
Chapter 2
Exponential Dispersion Family

We introduce the exponential family (EF) and the exponential dispersion family
(EDF) in this chapter. The single-parameter EF has been introduced in 1934
by the British statistician Sir Fisher [128], and it has been extended to vector-
valued parameters by Darmois [88], Koopman [223] and Pitman [306] between
1935 and 1936. It is the most commonly used family of distribution functions
in statistical modeling; among others, it contains the Gaussian distribution, the
gamma distribution, the binomial distribution and the Poisson distribution. Its
parametrization is taken in a special form that is convenient for statistical modeling.
The EF can be introduced in a constructive way providing the main properties of
this family of distribution functions. In this chapter we follow Jørgensen [201–203]
and Barndorff-Nielsen [23], and we state the most important results based on this
constructive introduction. This gives us a unified notation which is going to be useful
for our purposes.

2.1 Exponential Family

2.1.1 Definition and Properties

We define the EF w.r.t. a σ -finite measure ν on R. The results in this section can be
generalized to σ -finite measures on R

m, but such an extension is not necessary for
our purposes. Select an integer k ∈ N, and choose measurable functions a : R →
R and T : R → R

k .1 Consider for a canonical parameter θ ∈ R
k the Laplace

1 We could also use boldface notation for T because T (y) ∈ R
k is vector-valued, but we prefer to

not use boldface notation for (vector-valued) functions.
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14 2 Exponential Dispersion Family

transform

L(θ) =
∫
R

exp
{
θ�T (y) + a(y)

}
dν(y).

Assume that this Laplace transform is not identically equal to +∞. The effective
domain is defined by

� =
{
θ ∈ R

k; L(θ) < ∞
}

⊆ R
k. (2.1)

Lemma 2.1 The effective domain � ⊆ R
k is a convex set.

The effective domain � is not necessarily an open set, but in many applications it
is open. Counterexamples are given in Problem 4.1 of Chapter 1 in Lehmann [244],
and in the inverse Gaussian example in Sect. 2.1.3, below.
Proof of Lemma 2.1 Choose θ i ∈ R

k , i = 1, 2, with L(θ i ) < ∞. Set θ = cθ1 +
(1 − c)θ2 for c ∈ (0, 1). We use Hölder’s inequality, applied to the norms p = 1/c

and q = 1/(1 − c),

L(θ) =
∫
R

exp
{
(cθ1 + (1 − c)θ2)

�T (y) + a(y)
}

dν(y)

=
∫
R

exp
{
θ�

1 T (y) + a(y)
}c

exp
{
θ�

2 T (y) + a(y)
}1−c

dν(y)

≤ L(θ1)
cL(θ2)

1−c < ∞.

This implies θ ∈ � and proves the claim. �	
We define the cumulant function on the effective domain �

κ : � → R, θ 
→ κ(θ) = logL(θ).

Definition 2.2 The EF with σ -finite measure ν on R and cumulant function
κ : � → R is given by the distribution functions F on R with

dF(y; θ) = f (y; θ)dν(y) = exp
{
θ�T (y) − κ(θ) + a(y)

}
dν(y),

(2.2)
for canonical parameters θ ∈ � ⊆ R

k .
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Remarks 2.3

• The definition of the EF (2.2) assumes that the effective domain � ⊆ R
k has

been constructed from the choices a : R → R and T : R → R
k as described

in (2.1). This is not explicitly stated in the surrounding text of (2.2).
• The support of any random variable Y ∼ F(·; θ) of this EF does not depend on

the explicit choice of the canonical parameter θ ∈ �, but solely on the choice of
the σ -finite measure ν on R, and the distribution functions F(·; θ) are mutually
absolutely continuous (equivalent) w.r.t. ν.

