theorem 4.21 gives necessary and sufficient conditions to have forecast dom-
inance, Proposition 4.23 gives sufficient conditions to have the weaker Tweedie’s
forecast dominance. In Theorem 7.15, below, we give another characterization of
forecast dominance in terms of convex orders, under the additional assumption that
the predictors are so-called auto-calibrated.

4.2 Cross-Validation

This section focuses on estimating the expected deviance GL (4.13) in cases where
the canonical parameter θ is not known. Of course, the same concepts apply to the
MSEP. In the remainder of this section we scale the unit deviances with v/ϕ, to
bring them in line with the deviance loss (4.9).

4.2.1 In-Sample and Out-of-Sample Losses

The general aim in predictive modeling is to predict an unobserved random variable
Y as good as possible based on past information Y n. Within the EDF, the predictive
performance is then evaluated under an empirical version of the expected deviance
GL

Eθ

[

v

ϕ
d (Y,A(Y n))

]

= 2Eθ

[

v

ϕ

(

Yh(Y ) − κ (h(Y )) − Yh(A(Y n)) + κ (h(A(Y n)))
)

]

.

(4.31)

Here, we no longer assume that Y and A(Y n) are independent, and in the dependent
case Theorem 4.7 does not apply. The reason for dropping the independence
assumption is that below we consider regression models of a similar type as in
Outlook 4.13. The expected deviance GL (4.31) as such is not directly useful
because it cannot be calculated if the true canonical parameter θ is not known.
Therefore, we are going to explain how it can be estimated empirically.

We start from the expected deviance GL in the EDF applied to the MLE decision
rule μ̂MLE(Y n). It can be rewritten as

Eθ

[

v

ϕ
d
(

Y, μ̂MLE(Y n)
)

]

=
∫

Eθ

[

v

ϕ
d
(

Y, μ̂MLE(Y n)
)

∣

∣

∣

∣

Y n = yn

]

dP (yn; θ),

(4.32)
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where we use the tower property for conditional expectations. In view of (4.32),
there are two things to be done:

(1) For given observations Y n = yn, we need to estimate the deviance GL, see
also (4.15),

Eθ

[

v

ϕ
d
(

Y, μ̂MLE(Y n)
)

∣

∣

∣

∣

Y n = yn

]

= Eθ

[

v

ϕ
d
(

Y, μ̂MLE(yn)
)

∣

∣

∣

∣

Y n = yn

]

.

(4.33)

This is the part that we are going to solve empirically in the this section.
Typically, we assume that Y and Y n are independent, nevertheless, Y and
its MLE predictor may still be dependent because we may have a predictor
μ̂MLE(Y n) = μ̂MLE(Y n, x). That is, this predictor often depends on covariate
information x that describes Y , an example is provided in (4.22) of Outlook 4.13
and this is different from (4.15). In that case, the decision rule A : Y×X → A

is extended by an additional covariate component x ∈ X , we refer to Sect. 5.1.1,
where X is introduced and discussed.

(2) We have to find a way to generate more observations Y n from P(yn; θ) in
order to evaluate the outer integral in (4.32) empirically. One way to do so is
the bootstrap method that is going to be discussed in Sect. 4.3, below.

We address the first problem of estimating the deviance GL given in (4.33).
We do this under the assumption that Y n and Y are independent. In order to
estimate (4.33) we need observations for Y . However, typically, there are no
observations available for this random variable because it is only going to be
observed in the future. For this reason, one uses past observations for both, model
fitting and the GL analysis. In order to perform this analysis in a proper way, the
general paradigm is to partition the entire data into two disjoint data sets, a so-
called learning data set L = {Y1, . . . , Yn} and a test data set T = {Y †

1 , . . . , Y
†
T }.

If we assume that all observations in L ∪ T are independent, then we receive a
suitable observation Y n from the learning data set L that can be used for model
fitting. The test sample T can then play the role of the unobserved random variable
Y (by assumption being independent of Y n). Note that L is only used for model
fitting and T is only used for the deviance GL evaluation, see Fig. 4.1.

