
Chapter 3
Estimation Theory

This chapter gives an introduction to decision and estimation theory. This intro-
duction is based on the books of Lehmann [243, 244], the lecture notes of Künsch
[229] and the book of Van der Vaart [363]. This chapter presents classical statistical
estimation theory, it embeds estimation into a historical context, and it provides
important aspects and intuition for modern data science and predictive modeling.
For further reading we recommend the books of Barndorff-Nielsen [23], Berger
[31], Bickel–Doksum [33] and Efron–Hastie [117].

3.1 Introduction to Decision Theory

We start from an observation vector Y = (Y1, . . . , Yn)
� taking values in a

measurable space Y ⊂ R
n, where n ∈ N denotes the number of components Yi ,

1 ≤ i ≤ n, in Y . Assume that this observation vector Y has been generated by a
distribution belonging to the family P = {P(·; θ); θ ∈ �} being parametrized by a
parameter set �.

Remarks 3.1 There are some subtle points in the notation that we are going to
use. We use P(·; θ) for the distribution of the observation vector Y , and if we
consider a specific component Yi of Y we will use the notation Yi ∼ F(·; θ). We
make this distinction as in estimation theory one often considers i.i.d. observations
Yi ∼ F(·; θ), 1 ≤ i ≤ n, with (in this case) joint product distribution Y ∼ P(·; θ).
This latter distribution is then used for purposes of maximum likelihood estimation,
etc. The family P is parametrized by θ ∈ �, and if we want to emphasize that
this parameter is a k-dimensional vector we use boldface notation θ , this is similar
to the EFs introduced in Chap. 2, but in this chapter we do not restrict to EFs.
Finally, we assume identifiability meaning that different parameters θ give different
distributions P(·; θ) ∈ P .
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50 3 Estimation Theory

To fix ideas, assume we want to determine γ (θ) of a given functional γ (·) on �.
Typically, the true value θ ∈ � is not known, and we are not able to determine γ (θ)

explicitly. Therefore, we try to estimate γ (θ) from data Y ∼ P(·; θ) that belongs to
the same θ ∈ �. As an example we may think of working in the EDF of Chap. 2,
and we are interested in the mean μ = Eθ [Y ] = κ ′(θ) of Y . Thus, we aim at
determining γ (θ) = κ ′(θ). If the true θ is unknown, and if we have an observation
Y from this model, we can try to estimate γ (θ) = κ ′(θ) from Y . This motivation
is based on estimation of γ (θ), but the following framework of decision making is
more general, for instance, it may also be used for statistical hypothesis testing.

Denote the action space of possible decisions (actions) by A. In decision theory
we are looking for a decision rule (action rule)

A : Y → A, Y 	→ A(Y ), (3.1)

which should be understood as an educated guess for γ (θ) based on observation Y .
A decision rule is evaluated in terms of a (given) loss function

L : � × A → R+, (θ, a) 	→ L(θ, a) ≥ 0. (3.2)

L(θ, a) describes the loss of an action a ∈ A w.r.t. a true parameter choice θ ∈ �.
The risk function of decision rule A for data generated by Y ∼ P(·; θ) is defined by

θ 	→ R(θ,A) = Eθ [L(θ,A(Y ))] =
∫
Y

L (θ,A(y)) dP (y; θ), (3.3)

where Eθ is the expectation w.r.t. the probability distribution P(·; θ). Risk func-
tion (3.3) describes the long-term average loss of using decision rule A. As an
example we may think of estimating γ (θ) for unknown (true) parameter θ by a
decision rule Y 	→ A(Y ). Then, the loss function L(θ,A(Y )) should describe the
estimation loss if we consider the discrepancy between γ (θ) and its estimate A(Y ),
and the risk function R(θ,A) is the average estimation loss in that case.

Good decision rules A should provide a small risk R(θ,A). Unfortunately, this
statement is of rather theoretical nature because, in general, the true data generating
parameter θ is not known and the goodness of a decision rule for the true parameter
cannot be evaluated explicitly, but the risk can only be estimated (for instance, using
a bootstrap approach). Moreover, typically, there does not exist a uniformly best
decision rule A over all θ ∈ �. For these reasons we may (just) try to eliminate
decision rules that are obviously not good. We give two introductory examples.

Example 3.2 (Minimax Decision Rule) Decision rule A is called minimax if for all
alternative decision rules Ã : Y → A we have

sup
θ∈�

R(θ,A) ≤ sup
θ∈�

R(θ, Ã).
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A minimax decision rule is the best choice in the worst case of the true θ , i.e., it
minimizes the worst case risk. �

Example 3.3 (Bayesian Decision Rule) Assume we are given a distribution π on
�. Decision rule A is called Bayesian w.r.t. π if it satisfies

A = arg min
Ã

∫
�

R(θ, Ã)dπ(θ).

Distribution π is called prior distribution on �. �

The above examples give two possible choices of decision rules. The first one
tries to minimize the worst case risk, whereas the second one uses additional knowl-
edge in terms of a prior distribution π on �. This means that we impose stronger
assumptions in the second case to get stronger conclusions. The difficult part in
practice is to justify these stronger assumptions in order to validate the stronger
conclusions. Below, we are going to introduce other criteria that should be satisfied
by good decision rules, an important one in estimation will be unbiasedness.

3.2 Parameter Estimation

This section focuses on estimating the (unknown) parameter θ ∈ � from observa-
tion Y ∼ P(·; θ). For this we consider decision rules A : Y → A = � with A(Y )

estimating θ . We assume there exist densities p(·; θ) w.r.t. a fixed σ -finite measure
ν on Y ⊂ R

n,

dP(y; θ) = p(y; θ)dν(y),

for all distributions P(·; θ) ∈ P , i.e., all θ ∈ �.

Definition 3.4 (Maximum Likelihood Estimator, MLE) The maximum
likelihood estimator (MLE) of θ for a given observation Y ∈ Y is given by
(subject to existence and uniqueness)

θ̂MLE = arg max
θ̃∈�

p(Y ; θ̃ ) = arg max
θ̃∈�

�Y (θ̃),

where the log-likelihood function of p(Y ; θ) is defined by θ 	→ �Y (θ) =
log p(Y ; θ).
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The MLE Y 	→ θ̂MLE = θ̂MLE(Y ) = A(Y ) is nothing else than a specific
decision rule with action space A = � for estimating θ . We can now start to explore
the risk function R(θ, θ̂MLE) of that decision rule for a given loss function L.

Example 3.5 (MLE within the EDF) We emphasize that this example is used
throughout these notes. Assume that the (independent) components of Y =
(Y1, . . . , Yn)

� ∼ P(·; θ) follow a given EDF distribution. That is, we assume that
Y1, . . . , Yn are independent and have densities w.r.t. σ -finite measures on R given
by, see (2.14),

Yi ∼ f (yi; θ, vi/ϕ) = exp

{
yiθ − κ(θ)

ϕ/vi

+ a(yi; vi/ϕ)

}
,

for 1 ≤ i ≤ n. Note that these random variables are not i.i.d. because they may
differ in exposures vi > 0. Throughout, we assume that Assumption 2.6 is fulfilled
and that the cumulant function κ is steep, see Theorem 2.19. For the latter we also
refer to Remark 2.20: the supports Tvi/ϕ of Yi may differ; however, these supports
share the same convex closure.