• In statistics, the main object of interest is the canonical parameter θ . Importantly
for parameter estimation, the function a(·) does not involve the canonical
parameter. Therefore, it is irrelevant for parameter estimation and (only) serves
as a normalization so that F in (2.2) is a proper distribution function. In fact, this
is the way how the EF is often introduced in the statistical and actuarial literature,
but in this latter introduction we lose the deeper interpretation of the cumulant
function κ , nor is it immediately clear what properties it possesses.

• The case k ≥ 2 gives a vector-valued canonical parameter θ . The case k = 1
gives a single-parameter EF, and, if additionally T (y) = y, it is called a single-
parameter linear EF.

Theorem 2.4 Assume the effective domain � has a non-empty interior �̊. Choose
Y ∼ F(·; θ) for fixed θ ∈ �̊. The moment generating function of T (Y ) for
sufficiently small r ∈ R

k is given by

MT (Y)(r) = Eθ

[
exp

{
r�T (Y )

}]
= exp {κ(θ + r) − κ(θ)} ,

where the expectation operator Eθ illustrates the selected canonical parameter θ

for Y .

Proof Choose θ ∈ �̊ and r ∈ R
k so small that θ + r ∈ �̊. We receive

MT (Y)(r) =
∫
R

exp
{
(θ + r)�T (y) − κ(θ ) + a(y)

}
dν(y)

= exp {κ(θ + r) − κ(θ)}
∫
R

exp
{
(θ + r)�T (y) − κ(θ + r) + a(y)

}
dν(y)

= exp {κ(θ + r) − κ(θ)} ,

where the last identity follows from the fact that the support of the EF does not
depend on the explicit choice of the canonical parameter. �	

Theorem 2.4 has a couple of immediate implications. First, in any interior point
θ ∈ �̊ both the moment generating function r 
→ MT (Y)(r) (in the neighborhood of
the origin) and the cumulant function θ 
→ κ(θ) have derivatives of all orders, and,
similarly to Sect. 1.2, moments of all orders of T (Y ) exist, see also (1.1). Existence
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of moments of all orders implies that the distribution function of T (Y ) cannot have
a regularly varying tails.

Corollary 2.5 Assume �̊ is non-empty. The cumulant function θ 
→ κ(θ) is
convex, and for Y ∼ F(·; θ) with θ ∈ �̊

μ = Eθ [T (Y )] = ∇θκ(θ) and Varθ (T (Y )) = ∇2
θ κ(θ),

where ∇θ is the gradient and ∇2
θ
the Hessian w.r.t. vector θ .

Similarly to T : R → R
k, we will not use boldface notation for the (multi-

dimensional) mean because later on we will understand the mean μ = μ(θ) ∈ R
k

as a function of the canonical parameter θ ; see Footnote 1 on page 13 on boldface
notation.
Proof Existence of the moment generating function for all sufficiently small r ∈ R

k

(around the origin) implies that we have first and second moments. For the first
moment we receive

μ = Eθ [T (Y )] = ∇rMT (Y)(r)
∣∣
r=0 = exp {κ(θ + r) − κ(θ)} ∇rκ(θ + r)|r=0 = ∇θκ(θ).

Denote component j of T (Y ) ∈ R
k by Tj (Y ). We have for 1 ≤ j, l ≤ k

Eθ

[
Tj (Y )Tl (Y )

] = ∂2

∂rj ∂rl
MT (Y )(r)

∣∣∣∣
r=0

= exp {κ(θ + r) − κ(θ)}
(

∂2

∂rj ∂rl
κ(θ + r) + ∂

∂rj
κ(θ + r)

∂

∂rl
κ(θ + r)

)∣∣∣∣
r=0

=
(

∂2

∂θj ∂θl

κ(θ) + ∂

∂θj

κ(θ)
∂

∂θl

κ(θ)

)
.

This implies for the covariance

Covθ (Tj (Y ), Tl(Y )) = ∂2

∂θj ∂θl

κ(θ).