This setup motivates to estimate the mean parameter μ with MLE μ̂MLE
L =

μ̂MLE(Y n) from the learning data L and Y n, respectively, by minimizing the
deviance loss function μ �→ D(Y n, μ) on the learning data L, according to Corol-
lary 4.5. Then we use this predictor μ̂MLE

L to empirically evaluate the conditional
expectation in (4.33) on T . The perception used is that we (in-sample) learn a
model on L and we out-of-sample test this model on T to see how it generalizes
to unobserved variables Y

†
t , 1 ≤ t ≤ T , that are of a similar nature as Y .
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Fig. 4.1 Partition of entire
data into learning data set L
and test data set T

Definition 4.24 (In-Sample and Out-of-Sample Losses) The in-sample
deviance loss on the learning data L = {Y1, . . . , Yn} is given by

D(L, μ̂MLE
L ) = 2

n

n
∑

i=1

vi

ϕ

(

Yih (Yi) − κ (h (Yi)) − Yih(μ̂MLE
L ) + κ

(

h(μ̂MLE
L )

))

,

with MLE μ̂MLE
L = μ̂MLE(Y n) on L.

The out-of-sample deviance loss on the test data T = {Y †
1 , . . . , Y

†
T } of

predictor μ̂MLE
L is

D(T , μ̂MLE
L ) = 2

T

T
∑

t=1

v
†
t

ϕ

(

Y
†
t h

(

Y
†
t

)

−κ
(

h
(

Y
†
t

))

−Y
†
t h(μ̂MLE

L )+κ
(

h(μ̂MLE
L )

) )

,

where the sum runs over the test sample T having exposures v
†
1 , . . . , v

†
T > 0.

For MLE we minimize the objective function (4.9), therefore, the in-sample
deviance loss D(L, μ̂MLE

L ) = D(Y n, μ̂
MLE(Y n)) exactly corresponds to the

minimal deviance loss (4.9) achieved on the learning data L, i.e., when using
MLE μ̂MLE

L = μ̂MLE(Y n). We call this in-sample because the same data L is
used for parameter estimation and deviance loss calculation. Typically, this loss is
biased because it uses the optimal (in-sample) parameter estimate, we also refer to
Sect. 4.2.3, below.

The out-of-sample loss D(T , μ̂MLE
L ) then empirically estimates the inner expec-

tation in (4.32). This is a proper out-of-sample analysis because the test data T
is disjoint from the learning data L on which the decision rule μ̂MLE

L has been
trained. Note that this out-of-sample figure reflects (4.33) in the following sense.
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We have a portfolio of risks (Y
†
t , v

†
t ), 1 ≤ t ≤ T , and (4.33) does not only reflect

the calculation of the deviance GL of a given risk, but also the random selection of
a risk from the portfolio. In this sense, (4.33) is an average over a given portfolio
whose description is also included in the probability Pθ .

Summary 4.25 Definition 4.24 gives the general principle in predictive
modeling according to which model learning and the generalization analysis
are done. Namely, based on two disjoint and independent data sets L and T ,
we perform model calibration on L, and we analyze (conditional) GLs (using
out-of-sample losses) on T , respectively. For this concept to be useful, the
learning data L and the test data T have to be sufficiently similar, i.e., ideally
coming from the same model.

This approach does not estimate the outer expectation in the expected
deviance GL (4.32), i.e., it is only an estimate for the deviance GL, given
Y n, see (4.33).

4.2.2 Cross-Validation Techniques

In many applications one is not in the comfortable situation of having two
sufficiently large data sets L and T available to support model learning and an
out-of-sample generalization analysis. That is, we are usually equipped with only
one data set of average size, let us call it D. In order to calculate the objects in
Definition 4.24 we could partition this data set (at random) into two data sets and
then calculate in-sample and out-of-sample deviance losses on this partition. The
disadvantage of this approach is that it is an inefficient use of information if only
little data is available. In that case we require (almost) all data for learning. However,
we still need a sufficiently large share of data for testing, to receive reliable deviance
GL estimates for (4.33). The classical approach in this situation is to use cross-
validation for estimating out-of-sample losses. The concept works as follows:

1. Perform model learning and in-sample loss calculation D(L, μ̂MLE
L ) on all

available data L = D, i.e., this part is not affected by selecting test data T
and it is not touched by cross-validation.

2. For out-of-sample deviance loss calculation use the data D iteratively in an
efficient way such that part of the data is used for model learning and the
other part for the out-of-sample generalization analysis. This second step

(continued)
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is (only) done for estimating the deviance GL of the model learned on all
data. I.e. for prediction we work with MLE μ̂MLE

L=D, but the out-of-sample
deviance loss is estimated using this data in a different way.