Independence between the Yi ’s implies that the joint probability P(·; θ) is the
product distribution of the individual distributions F(·; θ, vi/ϕ), 1 ≤ i ≤ n.
Therefore, the MLE of θ in the EDF is found by solving

θ̂MLE = arg max
θ̃∈�

�Y (θ̃ ) = arg max
θ̃∈�

n∑
i=1

Yi θ̃ − κ(θ̃)

ϕ/vi

.

Since the cumulant function κ is strictly convex we receive the MLE (subject
to existence)

θ̂MLE = θ̂MLE(Y ) = (κ ′)−1
(∑n

i=1 viYi∑n
i=1 vi

)
= h

(∑n
i=1 viYi∑n
i=1 vi

)
.

Thus, the MLE is received by applying the canonical link h = (κ ′)−1, see
Definition 2.8, and strict convexity of κ implies that the MLE is unique. However,
existence needs to be analyzed more carefully! It may happen that the MLE θ̂MLE is
a boundary point of the effective domain � which may not exist (if � is open). We
give an example. Assume we work in the Poisson model presented in Sect. 2.1.2.
The canonical link in the Poisson model is the log-link μ 	→ h(μ) = log(μ), for
μ > 0. With positive probability we have in the Poisson case

∑n
i=1 viYi = 0.
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Therefore, with positive probability the MLE θ̂MLE does not exist (we have a
degenerate Poisson model in that case).

Since the canonical link is strictly increasing we can also perform MLE in the
dual (mean) parametrization. The dual parameter space is given by M = κ ′(�̊),
see Remarks 2.9, with mean parameters μ = κ ′(θ) ∈ M. This motivates

μ̂MLE = arg max
μ̃∈M

�Y (h(μ̃)) = arg max
μ̃∈M

n∑
i=1

Yih(μ̃) − κ(h(μ̃))

ϕ/vi

. (3.4)

Subject to existence, this provides the unique MLE

μ̂MLE = μ̂MLE(Y ) =
∑n

i=1 viYi∑n
i=1 vi

. (3.5)

Also this dual MLE does not need to exist (in the dual parameter space M).
Under the assumption that the cumulant function κ is steep, we know that the closure
of the dual parameter space M contains the supports Tvi/ϕ of Yi , see Theorem 2.19
and Remark 2.20. Thus, in that case we can close the dual parameter space and
receive MLE μ̂MLE ∈ M (in a possibly degenerate model). In the aforementioned
degenerate Poisson situation we receive μ̂MLE = 0 which is in the boundary ∂M of
the dual parameter space. �

Definition 3.6 (Bayesian Estimator) The Bayesian estimator of θ for a given
observation Y ∈ Y and a given prior distribution π on � is given by (subject to
existence)

θ̂Bayes = θ̂Bayes(Y ) = Eπ [θ |Y ],

where the conditional expectation on the right-hand side is calculated under the
posterior distribution π(θ |y) ∝ p(y; θ)π(θ) for a given observation Y = y.

Example 3.7 (Bayesian Estimator) Assume that A = � = R and choose the square
loss function L(θ, a) = (θ − a)2. Assume that for ν-a.e. y ∈ Y the following
decision rule A : Y → A exists

A(y) = arg min
a∈A

Eπ [(θ − a)2|Y = y], (3.6)
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where the expectation is calculated w.r.t. the posterior distribution π(θ |y). In
this case, A is a Bayesian decision rule w.r.t. π and L(θ, a) = (θ − a)2: by
assumption (3.6) we have for any other decision rule Ã : Y → A, ν-a.s.,

Eπ [(θ − A(Y ))2|Y = y] ≤ Eπ [(θ − Ã(Y ))2|Y = y].

Applying the tower property we receive for any other decision rule Ã

∫
�

R(θ,A)dπ(θ) = E[(θ − A(Y ))2] ≤ E[(θ − Ã(Y ))2] =
∫

�

R(θ, Ã)dπ(θ),

where the expectation E is calculated over the joint distribution of Y and θ . This
proves that A is a Bayesian decision rule w.r.t. π and L(θ, a) = (θ − a)2, see
Example 3.3. Finally, note that the conditional expectation given in Definition 3.6 is
the minimizer of (3.6). This justifies the name Bayesian estimator in Definition 3.6
(for the square loss function). The case of the Bayesian estimator for a general loss
function L is considered in Theorem 4.1.1 of Lehmann [244]. �

Definition 3.8 (Method of Moments Estimator) Assume that � ⊆ R
k and that

the components Yi of Y are i.i.d. F(·; θ) distributed with finite k-th moments for all
θ ∈ �. The law of large numbers provides, a.s., for all 1 ≤ l ≤ k,

lim
n→∞

1

n

n∑
i=1

Y l
i = Eθ [Y l

1].

Assume that the following map is invertible (on suitable range definitions for (3.7)–
(3.8))

γ : � → R
k, θ 	→ γ (θ) = (Eθ [Y1], . . . ,Eθ [Y k

1 ])�. (3.7)

The method of moments estimator of θ is defined by

θ̂
MM = θ̂

MM
(Y ) = γ −1

(
1

n

n∑
i=1

Yi, . . . ,
1

n

n∑
i=1

Y k
i

)�
. (3.8)

The MLE, the Bayesian estimator and the method of moments estimator are the
most commonly used parameter estimators. They may have additional properties
(under certain assumptions) that we are going to explore below. In the remainder of
this section we give an additional view on estimators which is based on the empirical
distribution of the observation Y .
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Assume that the components Yi of Y are real-valued and i.i.d. F distributed. The
empirical distribution induced by the observation Y = (Y1, . . . , Yn)

� is given by

F̂n(y) = 1

n

n∑
i=1

1{Yi≤y} for y ∈ R, (3.9)

we also refer to Fig. 1.2 (lhs). The Glivenko–Cantelli theorem [64, 159] tells us that
the empirical distribution F̂n converges uniformly to F , a.s., for n → ∞.

Definition 3.9 (Fisher-Consistency) Denote by P the set of all distribution
functions on the given probability space. Let Q : P → � be a functional with
the property

Q(F(·; θ)) = θ for all F(·; θ) ∈ F = {F(·; θ); θ ∈ �} ⊂ P.

Such a functional is called Fisher-consistent for F and θ ∈ �, respectively.

A given Fisher-consistent functional Q motivates the estimator θ̂ = Q(F̂n) ∈ �.
This is exactly what we have applied for the method of moments estimator (3.8)
with Fisher-consistent functional induced by the inverse of (3.7). The next example
shows that this also works for MLE.

Example 3.10 (MLE and Kullback–Leibler (KL) Divergence) The MLE can be
received from a Fisher-consistent functional. Consider for F ∈ P the functional

Q(F) = arg max
θ̃

∫
log f (y; θ̃ )dF (y),

assuming that f (·; θ̃ ) are densities w.r.t. a σ -finite measure on R. Assume that F

has density f w.r.t. the σ -finite measure ν on R. Then, we can rewrite the above as

Q(F) = arg min
θ̃

∫
log

(
f (y)

f (y; θ̃ )

)
f (y)dν(y) = arg min

θ̃

DKL(f ||f (·; θ̃ )).