The convexity of κ follows because ∇2
θ
κ(θ) is the positive semi-definite covariance

matrix of T (Y ), for all θ ∈ �̊. This finishes the proof. �	

Assumption 2.6 (Minimal Representation) We assume that the interior �̊

of the effective domain � is non-empty and that the cumulant function κ is
strictly convex on this interior �̊.
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Remarks 2.7

• Throughout these notes we will work under Assumption 2.6 without making
explicit reference. This assumption strengthens the properties of the cumulant
function κ from being convex, see Corollary 2.5, to being strictly convex. This
strengthening implies that the mean function θ 
→ μ = μ(θ) = ∇θκ(θ) can be
inverted; this is needed for the canonical link, see Definition 2.8, below.

• The strict convexity of κ means that the covariance matrix ∇2
θ κ(θ) of T (Y ) is

positive definite and has full rank k for all θ ∈ �̊, see Corollary 2.5. This property
is important, otherwise we do not have identifiability in the canonical parameter
θ because we have a linear dependence between the components of T (Y ).

• Mathematically, this strict convexity is not a restriction because it can be obtained
by working under a so-called minimal representation. If the covariance matrix
∇2

θ
κ(θ) does not have full rank k, the choice k is “non-optimal” because the

problem lives in a smaller dimension. Thus, w.l.o.g., we may and will assume to
work in this smaller dimension, called minimal representation; for a rigorous
derivation of a minimal representation we refer to Section 8.1 in Barndorff-
Nielsen [23].

Definition 2.8 The canonical link is defined by h = (∇θκ)−1.

The application of the canonical link h to the mean implies under Assumption 2.6

h (μ) = h (Eθ [T (Y )]) = θ ,

for mean μ = Eθ [T (Y )] of Y ∼ F(·; θ) with θ ∈ �̊.

Remarks 2.9 (Dual Parameter Space) Assumption 2.6 provides that the
canonical link h is well-defined, and we can either work with the canonical
parameter representation θ ∈ �̊ ⊆ R

k or with its dual (mean) parameter
representation μ = Eθ [T (Y )] ∈ M with

M def.= ∇θκ(�̊) = {∇θκ(θ); θ ∈ �̊} ⊆ R
k. (2.3)

Strict convexity of κ implies that there is a one-to-one correspondence
between these two parametrizations. � is called the effective domain and M
is called the dual parameter space or the mean parameter space.

In Sect. 2.2.4, below, we introduce one more property called steepness that the
cumulant function κ should satisfy. This additional property gives a relationship
between the support T of the random variables T (Y ) of the given EF and the
boundary of the dual parameter space M. This steepness property is important for
parameter estimation.
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2.1.2 Single-Parameter Linear EF: Count Variable Examples

We start by giving single-parameter discrete linear EF examples based on counting
measures on N0. Since we work in one dimension k = 1, we replace boldface θ by
scalar θ ∈ � ⊆ R in this section.

Bernoulli Distribution as a Single-Parameter Linear EF

For the Bernoulli distribution with parameter p ∈ (0, 1) we choose as ν the counting
measure on {0, 1}. We make the following choices: T (y) = y,

a(y) = 0, κ(θ) = log(1 + eθ ), p = κ ′(θ) = eθ

1 + eθ
, θ = h(p) = log

(
p

1 − p

)
,

for effective domain � = R, dual parameter space M = (0, 1) and support T =
{0, 1} of Y = T (Y ). With these choices we have

dF(y; θ) = exp
{
θy − log(1 + eθ )

}
dν(y) =

(
eθ

1 + eθ

)y (
1

1 + eθ

)1−y

dν(y).

θ 
→ κ ′(θ) is the logistic or sigmoid function, and the canonical link p 
→ h(p) is
the logit function. Mean and variance are given by

μ = Eθ [Y ] = κ ′(θ) = p and Varθ (Y ) = κ ′′(θ) = eθ

(1 + eθ)2 = p(1 − p),

and the probability weights satisfy for y ∈ T = {0, 1}

Pθ [Y = y] = py(1 − p)1−y .