The three most commonly used methods are leave-one-out, K-fold and stratified
K-fold cross-validation. We briefly describe these three cross-validation methods.

Leave-One-Out Cross-Validation

Denote all available data by D = {Y1, . . . , Yn}, and assume independence between
the components. For leave-one-out (loo) cross-validation we select 1 ≤ i ≤ n and
define the partition L(−i) = D \ {Yi} for the learning data and Ti = {Yi} for the test
data. Based on the learning data L(−i) we calculate the MLE

μ̂(−i) def.= μ̂MLE
L(−i)

,

which is based on all data except observation Yi . This observation is now used to
do an out-of-sample analysis, and averaging this over all 1 ≤ i ≤ n we receive the
leave-one-out cross-validation loss

̂Dloo = 1

n

n
∑

i=1

vi

ϕ
d
(

Yi, μ̂
(−i)

)

= 1

n

n
∑

i=1

D
(

Ti , μ̂
(−i)

)

(4.34)

= 2

n

n
∑

i=1

vi

ϕ

(

Yih (Yi) − κ (h (Yi)) − Yih
(

μ̂(−i)
)

+ κ
(

h
(

μ̂(−i)
)) )

,

where D(Ti , μ̂
(−i)) is the (out-of-sample) cross-validation loss on Ti = {Yi} using

the predictor μ̂(−i). This leave-one-out cross-validation loss ̂Dloo is now used as
estimate for the out-of-sample deviance loss D(T , μ̂MLE

L ). Leave-one-out cross-
validation uses all data D for learning and testing, namely, the data D is partitioned
into a learning set L(−i) for (partial) learning and a test set Ti = {Yi} for an out-
of-sample generalization analysis. This is done for all instances 1 ≤ i ≤ n, and the
out-of-sample loss is estimated by the resulting average cross-validation loss. This
averaging allows us to not only understand (4.34) as a conditional out-of-sample loss
in the spirit of Definition 4.24. The outer empirical average in (4.34) also makes it
suitable for an expected deviance GL estimate according to (4.32).

The variance of this empirical deviance GL is given by (subject to existence)

Varθ
(

̂Dloo
)

= 1

n2

n
∑

i=1

n
∑

j=1

Covθ

(

vi

ϕ
d
(

Yi, μ̂
(−i)

)

,
vj

ϕ
d
(

Yj , μ̂
(−j)

)

)

.
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Fig. 4.2 Partitions of K-fold cross-validation for K = 5

These covariances use exactly the same observations on D \ {Yi, Yj }, therefore,
there are strong correlations between the estimators μ̂(−i) and μ̂(−j). In addition,
the leave-one-out cross-validation is often computationally not feasible because it
requires fitting the model n times, which in the situation of complex models and of
large insurance portfolios can be too demanding. We come back to this in Sect. 5.6
where we provide the generalized cross-validation (GCV) loss approximation within
generalized linear models (GLMs).

K-Fold Cross-Validation

Choose a fixed integer K ≥ 2 and partition the entire data D at random into K

disjoint subsets (called folds) L1, . . . ,LK of approximately the same size. The
learning data for fixed 1 ≤ k ≤ K is then defined by L[−k] = D \ Lk and the
test data by Tk = Lk , see Fig. 4.2. Based on learning data L[−k] we calculate the
MLE

μ̂[−k] def.= μ̂MLE
L[−k],

which is based on all data except Tk .
These observations are now used to do an (out-of-sample) cross-validation

analysis, and averaging this over all 1 ≤ k ≤ K we receive the K-fold cross-
validation (CV) loss.
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̂DCV = 1

K

K
∑

k=1

D
(

Tk, μ̂
[−k])

= 1

K

K
∑

k=1

1

|Tk|
∑

Yi∈Tk

vi

ϕ
d
(

Yi, μ̂
[−k]) (4.35)

≈ 1

n

K
∑

k=1

∑

Yi∈Tk

vi

ϕ
d
(

Yi, μ̂
[−k]) .