The latter is the Kullback–Leibler (KL) divergence which we have met in Sect. 2.3.
Lemma 2.21 states that the KL divergence is non-negative, and it is zero if and only
if the two densities f and f (·; θ̃ ) are identical, ν-a.s. This implies that Q(F(·; θ)) =
θ . Thus, Q is Fisher-consistent for θ ∈ �, assuming identifiability, see Remarks 3.1.

Next, we use this Fisher-consistent functional (KL divergence) to receive the
MLE. Replace the unknown distribution F by the empirical one to receive

Q(F̂n) = arg min
θ̃

DKL(f̂n||f (·; θ̃ ))

= arg max
θ̃

1

n

n∑
i=1

log f (Yi; θ̃ ) = θ̂MLE,
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where we have used that the empirical density f̂n allocates point masses of size 1/n

to the i.i.d. observations Y1, . . . , Yn. Thus, the MLE θ̂MLE of θ can be obtained by
choosing the model f (·; θ̃ ), θ̃ ∈ �, that is closest in KL divergence to the empirical
distribution F̂n of i.i.d. observations Yi ∼ F . Note that in this construction we do
not assume that the true distribution F is in F , see Definition 3.9. �

Remarks 3.11

• Many properties of estimators of θ are based on properties of Fisher-consistent
functionals Q (in cases where they exist). For instance, asymptotic properties as
n → ∞ are obtained from smoothness properties of Fisher-consistent functionals
Q, or using the influence function we can analyze the impact of individual
observations Yi on decision rules θ̂ = θ̂ (Y ) = Q(F̂n). The latter is the basis of
robust statistics, see Huber [194] and Hampel et al. [180]. Since Fisher-consistent
functionals do not require that the true distribution belongs to F it requires a
careful consideration of the quantity to be estimated.

• The discussion on parameter estimation has implicitly assumed that the true data
generating model belongs to the family P = {P(·; θ); θ ∈ �}, and the only
problem was to find the true parameter in �. More generally, one should also
consider model uncertainty w.r.t. the chosen family P , i.e., the data generating
model may not belong to this family. Of course, this problem is by far more
difficult. We explore this in more detail in Sect. 11.1.4, below.

3.3 Unbiased Estimators

We introduce the property of uniformly minimum variance unbiased (UMVU) for
decision rules in this section. This is a very attractive property in insurance pricing
because it gives a quality statement to decision rules (and to the resulting prices). At
the current stage it is not clear how unbiasedness is related, e.g., to the MLE of θ .

3.3.1 Cramér–Rao Information Bound

Above we have stated some quality criteria for decision rules like the minimax
property. A crucial property in financial applications is the so-called unbiasedness
(for mean estimates) because this guarantees that the overall (price) levels are
correctly specified.
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Definition 3.12 (Uniformly Minimum Variance Unbiased, UMVU) A
decision rule A : Y → A = R is unbiased for γ : � → R if for all
Y ∼ P(·; θ), θ ∈ �, we have

Eθ [A(Y )] = γ (θ). (3.10)

The decision rule A is called UMVU for γ if additionally to the unbiased-
ness (3.10) we have

Varθ (A(Y )) ≤ Varθ (Ã(Y )),

for all θ ∈ � and for any other decision rule Ã : Y → R that is unbiased for
γ .

Note that unbiasedness is not invariant under transformations, i.e., if A(Y ) is
unbiased for γ (θ), then, in general, b(A(Y )) is not unbiased for b(γ (θ)). For
instance, if b is strictly convex then we get a counterexample by simply applying
Jensen’s inequality.

Our first step is to derive a general lower bound for Varθ (A(Y )). If this general
lower bound is met for an unbiased decision rule A for γ , then we know that it
is UMVU for γ . We start with the one-dimensional case given in Section 2.6 of
Lehmann [244].

Theorem 3.13 (Cramér–Rao Information Bound) Assume that the distri-
butions P(·; θ), θ ∈ �, have densities p(·; θ) for a given σ -finite measure ν

on Y, and that � ⊂ R is an open interval such that the set {y; p(y; θ) > 0}
does not depend on θ ∈ �. Let A(Y ) be unbiased for γ : � → R having
finite second moment. If the limit

∂

∂θ
log p(y; θ) = lim

�→0

1

�

p(y; θ + �) − p(y; θ)

p(y; θ)

exists in L2(P (·; θ)) and if

I(θ) = Eθ

[(
∂

∂θ
log p(Y ; θ)

)2
]

∈ (0,∞),

then the function θ 	→ γ (θ) is differentiable, Eθ [ ∂
∂θ

log p(Y ; θ)] = 0 and we
have information bound

Varθ (A(Y )) ≥ γ ′(θ)2

I(θ)
.
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Proof We start from an arbitrary function ψ : � × Y → R with finite variance
Varθ (ψ(θ,Y )) ∈ (0,∞) for all θ ∈ �. The Cauchy–Schwarz inequality implies

Varθ (A(Y )) ≥ Covθ (A(Y ), ψ(θ,Y ))2

Varθ (ψ(θ,Y ))
. (3.11)

If we manage to make the right-hand side of (3.11) independent of decision rule
A(·) we have a general lower bound, we also refer to Theorem 2.6.1 in Lehmann
[244].

The Cauchy–Schwarz inequality implies that for any U ∈ L2(P (·; θ)) the
following limit exists and is equal to

lim
�→0

Eθ

[
1

�

p(Y ; θ + �) − p(Y ; θ)

p(Y ; θ)
U

]
= Eθ

[
∂

∂θ
log p(Y ; θ)U

]
. (3.12)

Setting U ≡ 1 gives average score Eθ [ ∂
∂θ

log p(Y ; θ)] = 0 because for sufficiently
small �

Eθ

[
p(Y ; θ + �) − p(Y ; θ)

p(Y ; θ)

]
=

∫
Y

p(y; θ + �) − p(y; θ)

p(y; θ)
p(y; θ)dν(y) = 0,

where we have used that the support of the random variables does not depend on θ

and that the domain � of θ is open.
Secondly, we set U = A(Y ) in (3.12). We have similarly to above using

unbiasedness w.r.t. γ

Covθ

(
A(Y ),

p(Y ; θ + �) − p(Y ; θ)

p(Y ; θ)

)
=

∫
Y

A(y)
p(y; θ + �) − p(y; θ)

p(y; θ)
p(y; θ)dν(y)

= γ (θ + �) − γ (θ).

Existence of limit (3.12) provides the differentiability of γ . Finally, from (3.11) we
have

Varθ (A(Y )) ≥ lim
�→0

Covθ

(
A(Y ),

p(Y ;θ+�)−p(Y ;θ)
p(Y ;θ)

)2

Varθ
(

p(Y ;θ+�)−p(Y ;θ)
p(Y ;θ)

) = γ ′(θ)2

I(θ)
. (3.13)

This completes the proof. ��

Remarks 3.14 (Fisher’s Information and Score)

• I(θ) is called Fisher’s information or Fisher metric.
• s(θ,Y ) = ∂

∂θ
log p(Y ; θ) is called score, and Eθ [s(Y ; θ)] = 0 in Theorem 3.13

expresses that the average score is zero under the assumptions of that theorem.
• Under the regularity conditions of Lemma 6.1 in Section 2.6 of Lehmann [244]
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I(θ) = Eθ

[(
∂

∂θ
log p(Y ; θ)

)2
]

= −Eθ

[
∂2

∂θ2
log p(Y ; θ)

]
. (3.14)

Fisher’s information I(θ) expresses the variance of the score s(θ,Y ). Iden-
tity (3.14) justifies the notion Fisher’s information in Sect. 2.3 for the EF.