Binomial Distribution as a Single-Parameter Linear EF

For the binomial distribution with parameters n ∈ N and p ∈ (0, 1) we choose as ν

the counting measure on {0, . . . , n}. We make the following choices: T (y) = y,

a(y) = log
(

n

y

)
, κ(θ) = nlog(1+eθ ), μ = κ ′(θ) = neθ

1 + eθ
, θ = h(μ) = log

(
μ

n − μ

)
,

for effective domain � = R, dual parameter space M = (0, n) and support T =
{0, . . . , n} of Y = T (Y ). With these choices we have

dF(y; θ) =
(

n

y

)
exp

{
θy − nlog(1 + eθ )

}
dν(y) =

(
n

y

)(
eθ

1 + eθ

)y (
1

1 + eθ

)n−y

dν(y).
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Mean and variance are given by

μ = Eθ [Y ] = κ ′(θ) = np and Varθ (Y ) = κ ′′(θ) = n
eθ

(1 + eθ )2 = np(1 − p),

where we set p = eθ/(1 + eθ ). The probability weights satisfy for y ∈ T =
{0, . . . , n}

Pθ [Y = y] =
(

n

y

)
py(1 − p)n−y .

Poisson Distribution as a Single-Parameter Linear EF

For the Poisson distribution with parameter λ > 0 we choose as ν the counting
measure on N0. We make the following choices: T (y) = y,

a(y) = log

(
1

y!
)

, κ(θ) = eθ , μ = κ ′(θ) = eθ , θ = h(μ) = log(μ),

for effective domain � = R, dual parameter space M = (0,∞) and support T =
N0 of Y = T (Y ). With these choices we have

dF(y; θ) = 1

y! exp
{
θy − eθ

}
dν(y) = e−μ μy

y! dν(y). (2.4)

The canonical link μ 
→ h(μ) is the log-link. Mean and variance are given by

μ = Eθ [Y ] = κ ′(θ) = λ and Varθ (Y ) = κ ′′(θ) = λ = μ = Eθ [Y ] ,

where we set λ = eθ . The probability weights in the Poisson case satisfy for y ∈
T = N0

Pθ [Y = y] = e−λ λy

y! .

Negative-Binomial (Pólya) Distribution as a Single-Parameter Linear EF

For the negative-binomial distribution with α > 0 and p ∈ (0, 1) we choose as
ν the counting measure on N0; α plays the role of a nuisance parameter or hyper-
parameter. We make the following choices: T (y) = y,

a(y) = log

(
y + α − 1

y

)
, κ(θ) = −αlog(1 − eθ ),
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μ = κ ′(θ) = α
eθ

1 − eθ
, θ = h(μ) = log

(
μ

μ + α

)
,

for effective domain � = (−∞, 0), dual parameter space M = (0,∞) and support
T = N0 of Y = T (Y ). With these choices we have

dF(y; θ) =
(

y + α − 1

y

)
exp

{
θy + αlog(1 − eθ )

}
dν(y)

=
(

y + α − 1

y

)
py (1 − p)α dν(y),

with p = eθ . Parameter α > 0 is treated as nuisance parameter, otherwise we drop
out of the EF framework. We have first the two moments

μ = Eθ [Y ] = α
eθ

1 − eθ
= α

p

1 − p
and Varθ (Y ) = Eθ [Y ]

(
1 + eθ

1 − eθ

)
> Eθ [Y ].

This model allows us to model over-dispersion, in contrast to the Poisson model.
In fact, the negative-binomial model is a mixed Poisson model with a gamma
mixing distribution, for details see Sect. 5.3.5, below. Typically, one uses a different
parametrization. Set eθ = λ/(α + λ), for λ > 0. This implies

μ = Eθ [Y ] = λ and Varθ (Y ) = λ

(
1 + λ

α

)
> λ.

For α ∈ N this model can also be interpreted as the waiting time until we observe
α successful trials among i.i.d. trials, for instance, for α = 1 we have the geometric
distribution (with a small reparametrization).