The last step is an approximation because not all Tk may have exactly the same
sample size if n is not a multiple of K . We can understand (4.35) not only as a
conditional out-of-sample loss estimate in the spirit of Definition 4.24. The outer
empirical average in (4.35) also makes it suitable for an expected deviance GL
estimate according to (4.32). The variance of this empirical deviance GL is given by
(subject to existence)

Varθ
(

̂DCV
)

≈ 1

n2

K
∑

k,l=1

∑

Yi∈Tk

∑

Yj ∈Tl

Covθ

(

vi

ϕ
d
(

Yi, μ̂
[−k]) ,

vj

ϕ
d
(

Yj , μ̂
[−l])

)

.

Typically, in applications, one uses K-fold cross-validation with K = 10.

Stratified K-Fold Cross-Validation

A disadvantage of the above K-fold cross-validation is that it may happen that there
are two outliers in the data, and there is a positive probability that these two outliers
belong to the same subset Lk . This may substantially distort K-fold cross-validation
because in that case the subsets Lk , 1 ≤ k ≤ K , are of different quality. Stratified K-
fold cross-validation aims at distributing outliers more equally across the partition.
Order the observations Yi , 1 ≤ i ≤ n, as follows

Y(1) ≥ Y(2) ≥ . . . ≥ Y(n).

For stratified K-fold cross-validation, we randomly distribute (partition) the K

biggest claims Y(1), . . . , Y(K) to the subsets Lk , 1 ≤ k ≤ K , then we randomly
partition the next K biggest claims Y(K+1), . . . , Y(2K) to the subsets Lk , 1 ≤ k ≤ K ,
and so forth. This implies, e.g., that the two biggest claims cannot fall into the same
set Lk . This stratified partition Lk , 1 ≤ k ≤ K , is then used for K-fold cross-
validation.
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Summary 4.26 (Cross-Validation)

• A model is calibrated on the learning data set L by minimizing the in-
sample deviance loss D(L, μ) in μ. This provides MLE μ̂MLE

L .
• The quality of this model is assessed on test data T being disjoint of L

considering the corresponding out-of-sample deviance loss D(T , μ̂MLE
L ).

• If there is no test data set T available we perform (stratified) K-fold
cross-validation. This provides the (stratified) K-fold cross-validation loss
̂DCV which is an estimate for the out-of-sample deviance loss and for the
expected deviance GL (4.32).

Example 4.27 (Out-of-Sample Deviance Loss Estimation) We consider a claim
counts example using the Poisson EDF model. The claim counts Ni and exposures
vi > 0 used come from the French motor insurance data given in Listing 13.2
of Chap. 13.1. We model the claim frequencies Yi = Ni/vi with the Poisson EDF
model having cumulant function κ(θ) = exp{θ} and dispersion parameter ϕ = 1 for
all 1 ≤ i ≤ n. The expected frequency is given by μ = Eθ [Yi ] = κ ′(θ). Moreover,
we assume that all claim counts Ni , 1 ≤ i ≤ n, are independent. This provides us
with the Poisson deviance loss function for observations Y n = (Y1, . . . , Yn)

�, see
Example 4.12,

D(Y n, μ) = 1

n

n
∑

i=1

vid(Yi , μ) = 1

n

n
∑

i=1

2vi

(

μ − Yi − Yi log

(

μ

Yi

))

= 1

n

n
∑

i=1

2

(

viμ − Ni − Ni log

(

viμ

Ni

))

≥ 0,

where, for Yi = 0, we set d(Yi = 0, μ) = 2μ. Minimizing the Poisson deviance
loss function D(Y n, μ) in μ gives us the MLE for μ and θ = h(μ), respectively. It
is given by, see (3.24),

μ̂MLE = μ̂MLE
L =

∑n
i=1 Ni

∑n
i=1 vi

= 7.36%,

for learning data set L = {Y1, . . . , Yn}. This provides us with an in-sample Poisson
deviance loss of D(Y n, μ̂

MLE
L ) = D(L, μ̂MLE

L ) = 25.213 · 10−2.
Since we do not have test data T , we explore tenfold cross-validation. We

therefore partition the entire data at random into K = 10 disjoint sets L1, . . . ,L10,
and compute the tenfold cross-validation loss as described in (4.35). This gives us
̂DCV = 25.213 · 10−2, thus, we receive the same value as for the in-sample loss
which says that we do not have in-sample over-fitting, here. This is not surprising
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in the homogeneous model λ = Eθ [Yi]. We can also quantify the uncertainty in this
estimate by the corresponding empirical standard deviation for Tk = Lk