• In order to determine the Cramér–Rao information bound for unknown θ we
need to estimate Fisher’s information I(θ) from the available data. There are
two different ways to do so, either we choose

I(θ̂ ) = Eθ̂

[(
∂

∂θ
log p(Y ; θ)

)2
]

,

or we choose the observed Fisher’s information

Î(θ̂ ) =
(

∂

∂θ
log p(Y ; θ)

)2
∣∣∣∣∣
θ=θ̂

,

for given data Y and where θ̂ = θ̂ (Y ). Both estimated Fisher’s information I(θ̂ )

and Î(θ̂ ) play a central role in MLE of generalized linear models (GLMs). They
are used in Fisher’s scoring method, the iterated re-weighted least squares (IRLS)
algorithm and the Newton–Raphson algorithm to determine the MLE.

• The Cramér–Rao information bound in Theorem 3.13 is stated in terms of the
observation Y ∼ p(·; θ). Assume that the components Yi of Y are i.i.d. f (·; θ)

distributed. In this case, Fisher’s information scales as

I(θ) = In(θ) = nI1(θ), (3.15)

with single risk’s Fisher’s information (contribution)

I1(θ) = Eθ

[(
∂

∂θ
log f (Y1; θ)

)2
]

.

In general, Fisher’s information is additive in independent random variables,
because the product of densities is additive after applying the logarithm, and
because the average score is zero.



60 3 Estimation Theory

Proposition 3.15 The unbiased decision rule A for γ attains the Cramér–
Rao information bound if and only if the density is of the form p(y; θ) =
exp {δ(θ)T (y) − β(θ) + a(y)} with T = A. In that case we have γ (θ) =
β ′(θ)/δ′(θ).

Proof of Proposition 3.15 The Cauchy–Schwarz inequality provides equality
in (3.13) if and only if ∂

∂θ
log p(y; θ) = δ′(θ)A(y)−β ′(θ), ν-a.s, for some functions

δ′(θ) and β ′(θ) on �. Integration and the fact that p(·; θ) is a density whose support
does not depend on the explicit choice of θ ∈ � provide the implication “⇒”. For
the implication “⇐” we study for A = T

0 = Eθ

[
∂

∂θ
log p(Y ; θ)

]
=

∫
Y

(δ′(θ)A(y) − β ′(θ))p(y; θ)dν(y) = δ′(θ)Eθ [A(Y )] − β ′(θ).

In that case we have γ (θ) = Eθ [A(Y )] = β ′(θ)/δ′(θ). Moreover, we have equality
in the Cauchy–Schwarz inequality. This finishes the proof. ��

The single-parameter EF fulfills the properties of Proposition 3.15 with δ(θ) = θ

and β(θ) = κ(θ), and decision rule A(y) = T (y) attains the Cramér–Rao
information bound for γ (θ) = κ ′(θ).

We give a multi-dimensional version of the Cramér–Rao information bound.

Theorem 3.16 (Multi-Dimensional Version of the Cramér–Rao
Information Bound, Without Proof) Assume that the distributions P(·; θ),
θ ∈ �, have densities p(·; θ) for a given σ -finite measure ν on Y, and that
� ⊆ R

k is an open convex set such that the set {y; p(y; θ) > 0} does not
depend on θ ∈ �. Let A(Y ) be unbiased for γ : � → R having finite
second moment. Under additional regularity conditions, see Theorem 7.3 in
Section 2.7 of Lehmann [244], we have

Varθ (A(Y )) ≥ (∇θγ (θ))�I(θ)−1∇θγ (θ),

with (positive definite) Fisher’s information matrix I(θ) = (Il,j (θ))1≤l,j≤k

given by

Il,j (θ) = Eθ

[
∂

∂θl

log p(Y ; θ)
∂

∂θj

log p(Y ; θ)

]
,

for 1 ≤ l, j ≤ k.
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Remarks 3.17

• Whenever an unbiased decision rule A(Y ) for γ (θ) meets the Cramér–Rao
information bound it is UMVU. Thus, it minimizes the risk function R(θ , A)

being based on the square loss L(θ , a) = (γ (θ) − a)2 among all unbiased
decision rules, because unbiasedness for γ (θ) gives R(θ , A) = Varθ (A(Y )).

• The regularity conditions in Theorem 3.16 include that Fisher’s information
matrix I(θ) is positive definite.

• Under additional regularity conditions we have the following identity for Fisher’s
information matrix

I(θ ) = Eθ

[
(∇θ log p(Y ; θ)) (∇θ log p(Y ; θ))�

]
= −Eθ

[
∇2

θ log p(Y ; θ)
]

∈ R
k×k.

Thus, Fisher’s information matrix can either be calculated from a quadratic
form of the score s(θ ,Y ) = ∇θ log p(Y ; θ) or from the Hessian ∇2

θ of the
log-likelihood �Y (θ) = log p(Y ; θ). Since the score has mean zero, Fisher’s
information matrix is equal to the covariance matrix of the score s(θ ,Y ).

In many situations we do not work under the canonical parametrization θ .
Considerations then require a change of variable. Assume that

ζ ∈ R
r 	→ θ = θ(ζ ) ∈ R

k,

such that all derivatives ∂θl(ζ )/∂ζj exist for 1 ≤ l ≤ k and 1 ≤ j ≤ r . The Jacobian
matrix is given by

J (ζ ) =
(

∂

∂ζj

θl(ζ )

)
1≤l≤k,1≤j≤r

∈ R
k×r .

Fisher’s information matrix w.r.t. ζ is given by

I∗(ζ ) =
(
Eθ(ζ )

[
∂

∂ζl

log p(Y ; θ(ζ ))
∂

∂ζj

log p(Y ; θ(ζ ))

])
1≤l,j≤r

∈ R
r×r ,

and we have the identity

I∗(ζ ) = J (ζ )� I(θ(ζ )) J (ζ ). (3.16)

This formula is used quite frequently, e.g., in generalized linear models when
changing the parametrization of the models.
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3.3.2 Information Bound in the Exponential Family Case

The purpose of this section is to summarize the Cramér–Rao information bound
results for the EF and the EDF, since these families play a distinguished role in
statistical and actuarial modeling.

Cramér–Rao Information Bound in the EF Case

We start with the EF case. Assume we have i.i.d. observations Y1, . . . , Yn having
densities w.r.t. a σ -finite measure ν on R given by the EF, see (2.2),

dF(y; θ) = f (y; θ)dν(y) = exp
{
θ�T (y) − κ(θ) + a(y)

}
dν(y),

for canonical parameter θ ∈ � ⊆ R
k . We assume to work under a minimal

representation implying that the cumulant function κ is strictly convex on the
interior �̊, see Assumption 2.6. Moreover, we assume that the cumulant function
κ is steep in the sense of Theorem 2.19. Consider the (aggregated) statistics of the
joint EF P = {P(·; θ); θ ∈ �}

y 	→ S(y)
def.=

(
n∑

i=1

T1(yi), . . . ,

n∑
i=1

Tk(yi)

)�
∈ R

k. (3.17)

We calculate the score of this EF

s(θ ,Y ) = ∇θ log p(Y ; θ) = ∇θ

(
θ�

n∑
i=1

T (Yi) − nκ(θ)

)
= S(Y ) − n∇θκ(θ).