The probability weights of the negative-binomial model satisfy for y ∈ T = N0

Pθ [Y = y] =
(

y + α − 1

y

)
py (1 − p)α . (2.5)

2.1.3 Vector-Valued Parameter EF: Absolutely Continuous
Examples

We give vector-valued parameter absolutely continuous EF examples with k = 2,
and being based on the Lebesgue measure on (subsets of) R, in this section.
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Gaussian Distribution as a Vector-Valued Parameter EF

For the Gaussian distribution with parameters μ ∈ R and σ 2 > 0 we choose as ν

the Lebesgue measure on R, and we make the following choices: T (y) = (y, y2)�,

a(y) = −1

2
log(2π), κ(θ) = − θ2

1

4θ2
− 1

2
log(−2θ2),

(μ, σ 2 + μ2)� = ∇θκ(θ) =
(

θ1

−2θ2
, (−2θ2)

−1 + θ2
1

4θ2
2

)�
,

for effective domain � = R × (−∞, 0), dual parameter space M = R × (0,∞)

and support T = R × [0,∞) of T (Y ) = (Y, Y 2)�. With these choices we have

dF(y; θ) = 1√
2π

exp

{
θ�T (y) + θ2

1

4θ2
+ 1

2
log(−2θ2)

}
dν(y)

= 1√
2π(−2θ2)−1/2

exp

{
−1

2

1

(−2θ2)−1

(
y − θ1

−2θ2

)2
}

dν(y).

This is the Gaussian model with mean μ = θ1/(−2θ2) and variance σ 2 =
(−2θ2)

−1.
If we treat σ > 0 as a nuisance parameter, we obtain the Gaussian model as a

single-parameter EF. This is the most common example of an EF. Set T (y) = y/σ

and

a(y) = −1

2
log(2πσ 2) − y2/(2σ 2), κ(θ) = θ2/2, μ = κ ′(θ) = θ, θ = h(μ) = μ,

for effective domain � = R, dual parameter space M = R and support T = R of
T (Y ) = Y/σ . With these choices we have

dF(y; θ) = 1√
2πσ

exp
{
θy/σ − y2/(2σ 2) − θ2/2

}
dν(y)

= 1√
2πσ

exp

{
− 1

2σ 2 (y − σθ)2
}

dν(y),

and, in particular, the canonical link is the identity link μ 
→ θ = h(μ) = μ in this
single-parameter EF example.
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Gamma Distribution as a Vector-Valued Parameter EF

For the gamma distribution with parameters α, β > 0 we choose as ν the Lebesgue
measure on R+. Then we make the following choices: T (y) = (y, logy)�,

a(y) = −logy, κ(θ) = log�(θ2) − θ2log(−θ1),(
α/β,

�′(α)

�(α)
− log(β)

)�
= ∇θκ(θ) =

(
θ2

−θ1
,
�′(θ2)

�(θ2)
− log(−θ1)

)�
,

for effective domain � = (−∞, 0) × (0,∞), and setting β = −θ1 > 0 and
α = θ2 > 0. The dual parameter space is M = (0,∞) × R, and we have support
T = (0,∞) × R of T (Y ) = (Y, logY )�. With these choices we obtain

dF(y; θ) = exp
{
θ�T (y) − log�(θ2) + θ2log(−θ1) − logy

}
dν(y)

= (−θ1)
θ2

�(θ2)
yθ2−1 exp {−(−θ1)y} dν(y)

= βα

�(α)
yα−1 exp {−βy} dν(y).

This is a vector-valued parameter EF with k = 2, and the first moment is given by

Eθ

[
(Y, logY )�

]
= ∇θκ(θ) =

(
α/β,

�′(α)

�(α)
− log(β)

)�
.