√

√

√

√

1

K − 1

K
∑

k=1

(

D
(

Tk, μ̂[−k])− ̂DCV
)2 = 0.234 · 10−2. (4.36)

This says that there is quite some fluctuation in the data because uncertainty in
estimate ̂DCV = 25.213 · 10−2 is roughly 1%. This finishes this example, and we
will come back to it in Sect. 5.2.4, below. �

4.2.3 Akaike’s Information Criterion

The out-of-sample analysis in terms of GLs and cross-validation evaluates the
predictive performance on unseen data. Another way of model selection is to study
in-sample losses instead, but penalize model complexity. Akaike’s information
criterion (AIC), see Akaike [5], is the most popular tool that follows such a model
selection methodology. AIC is based on a set of assumptions which should be
fulfilled to apply, this is going to be discussed in this section; we therefore follow
the lecture notes of Künsch [229].

Assume we have independent random variables Yi from some (unknown) density
f . Assume we have two candidate models with densities hθ and gϑ from which we
would like to select the preferred one for the given data Y n = (Y1, . . . , Yn). The two
unknown parameters in these densities hθ and gϑ are called θ and ϑ , respectively.
We neither assume that one of the two models hθ and gϑ contains the true model f ,
nor that the two models are nested. That is, f , hθ and gϑ are quite general densities
w.r.t. a given σ -finite measure ν.

Assume that both models under consideration have a unique MLE ̂θMLE =
̂θMLE(Y n) and ̂ϑMLE = ̂ϑMLE(Y n) which is based on the same observations Y n.
AIC [5] says that model h

̂θMLE should be preferred over model g
̂ϑMLE if

− 2
n
∑

i=1

log
(

h
̂θMLE(Yi)

)+ 2 dim(θ) < − 2
n
∑

i=1

log
(

g
̂ϑMLE(Yi)

)+ 2 dim(ϑ),

(4.37)

where dim(·) denotes the dimension of the corresponding parameter. Thus, we
compute the log-likelihoods of the data Y n in the corresponding MLEs ̂θMLE and
̂ϑMLE, and we penalize the resulting values with the number of parameters to correct
for model complexity. We give some remarks.
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Remarks 4.28

• AIC is neither an in-sample loss nor an out-of-sample loss to measure gen-
eralization accuracy, but it considers penalized log-likelihoods. Under certain
assumptions one can prove that asymptotically minimizing AICs is equivalent
to minimizing leave-one-out cross-validation mean squared errors.

• The two penalized log-likelihoods have to be evaluated on the same data Y n

and they need to consider the MLEs ̂θMLE and ̂ϑMLE because the justification
of AIC is based on the asymptotic normality of MLEs, otherwise there is no
mathematical justification why (4.37) should be a reasonable model selection
tool.

• AIC does not require (but allows for) nested models hθ and gϑ nor need they be
Gaussian, it is only based on asymptotic normality. We give a heuristic argument
below.

• Evaluation of (4.37) involves all terms of the log-likelihoods, also those that do
not depend on the parameters θ and ϑ .

• Both models should consider the data Y n in the same units, i.e., AIC does not
apply if hθ is a density for Yi and gϑ is a density for cYi . In that case, one has
to perform a transformation of variables to ensure that both densities consider
the data in the same units. We briefly highlight this by considering a Gaussian
example. We choose i.i.d. observations Yi ∼ N (θ, σ 2) for known variance σ 2 >

0. Choose c > 0, we have cYi ∼ N (ϑ = cθ, c2σ 2). We obtain MLE ̂θMLE =
∑n

i=1 Yi/n and log-likelihood in MLE ̂θMLE

n
∑

i=1

log
(

h
̂θMLE (Yi)

) = −n

2
log(2πσ 2) −

n
∑

i=1

1

2σ 2

(

Yi −̂θMLE
)2

.

On the transformed scale we have MLE ̂ϑMLE = ∑n
i=1 cYi/n = ĉθMLE and

log-likelihood in MLE ̂ϑMLE

n
∑

i=1

log
(

g
̂ϑMLE (cYi)

) = −n

2
log(2πc2σ 2) −

n
∑

i=1

1

2c2σ 2

(

cYi − ĉθMLE
)2

.

Thus, find that the two log-likelihoods differ by −nlog(c), but we consider the
same model only under different measurement units of the data. The same applies
when we work, e.g., with a log-normal model or logged data in a Gaussian model.