An immediate consequence of Corollary 2.5 is that the expected value of the score
is zero for any θ ∈ �̊. This then reads as

μ = Eθ [T (Y1)] = Eθ [S(Y )/n] = ∇θκ(θ) ∈ R
k. (3.18)

Thus, the statistics S(Y )/n is an unbiased decision rule for the mean μ = ∇θκ(θ),
and we can study its Cramér–Rao information bound. Fisher’s information matrix
is given by the positive definite matrix

I(θ) = In(θ) = Eθ

[
s(θ,Y )s(θ,Y )�

]
= −Eθ

[
∇2

θ log p(Y ; θ)
]

= n∇2
θ κ(θ) ∈ R

k×k.

Note that the multi-dimensionally extended Cramér–Rao information bound in
Theorem 3.16 applies to the individual components of vector μ = ∇θκ(θ) ∈
R

k . Assume we would like to estimate its j -th component, set γj (θ) = μj =
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(∇θκ(θ))j = ∂κ(θ)/∂θj , for 1 ≤ j ≤ k. This corresponds to the j -th component
Sj (Y ) of the statistics S(Y ). We have unbiasedness of Sj (Y )/n for γj (θ) = μj =
(∇θκ(θ))j , and this unbiased statistics attains the Cramér–Rao information bound

Varθ (Sj (Y )/n) = 1

n

(
∇2

θ κ(θ)
)

j,j
= (∇θγj (θ))�I(θ)−1(∇θγj (θ)). (3.19)

Recall that I(θ)−1 scales as n−1, see (3.15). This provides us with the following
corollary.

Corollary 3.18 Assume Y1, . . . , Yn are i.i.d. and follow an EF (under a
minimal representation). The components of the statistics S(Y )/n are UMVU
for γj (θ) = ∂κ(θ)/∂θj , 1 ≤ j ≤ k and θ ∈ �̊, with

Varθ

(
1

n
Sj (Y )

)
= 1

n

∂2

∂θ2
j

κ(θ).

The corresponding covariance terms are for 1 ≤ j, l ≤ k given by

Covθ

(
1

n
Sj (Y ),

1

n
Sl(Y )

)
= 1

n

∂2

∂θj∂θl

κ(θ).

The UMVU property stated in Corollary 3.18 is, in general, not related to MLE,
but within the EF there is the following link. We have (subject to existence)

θ̂
MLE = arg max

θ̃∈�

p(Y ; θ̃) = arg max
θ̃∈�

(̃
θ

�
S(Y ) − nκ(̃θ)

)
= h

(
1

n
S(Y )

)
,

(3.20)

where h = (∇θκ)−1 is the canonical link of this EF, see Definition 2.8; and where
we need to ensure that a solution to (3.20) exists; e.g., the solution to (3.20) might
be at the boundary of � which may cause problems, see Example 3.5.1 Because the
cumulant function κ is strictly convex (in a minimal representation), we receive the

1 Another example where there does not exist a proper solution to the MLE problem (3.20) is, for
instance, obtained within the 2-dimensional Gaussian EF if we have only one single observation Y1.
Intuitively this is clear because we cannot estimate two parameters from one observation T (Y1) =
(Y1, Y

2
1 ).
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MLE for the mean parameter μ = Eθ [T (Y1)]

μ̂MLE = arg max
μ̃∈M

(
h(μ̃)�S(Y ) − nκ(h(μ̃))

)
= 1

n
S(Y ),

the dual parameter space M = ∇θκ(�) ⊆ R
k has been introduced in Remarks 2.9.

If S(Y )/n is contained in M, then this MLE is a proper solution; otherwise, because
we have assumed that the cumulant function κ is steep, the MLE exists in the closure
M, see Theorem 2.19, and it is UMVU for μ, see Corollary 3.18.

Corollary 3.19 (Balance Property) Assume Y1, . . . , Yn are i.i.d. and follow
an EF with θ ∈ �̊ and T (Yi) ∈ M, a.s. The MLE μ̂MLE ∈ M is UMVU for
μ, and it fulfills the balance property on portfolio level, i.e.,

n∑
i=1

Eμ̂MLE [T (Yi)] = nμ̂MLE = S(Y ).

Remarks 3.20

• The balance property is a very important property in insurance pricing because it
implies that the portfolio is priced on the right level: we have unbiasedness

Eθ

[
n∑

i=1

Eμ̂MLE [T (Yi)]

]
= Eθ [S(Y )] = nμ. (3.21)

• We emphasize that the balance property is much stronger than unbiased-
ness (3.21), note that the balance property provides unbiasedness even if Y

follows a completely different model, i.e., even if the chosen EF P is completely
misspecified.

• In general, the MLE θ̂
MLE

is not unbiased for θ . E.g., if the canonical link
h = (∇θκ)−1 is strictly concave, we have from Jensen’s inequality, subject to
existence at the boundary of �,

Eθ

[̂
θ

MLE
]

= Eθ

[
h

(
1

n
S(Y n)

)]
< h

(
Eθ

[
1

n
S(Y n)

])
= h (μ) = θ .

(3.22)

• The statistics S(Y ) is a sufficient statistics of Y , this follows from the factoriza-
tion criterion; see Theorem 1.5.2 of Lehmann [244].
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Cramér–Rao Information Bound in the EDF Case

The single-parameter linear EDF case is very similar to the above vector-valued
parameter EF case. We briefly summarize the main results in the EDF case.

Recall Example 3.5: assume that Y1, . . . , Yn are independent having densities
w.r.t. a σ -finite measures on R (not being concentrated in a single point) given by,
see (2.14),

Yi ∼ f (yi; θ, vi/ϕ) = exp

{
yiθ − κ(θ)

ϕ/vi

+ a(yi; vi/ϕ)

}
, (3.23)

for 1 ≤ i ≤ n. Note that these random variables are not i.i.d. because they may differ
in the exposures vi > 0. The MLE of μ = κ ′(θ), θ ∈ �̊, is found by, see (3.5),

μ̂MLE = arg max
μ̃∈M

n∑
i=1

Yih(μ̃) − κ(h(μ̃))

ϕ/vi

=
∑n

i=1 viYi∑n
i=1 vi

, (3.24)

we assume that κ is steep to ensure μ̂MLE ∈ M. The convolution formula of
Corollary 2.15 says that the MLE μ̂MLE = Y+ belongs to the same EDF with the
same canonical parameter θ and the same dispersion ϕ, only the weight changes to
v+ = ∑n

i=1 vi .

Corollary 3.21 (Balance Property) Assume Y1, . . . , Yn are independent with
EDF distribution (3.23) for θ ∈ �̊ and Yi ∈ M, a.s. The MLE μ̂MLE ∈ M is
UMVU for μ = κ ′(θ), and it fulfills the balance property on portfolio level,
i.e.,

n∑
i=1

Eμ̂MLE [viYi ] =
n∑

i=1

viμ̂
MLE =

n∑
i=1

viYi.

The score in this EDF is given by

s(θ,Y ) = ∂

∂θ
log p(Y ; θ) = ∂

∂θ

n∑
i=1

vi

ϕ
(θYi − κ(θ)) =

n∑
i=1

vi

ϕ

(
Yi − κ ′(θ)

)
.

Of course, we have Eθ [s(θ,Y )] = 0 and we receive Fisher’s information for θ ∈ �̊

I(θ) = −Eθ

[
∂2

∂θ2 log p(Y ; θ)

]
=

n∑
i=1

vi

ϕ
κ ′′(θ) > 0. (3.25)
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Corollary 2.15 gives for the variance of the MLE

Varθ
(
μ̂MLE

)
= ϕ∑n

i=1 vi

κ ′′(θ) = (κ ′′(θ))2

I(θ)
= (∂μ(θ)/∂θ)2

I(θ)
.

This verifies that μ̂MLE meets the Cramér–Rao information bound and is UMVU
for the mean μ = κ ′(θ).

Example 3.22 (Poisson Case) For this example, we consider independent Poisson
random variables Ni ∼ Poi(viλ). In Sect. 2.2.2 we have seen that Yi = Ni/vi can
be modeled within the single-parameter linear EDF framework using as cumulant
function the exponential function κ(θ) = eθ , and setting ωi = vi and ϕ = 1. Thus,
the probability weights of a single observation Yi are given by, see (2.15),

f (yi; θ, vi) = exp
{
vi

(
θyi − eθ

) + a(yi; vi)
}
,

with canonical parameter θ = log(λ) ∈ � = R. The MLE in the mean
parametrization is given by, see (3.24),

λ̂MLE =
∑n

i=1 viYi∑n
i=1 vi

=
∑n

i=1 Ni∑n
i=1 vi

∈ M = [0,∞).

This estimator is unbiased for λ. Having independent Poisson random variables we
can calculate the variance of this estimator as

Var
(̂
λMLE

)
= λ∑n

i=1 vi

.

Moreover, from Corollary 3.21 we know that this estimator is UMVU for λ, which
can easily be seen, and uses Fisher’s information (3.25) with dispersion parameter
ϕ = 1

I(θ) = −Eθ

[
∂2

∂θ2 log p(Y ; θ)

]
=

n∑
i=1

viκ
′′(θ) = λ

n∑
i=1

vi .

�

One could study many other properties of decision rules (and corresponding
estimators), for instance, admissibility or uniformly minimum risk equivariance
(UMRE), and we could also study other families of distribution functions such as
group families. We refrain from doing so because we will not need this for our
purposes.
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3.4 Asymptotic Behavior of Estimators

All results above have been based on a finite sample Y n = (Y1, . . . , Yn)
�, we add a

lower index n to Y n to indicate the finite sample size n ∈ N. The aim of this section
is to analyze properties of decision rules when the sample size n tends to infinity.

3.4.1 Consistency

Assume we have an infinite sequence of observations Yi , i ≥ 1, which allows us
to construct an infinite sequence of decision rules An = An(Y n), n ≥ 1, where
An always considers the first n observations Y n = (Y1, . . . , Yn)

� ∼ Pn(·; θ), for
θ ∈ � not depending on n. To fix ideas, one may think of i.i.d. random variables Yi .

Definition 3.23 (Consistency) The sequence An = An(Y n) ∈ R
r , n ≥ 1, is

consistent for γ : � → R
r if for all θ ∈ � and for all ε > 0 we have

lim
n→∞Pθ

[‖An(Y n) − γ (θ)‖2 > ε
] = 0.

Definition 3.23 says that An(Y n) converges in probability to γ (θ) as n → ∞. If
we (even) have a.s. convergence, we call An, n ≥ 1, strongly consistent for γ : � →
R

r . Consistency is a minimal property that decision rules should fulfill. Typically, in
applications, this is not enough, and we are interested in (fast) rates of convergence,
i.e., we would like to know the error rates between An(Y n) and γ (θ) for n → ∞.

Example 3.24 (Consistency of the MLE in the EF) We revisit Corollary 3.19 and
consider an i.i.d. sequence of random variables Yi , i ≥ 1, belonging to an EF, and
we assume to work under a minimal representation and to have a steep cumulant
function κ . The MLE for μ is given by the statistics

μ̂MLE
n = 1

n
S(Y n) = 1

n

n∑
i=1

(T1(Yi), . . . , Tk(Yi))
� ∈ M.

We add a lower index n to the MLE to indicate the sample size. The i.i.d. property
of Yi , i ≥ 1, implies that we can apply the strong law of large numbers which tells
us that we have limn→∞ μ̂MLE

n = Eθ [T (Y1)] = ∇θκ(θ) = μ, a.s., for all θ ∈ �.
This implies strong consistency of the sequence of MLEs μ̂MLE

n , n ≥ 1, for μ.
We have seen that these MLEs are also UMVU for μ, but if we transform them

to the canonical scale θ̂
MLE
n they are, in general, biased for θ , see (3.22). However,

since the cumulant function κ is strictly convex (under a minimal representation)

we receive limn→∞ θ̂
MLE
n = θ , a.s., which provides strong consistency also on the

canonical scale. �
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Proposition 3.25 Assume the real-valued random variables Yi , i ≥ 1, are
i.i.d. F(·; θ) distributed with fixed θ ∈ �. The resulting empirical distributions
F̂n, n ≥ 1, are given by (3.9). Assume Q is a Fisher-consistent functional for γ (θ),
i.e., Q(F(·; θ)) = γ (θ) for all θ ∈ �. Moreover, assume that Q is continuous in
F(·; θ), for all θ ∈ �, w.r.t. the supremum norm. The functionals Q(F̂n), n ≥ 1, are
consistent for γ (θ).

Sketch of Proof The Glivenko–Cantelli theorem [64, 159] says that the empirical
distribution F̂n converges uniformly to F(·; θ), a.s., for n → ∞. Using the
assumptions made, we are allowed to exchange the corresponding limits, which
provides consistency. ��

In view of Proposition 3.25, we discuss the case of the MLE of θ ∈ �. In
Example 3.10 we have seen that the MLE of θ ∈ � is obtained from a Fisher-
consistent functional Q for θ on the set of probability distributions P given by

Q(F) = arg max
θ̃

∫
log f (y; θ̃ )dF (y) = arg min

θ̃

DKL(f ||f (·; θ̃ )),

in the second step we assumed that F has a density f w.r.t. a σ -finite measure ν on
R.

Assume we have i.i.d. data Yi ∼ f (·; θ), i ≥ 1. Thus, the true data generating
distribution is described by the parameter θ ∈ �. MLE requires the study of the
log-likelihood function (we scale with the sample size n)

θ̃ 	→ 1

n
�Y n (θ̃) = 1

n

n∑
i=1

log f (Yi; θ̃ ).