We give a heuristic justification of AIC. In Example 3.10 we have seen that
the MLE is obtained by minimizing the KL divergence from hθ to the empirical
distribution ̂fn of Y n. This motivates to use the KL divergence also for comparing
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the MLE estimated models to the true model, i.e., we consider the difference
(supposed the densities are defined on the same domain)

DKL
(

f
∥

∥h
̂θMLE(·)) − DKL

(

f
∥

∥g
̂ϑMLE (·))

=
∫

log

(

f (y)

h
̂θMLE (y)

)

f (y)dν(y) −
∫

log

(

f (y)

g
̂ϑMLE(y)

)

f (y)dν(y)

=
∫

log
(

g
̂ϑMLE (y)

)

f (y)dν(y) −
∫

log
(

h
̂θMLE(y)

)

f (y)dν(y). (4.38)

If this difference is negative, model h
̂θMLE should be preferred over model g

̂ϑMLE

because it is closer to the true model f w.r.t. the KL divergence. Thus, we need to
calculate the two integrals in (4.38). Since the true density f is not known, these
two integrals need to be estimated.

As a first idea we estimate the integrals on the right-hand side empirically using
the observations Y n, say, the first integral is estimated by

1

n

n
∑

i=1

log
(

g
̂ϑMLE(Yi)

)

.

However, this will lead to a biased estimate because the MLE ̂ϑMLE exactly
maximizes this empirical estimate (as a function of ϑ). The integrals in (4.38),
on the other hand, can be interpreted as an out-of-sample calculation between
independent random variables Y n (used for MLE) and Y ∼ f dν used in the integral.
The bias results from the fact that in the empirical estimate the independence
gets lost. Therefore, we need to correct this estimate for the bias in order to
obtain a reasonable estimate for the difference of the KL divergences. Under the
following assumptions this bias correction is asymptotically given by −dim(ϑ)/n:
(1)

√
n(̂ϑMLE(Y n) − ϑ0) is asymptotically normally distributed N (0,�(ϑ0)

−1) as
n → ∞, where ϑ0 is the parameter that minimizes the KL divergence from gϑ to
f ; we also refer to Remarks 3.26. (2) The true f is sufficiently close to gϑ0 such
that the Ef -covariance matrix of the score ∇ϑ loggϑ0 is close to the negative Ef -
expected Hessian ∇2

ϑ loggϑ0 ; see also (3.36) and Sect. 11.1.4, below. In that case,
�(ϑ0) approximately corresponds to Fisher’s information matrix I1(ϑ0) and AIC is
justified.

This shows that AIC applies if both models are evaluated under the same
observations Y n, the models need to use the MLEs, and asymptotic normality needs
to hold with limits such that the true model is close to a member of the selected
model classes {hθ ; θ} and {gϑ ; ϑ}. We remark that this is not the only set-up under
which AIC can be justified, but other set-ups do not essentially differ.

The Bayesian information criterion (BIC) is similar to AIC but in a Bayesian
context. The BIC says that model h

̂θMLE should be preferred over model g
̂ϑMLE if

−2
n
∑

i=1

log
(

h
̂θMLE(Yi)

)+log(n)dim(θ) < −2
n
∑

i=1

log
(

g
̂ϑMLE(Yi)

)+log(n)dim(ϑ),
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where n is the sample size of Y n used for model fitting. The BIC has been derived
by Schwarz [331]. Therefore, it is also called Schwarz’ information criterion (SIC).

4.3 Bootstrap

The bootstrap method has been invented by Efron [115] and Efron–Tibshirani [118].
The bootstrap is used to simulate new data from either the empirical distribution ̂Fn

or from an estimated model F(·;̂θ). This allows, for instance, to evaluate the outer
expectation in the expected deviance GL (4.32) which requires a data model for Y n.
The presentation in this section is based on the lecture notes of Bühlmann–Mächler
[59, Chapter 5].

4.3.1 Non-parametric Bootstrap Simulation

Assume we have i.i.d. observations Y1, . . . , Yn from an unknown distribution
function F(·; θ). Based on these observations Y = (Y1, . . . , Yn) we choose a
decision rule A : Y → A = � ⊆ R which provides us with an estimator for θ

Y �→ ̂θ = A(Y ). (4.39)

Typically, the decision rule A(·) is a known function and we would like to determine
the distributional properties of parameter estimator (4.39) as a function of the
(random) observations Y . E.g., for any measurable set C, we might want to compute

Pθ

[

̂θ ∈ C
] = Pθ [A(Y ) ∈ C] =

∫

1{A(y)∈C} dP(y; θ). (4.40)

Since, typically, the true data generating distribution Yi ∼ F(·; θ) is not known, the
distributional properties of̂θ cannot be determined, also not by Monte Carlo simula-
tion. The idea behind bootstrap is to approximate F(·; θ). Choose as approximation
to F(·; θ) the empirical distribution of the i.i.d. observations Y given by, see (3.9),

̂Fn(y) = 1

n

n
∑

i=1

1{Yi≤y} for y ∈ R.

The Glivenko–Cantelli theorem [64, 159] tells us that the empirical distribution
̂Fn converges uniformly to F(·; θ), a.s., for n → ∞, so it should be a good
approximation to F(·; θ) for large n. The idea now is to simulate from the empirical
distribution ̂Fn.
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(Non-parametric) bootstrap algorithm

(1) Repeat for m = 1, . . . ,M

(a) simulate i.i.d. observations Y ∗
1 , . . . , Y ∗

n from ̂Fn (these are obtained by
random drawings with replacements from the observations Y1, . . . , Yn; we
denote this resampling distribution of Y ∗ = (Y ∗

1 , . . . , Y ∗
n ) by P

∗ = P
∗
Y );

(b) calculate the estimator ̂θ(m∗) = A(Y ∗).

(2) Return ̂θ(1∗), . . . ,̂θ(M∗) and the resulting empirical bootstrap distribution

̂F ∗
M(ϑ) = 1

M

M
∑

m=1

1{̂θ(m∗)≤ϑ},

for the estimated distribution of ̂θ .

We can use the empirical bootstrap distribution ̂F ∗
M as an estimate of the true

distribution of ̂θ , that is, we estimate and approximate

Pθ

[

̂θ ∈ C
] ≈ ̂Pθ

[

̂θ ∈ C
] def.= P

∗
Y

[

̂θ∗ ∈ C
] ≈ 1

M

M
∑

m=1

1{̂θ(m∗)∈C}, (4.41)

where P
∗
Y corresponds to the bootstrap distribution of Step (1a) of the above

algorithm, and where we set ̂θ∗ = A(Y ∗). This bootstrap distribution P
∗
Y is

empirically approximated by the empirical bootstrap distribution ̂F ∗
M for studying

̂θ∗.

Remarks 4.29

• The quality of the approximations in (4.41) depend on the richness of the
observation Y = (Y1, . . . , Yn), because the bootstrap distribution

P
∗
Y

[

̂θ∗ ∈ C
] = P

∗
Y=y

[

̂θ∗ ∈ C
]

,

depends on the realization y of the data Y from which we generate the bootstrap
sample Y ∗. It also depends on M and the explicit random drawings Y ∗

i providing
the empirical bootstrap distribution ̂F ∗

M . The latter uncertainty can be controlled
since the bootstrap distribution P

∗
Y corresponds to a multinomial distribution, and

the Glivenko–Cantelli theorem [64, 159] applies to ̂F ∗
M and P

∗
Y for M → ∞. The

former uncertainty inherited from the realization Y = y cannot be diminished
because we cannot enrich the observation Y .
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• The empirical bootstrap distribution ̂F ∗
M can be used to estimate the mean of the

estimator ̂θ given in (4.39)

̂Eθ

[

̂θ
] = E

∗
Y

[

̂θ∗] ≈ 1

M

M
∑

m=1

̂θ(m∗),

and its variance

̂Varθ
(

̂θ
) = VarP∗

Y

(

̂θ∗) ≈ 1

M − 1

M
∑

m=1

(

̂θ(m∗) − 1

M

M
∑

k=1

̂θ(k∗)

)2

.

• The previous item discusses the approximation of the bootstrap mean and
variance, respectively. Bootstrap intervals for coverage ratios need some care,
and there are different versions. The naive way of just calculating quantiles from
̂F ∗

M often does not work well, and methods like a double bootstrap may need to
be considered.

• In (4.39) we have assumed that the quantity of interest is the parameter θ , but
similar considerations also apply to general decision rules estimating γ (θ).