The law of large numbers gives us, a.s.,

lim
n→∞

1

n

n∑
i=1

log f (Yi; θ̃ ) = Eθ

[
log f (Y ; θ̃ )

]
. (3.26)

Thus, if we are allowed to exchange the arg max operation and the limit in n → ∞
we receive, a.s.,

lim
n→∞ θ̂MLE

n = lim
n→∞

(
arg max

θ̃

1

n

n∑
i=1

log f (Yi; θ̃ )

)

?= arg max
θ̃

(
lim

n→∞
1

n

n∑
i=1

log f (Yi; θ̃ )

)

= arg max
θ̃

Eθ

[
log f (Y ; θ̃ )

] = Q(F(·; θ)) = θ. (3.27)
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That is, we receive consistency of the MLE for θ if we are allowed to exchange the
arg max operation and the limit in n → ∞. This requires regularity conditions on
the considered family of distributions F = {F(·; θ); θ ∈ �}. The case of a finite
parameter space � = {θ1, . . . , θJ } is easy, this is a simplified version of Wald’s
[374] consistency proof,

Pθj

[
θj �∈ arg max

θk

1

n

n∑
i=1

log f (Yi; θk)

]
≤

∑
k �=j

Pθj

[
1

n

n∑
i=1

log f (Yi; θk) >
1

n

n∑
i=1

log f (Yi; θj )

]
.

The right-hand side converges to 0 as n → ∞ for all θk �= θj , which gives
consistency. For regularity conditions on more general parameter spaces we refer
to Section 5.2 in Van der Vaart [363]. Basically, one needs that the arg max of the
limiting function given on the right-hand side of (3.26) is well-separated from other
large values of that function, see Theorem 5.7 in Van der Vaart [363].

Remarks 3.26

• The estimator from the arg max operation in (3.27) is also called M-estimator,
and (y, a) 	→ log(f (y; a)) plays the role of a scoring function (similar to
a loss function). The the last line of (3.27) says that this scoring function is
strictly consistent for the functional Q : F → �, and Fisher-consistency of
this functional Q implies

Eθ

[
log f (Y ; θ̃ )

] ≤ Eθ

[
log f (Y ; Q(F(·; θ)))

] = Eθ

[
log f (Y ; θ)

]
,

for all θ̃ ∈ �. Strict consistency of loss and scoring functions is going to be
defined formally in Sect. 4.1.3, below, and we have just seen that this plays an
important role for the consistency of M-estimators in the sense of Definition 3.23.

• Consistency (3.27) assumes that the data generating model Y ∼ F belongs to
the specified family F = {F(·; θ); θ ∈ �}. Model uncertainty may imply that
the data generating model does not belong to F . In this situation, and if we are
allowed to exchange the arg max operation and the limit in n in (3.27), the MLE
will provide the model in F that is closest in KL divergence to the true model F .
We come back to this in Sect. 11.1.4, below.

3.4.2 Asymptotic Normality

As mentioned above, typically, we would like to have stronger results than just
consistency. We give an introductory example based on the EF.

Example 3.27 (Asymptotic Normality of the MLE in the EF) We work under the
same EF as in Example 3.24. This example has provided consistency of the sequence
of MLEs μ̂MLE

n , n ≥ 1, for μ. Note that the i.i.d. property together with the finite
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variance property immediately implies the following convergence in distribution

√
n

(
μ̂MLE

n − μ
)

⇒ N (0,∇2
θ κ(θ))

(d)= N (0,I1(θ)) as n → ∞,

where θ = θ(μ) = (∇θκ)−1(μ) ∈ � for μ ∈ M, and N denotes the Gaussian
distribution. This is the multivariate version of the central limit theorem (CLT), and
it tells us that the rate of convergence is 1/

√
n. This asymptotic result is stated in

terms of Fisher’s information matrix under parametrization θ . We transform this
to the dual mean parametrization and call Fisher’s information matrix under the
dual mean parametrization I∗

1 (μ). This involves the change of variable μ 	→ θ =
θ(μ) = (∇θκ)−1(μ). The Jacobian matrix of this change of variable is given by
J (μ) = I1(θ(μ))−1 and, thus, the transformation of Fisher’s information matrix
gives, see also (3.16),

μ 	→ I∗
1 (μ) = J (μ)� I1(θ(μ)) J (μ) = I1(θ(μ))−1.

This allows us to express the above CLT w.r.t. Fisher’s information matrix corre-
sponding to μ and it gives us

√
n

(
μ̂MLE

n − μ
)

⇒ N
(

0,I∗
1 (μ)−1

)
as n → ∞. (3.28)

We conclude that the appropriately normalized MLE μ̂MLE
n converges in distri-

bution to the centered Gaussian distribution having as covariance matrix the inverse
of Fisher’s information matrix I∗

1 (μ), and the rate of convergence is 1/
√

n.
Assume that the effective domain � is open, and that θ = θ(μ) ∈ �. This

allows us to transform asymptotic normality (3.28) to the canonical scale. Consider
again the change of variable μ 	→ θ = θ(μ) = (∇θκ)−1(μ) with Jacobian matrix
J (μ) = I1(θ(μ))−1 = I∗

1 (μ). Theorem 1.9 in Section 5.2 of Lehmann [244] tells
us how the CLT transforms under such a change of variable, namely,

√
n

(̂
θ

MLE
n − θ

)
= √

n
(
(∇θ κ)−1

(
μ̂MLE

n

)
− (∇θ κ)−1(μ)

)
(3.29)

⇒ N
(

0, J (μ)I∗
1 (μ)−1J (μ)

)
(d)= N

(
0,I1(θ)−1

)
as n → ∞.

We have exactly the same structural form in the two asymptotic results (3.28)
and (3.29). There is a main difference, μ̂MLE

n is unbiased for μ whereas, in general,

θ̂
MLE
n is not unbiased for θ , but we receive the same asymptotic behavior. �



3.4 Asymptotic Behavior of Estimators 71

There are many different versions of asymptotic normality results similar
to (3.28) and (3.29), and the main difficulty often is to verify the assumptions made.
For instance, one can prove asymptotic normality based on a Fisher-consistent
functional Q. The assumptions made are, among others, that Q needs to be Fréchet
differentiable in P(·; θ) which, unfortunately, is rather difficult to verify. We make
a list of assumptions here that are easier to check and then we give a version of the
asymptotic normality result which is stated in the book of Lehmann [244]. This list
of assumptions in the one-dimensional case � ⊆ R reads as follows:

(i) � ⊆ R is an open interval (possibly infinite).
(ii) The real-valued random variables Yi ∼ F(·; θ), i ≥ 1, have common support

T = {y ∈ R; f (y; θ) > 0} which is independent of θ ∈ �.
(iii) For every y ∈ T, the density f (y; θ) is three times continuously differentiable

in θ .
(iv) The integral

∫
f (y; θ)dν(y) is twice differentiable under the integral sign.

(v) Fisher’s information satisfies I1(θ) = Eθ [(∂ log f (Y1; θ)/∂θ)2] ∈ (0,∞).
(vi) For every θ0 ∈ � there exist a positive constant c and a function M(y) (both

may depend on θ0) such that Eθ0[M(Y1)] < ∞ and

∣∣∣∣ ∂3

∂θ3 log f (y; θ)

∣∣∣∣ ≤ M(y) for all y ∈ T and θ ∈ (θ0 − c, θ0 + c).