• The bootstrap as defined above directly acts on the observations Y1, . . . , Yn, and
the basic assumption is that these observations are i.i.d. If this is not the case,
one may first need to transform the observations, for instance, one can calculate
residuals and assume that these residuals are i.i.d. In more complicated cases, one
even drops the i.i.d. assumption and replaces it by an identical mean and variance
assumption, that is, that all residuals are assumed to be independent, centered and
with unit variance. This is sometimes also called residual bootstrap and it may
be suitable in regression models as will be introduced below. Thus, in this latter
case we estimate for each observation Yi its mean μ̂i and its standard deviation
σ̂i , for instance, using the variance function of the chosen EDF. This then allows
for calculating the residuals ε̂i = (Yi − μ̂i)/σ̂i . For the residual bootstrap we
resample the residuals ε̂∗

i from ε̂1, . . . , ε̂n. This provides bootstrap observations

Y ∗
i = μ̂i + σ̂i ε̂

∗
i .

The wild bootstrap proposed by Wu [386] additionally uses a centered and
normalized i.i.d. random variable Vi (also being independent of ε̂∗

i ) to modify
the residual bootstrap observations to

Y ∗
i = μ̂i + σ̂iVi ε̂

∗
i .
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The bootstrap is called consistent for ̂θ if we have for all z ∈ R the following
convergence in probability as n → ∞

Pθ

[√
n
(

̂θ − θ
) ≤ z

] − P
∗
Y

[√
n
(

̂θ∗ −̂θ
) ≤ z

] prob.→ 0,

the quantities ̂θ = ̂θn and ̂θ∗ = ̂θ∗
n depend on (the size n of) the observation Y =

Y n; the convergence in probability is needed because Y = Y n are random vectors.
Assume that̂θMLE = ̂θ is the MLE of θ satisfying the assumptions of Theorem 3.28.
Then we have asymptotic normality, see (3.30),

√
n
(

̂θ − θ
) �⇒ N

(

0,I1(θ)−1
)

as n → ∞,

with Fisher’s information I1(θ). Bootstrap consistency then requires

√
n
(

̂θ∗ −̂θ
) P

∗
Y�⇒ N

(

0,I1(θ)−1
)

in probability as n → ∞.

Bootstrap consistency typically holds if̂θ is asymptotically normal (as n → ∞) and
if the underlying data Yi is i.i.d. Moreover, bootstrap consistency usually implies
consistent variance and bias estimation

VarP∗
Y

(

̂θ∗)

Varθ
(

̂θ
)

prob.→ 1 and
E

∗
Y

[

̂θ∗] −̂θ

Eθ

[

̂θ
] − θ

prob.→ 1 as n → ∞.

For more information and bootstrap confidence intervals we refer to Chapter 5 in
the lecture notes of Bühlmann–Mächler [59].

4.3.2 Parametric Bootstrap Simulation

For the parametric bootstrap we assume to know the parametric family F =
{F(·; θ); θ ∈ �} from which the i.i.d. observations Y1, . . . , Yn ∼ F(·; θ) have
been generated from, and only the explicit choice of the parameter θ ∈ � is not
known. Based on these observations we construct an estimator ̂θ = A(Y ), for the
unknown parameter θ ∈ �.

(Parametric) bootstrap algorithm

(1) Repeat for m = 1, . . . ,M

(a) simulate i.i.d. observations Y ∗
1 , . . . , Y ∗

n from F(·;̂θ) (we denote the resam-
pling distribution of Y ∗ = (Y ∗

1 , . . . , Y ∗
n ) by P

∗ = P
∗
Y );

(b) calculate the estimator ̂θ(m∗) = A(Y ∗).
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(2) Return ̂θ(1∗), . . . ,̂θ(M∗) and the resulting empirical bootstrap distribution

̂F ∗
M(ϑ) = 1

M

M
∑

m=1

1{̂θ(m∗)≤ϑ}.

We then estimate and approximate the distribution of ̂θ analogously to (4.41),
and the same remarks apply as for the non-parametric bootstrap. The parametric
bootstrap has the advantage that it can enrich the data by sampling new observations
from the distribution F(·;̂θ). A shortfall of the parametric bootstrap will occur if the
family F is misspecified, then the bootstrap sample Y ∗ will only poorly describe the
true data Y , e.g., if the data shows over-dispersion but the select family F does not
allow to model such over-dispersion.
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