Theorem 3.28 (Theorem 2.3 in Section 6.2 of Lehmann [244]) Assume Yi ,
i ≥ 1, are i.i.d. F(·; θ) distributed satisfying (i)–(vi) from above. Assume that
θ̂n = θ̂n(Y n), n ≥ 1, is a sequence of roots that solves the score equations

∂

∂θ̃

n∑
i=1

log f (Yi; θ̃ ) = ∂

∂θ̃
�Y n(θ̃ ) = 0,

and which is consistent for θ , i.e. this sequence of roots θ̂n(Y n) converges in
probability to the true parameter θ . Then we have asymptotic normality

√
n

(
θ̂n − θ

) ⇒ N
(

0,I1(θ)−1
)

as n → ∞. (3.30)

Sketch of Proof Fix θ ∈ � and consider a Taylor expansion of the score �′
Y n

(·) in

θ for θ̂n. It is given by

�′
Y n

(θ̂n) = �′
Y n

(θ) + �′′
Yn

(θ)
(
θ̂n − θ

) + 1

2
�′′′
Y n

(θn)
(
θ̂n − θ

)2
,
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for θn ∈ [θ, θ̂n]. Since θ̂n is a root of the score, the left-hand side is equal to zero.
This allows us to re-arrange the above Taylor expansion as follows

√
n

(
θ̂n − θ

) =
1√
n
�′
Y n

(θ)

− 1
n
�′′
Y n

(θ) − 1
2n

�′′′
Yn

(θn)
(
θ̂n − θ

) .

The enumerator on the right-hand side converges in distribution to N (0,I1(θ)),
see (18) in Section 6.2 of [244], the first term in the denominator converges in
probability to I1(θ), see (19) in Section 6.2 of [244], and in the second term of
the denominator we have 1

2n
�′′′
Yn

(θn) which is bounded in probability, see (20) in
Section 6.2 of [244]. The claim then follows from Slutsky’s theorem.

��

Remarks 3.29

• A sequence (θ̂n)n≥1 satisfying Theorem 3.28 is called efficient likelihood esti-
mator (ELE) of θ . Typically, the sequence of MLEs θ̂MLE

n gives such an
ELE sequence, but there are counterexamples where this is not the case, see
Example 3.1 in Section 6.2 of Lehmann [244]. In that example θ̂MLE

n exists for
all n ≥ 1, but it converges in probability to ∞, regardless of the value of the true
parameter θ .

• Any sequence of estimators that fulfills (3.30) is called asymptotically efficient,
because, similarly to the Cramér–Rao information bound of Theorem 3.13, it
attains I1(θ)−1 (which under certain assumptions is a lower variance bound
except on Lebesgue measure zero, see Theorem 1.1 in Section 6.1 of Lehmann
[244]). However, there are two important differences here: (1) the Cramér–
Rao information bound statement needs unbiasedness of the decision rule,
whereas (3.30) only requires consistency (but not unbiasedness nor asymptoti-
cally vanishing bias); and (2) the lower bound in the Cramér–Rao statement is
an effective variance (on a finite sample), whereas the quantity in (3.30) is only
an asymptotic variance. Moreover, any other sequence that differs in probability
from an asymptotically efficient one less than o(1/

√
n) is asymptotically effi-

cient, too.
• If we consider a differentiable function θ 	→ γ (θ), then Theorem 3.28 implies

√
n

(
γ

(
θ̂n

) − γ (θ)
) ⇒ N

(
0,

(γ ′(θ))2

I1(θ)

)
as n → ∞. (3.31)

This follows from asymptotic normality, consistency and considering a Taylor
expansion around θ .

• We were starting from the MLE problem

θ̂MLE
n = arg max

θ̃

1

n

n∑
i=1

log f (Yi; θ̃ ). (3.32)
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In statistical theory a parameter estimator that is obtained through a maximiza-
tion operation is called M-estimator (for maximizing or minimizing), see also
Remarks 3.26. If the log-likelihood is differentiable in θ̃ we can turn the above
problem into a root search problem for θ̃

1

n

n∑
i=1

∂

∂θ̃
log f (Yi; θ̃ ) = 0. (3.33)

If a parameter estimator is obtained through a root search problem it is called
Z-estimator (for equating to zero). The Z-estimator (3.33) does not require a
maximum of the original function, but only a critical point; this is exactly what
we have been exploring in Theorem 3.28. More generally, for a sufficiently nice
function ψ(·; θ) a Z-estimator θ̂Z

n for θ is obtained by solving the following
equation for θ̃

1

n

n∑
i=1

ψ(Yi; θ̃ ) = 0, (3.34)

for i.i.d. data Yi ∼ F(·; θ). Suppose that the first moment of ψ(Yi ; θ̃ ) exists. The
law of large numbers gives us, a.s., see also (3.26),

lim
n→∞

1

n

n∑
i=1

ψ(Yi ; θ̃ ) = Eθ

[
ψ(Y ; θ̃ )

]
. (3.35)

Consistency of the Z-estimator θ̂Z
n , n ≥ 1, for θ is related to the right-hand

side of (3.35) being zero for θ̃ = θ . Under additional regularity conditions (and
consistency) it then holds asymptotic normality

√
n

(
θ̂Z
n − θ

)
⇒ N

(
0,

Eθ

[
ψ(Y ; θ)2

]
Eθ

[
∂
∂θ

ψ(Y ; θ)
]2

)
as n → ∞. (3.36)

For rigorous statements we refer to Theorems 5.21 and 5.41 in Van der Vaart
[363]. A modification to the regression case is given in Theorem 11.6 below.

Example 3.30 We consider the single-parameter linear EF for given strictly convex
and steep cumulant function κ and w.r.t. a σ -finite measure ν on R. The score
equation gives requirement

1

n
S(Y n)

!= κ ′(θ) = Eθ [Y1]. (3.37)

Strict convexity implies that the right-hand side strictly increases in θ . Therefore,
we have at most one solution of the score equation here. We assume that the
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effective domain � ⊆ R is open. It is easily verified that assumptions (ii)–(vi)
hold, in particular, (vi) saying that the third derivative should have a uniformly
bounded integrable bound holds because the third derivative is independent of y and
continuous in θ . With probability converging to 1, (3.37) has a solution θ̂n which
is unique, consistent and Theorem 3.28 holds. Note that in Example 3.5 we have
mentioned the Poisson case which can be degenerate. For the asymptotic normality
result we use here that this degeneracy asymptotically vanishes with probability
converging to one. �

Remark 3.31 (Multi-Dimensional Extension) For an extension of Theorem 3.28 to
the multi-dimensional case � ⊆ R

k we refer to Section 6.4 in Lehmann [244]. The
assumptions made in the multi-dimensional case do not essentially differ from the
ones in the 1-dimensional case.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


 506 3474
a 506 3474 a
 
http://creativecommons.org/licenses/by/4.0/

	3 Estimation Theory
	3.1 Introduction to Decision Theory
	3.2 Parameter Estimation
	3.3 Unbiased Estimators
	3.3.1 Cramér–Rao Information Bound
	3.3.2 Information Bound in the Exponential Family Case
	Cramér–Rao Information Bound in the EF Case
	Cramér–Rao Information Bound in the EDF Case


	3.4 Asymptotic Behavior of Estimators
	3.4.1 Consistency
	3.4.2 Asymptotic Normality