Parameter α is called shape parameter and parameter β is called scale parameter.2

If we treat the shape parameter α > 0 as a nuisance parameter we can turn the
gamma distribution into a single-parameter linear EF. Set T (y) = y and

a(y) = (α − 1)logy − log�(α), κ(θ) = −αlog(−θ), μ = κ ′(θ) = α

−θ
, θ = h(μ) = − α

μ
,

for effective domain � = (−∞, 0), dual parameter space M = (0,∞) and support
T = (0,∞). With these choices we have for β = −θ > 0

dF(y; θ) = (−θ)α

�(α)
yα−1 exp {−(−θ)y}dν(y). (2.6)

This provides us with mean and variance

μ = Eθ [Y ] = α

β
and σ 2 = Varθ (Y ) = α

β2 = 1

α
μ2.

2 The function �(x) = d
dx

log�(x) = �′(x)/�(x) is called digamma function.
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For parameter estimation one often needs to invert these identities which gives us

α = μ2

σ 2 and β = μ

σ 2 .

Remarks 2.10

• The gamma distribution contains as special cases the exponential distribution for
α = θ2 = 1 and β = −θ1 > 0, and the χ2

r -distribution with r degrees of freedom
for α = θ2 = r/2 and β = −θ1 = 1/2.

• The distributions of the EF are all light-tailed in the sense that all moments
of T (Y ) exist. Therefore, the EF does not allow for regularly varying survival
functions, see (1.3). If Y is gamma distributed, then Z = exp{Y } is log-gamma
distributed (with the special case of the Pareto distribution for the exponential
case α = θ2 = 1). For an example we refer to Sect. 2.2.5. However, this log-
transformation is not always recommended because it may provide accurate
models on the transformed log-scale, but back-transformation to the original
scale may not necessarily provide a good predictive model on that original scale.

• The gamma density (2.6) may be a bit tricky in applications because the effective
domain � = (−∞, 0) is one-sided bounded (we come back to this below). For
this reason, in practice, one often uses links different from the canonical link
h(μ) = −α/μ. For instance, a parametrization θ = − exp{−ϑ} for ϑ ∈ R, see
Ohlsson–Johansson [290], leads to the following model

dF(y; ϑ) = yα−1

�(α)
exp

{−e−ϑy − αϑ
}
dν(y). (2.7)

We will study the gamma model in more depth below, and parametrization (2.7)
will correspond to the log-link choice, see Example 5.5, below.

Figure 2.1 gives examples of gamma densities for shape parameters α ∈
{1/2, 1, 3/2, 2} and scale parameters β ∈ {1/2, 1, 3/2, 2} with α = β all providing
the same mean μ = Eθ [Y ] = α/β = 1. The crucial observation is that these gamma
densities can have two different shapes, for α ≤ 1 we have a strictly decreasing
shape and for α > 1 we have a unimodal density with mode in (α − 1)/β.

Inverse Gaussian Distribution as a Vector-Valued Parameter EF

For the inverse Gaussian distribution with parameters α, β > 0 we choose as ν the
Lebesgue measure on R+. Then we make the following choices: T (y) = (y, 1/y)�,

a(y) = −1

2
log(2πy3), κ(θ) = − 2(θ1θ2)

1/2 − 1

2
log(−2θ2),

(
α/β, β/α + 1/α2

)� = ∇θκ(θ) =
((−2θ2

−2θ1

)1/2

,

(−2θ1

−2θ2

)1/2

+ 1

−2θ2

)�
,
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Fig. 2.1 Gamma densities
for shape parameters
α ∈ {1/2, 1, 3/2, 2} and scale
parameters
β ∈ {1/2, 1, 3/2, 2} all
providing the same mean
μ = α/β = 1
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alpha=0.5, beta=0.5
alpha=1, beta=1
alpha=1.5, beta=1.5
alpha=2, beta=2

for θ = (θ1, θ2)
� ∈ (−∞, 0)2, and setting β = (−2θ1)

1/2 and α = (−2θ2)
1/2.

The dual parameter space is M = (0,∞)2, and we have support T = (0,∞)2 of
T (Y ) = (Y, 1/Y )�. With these choices we obtain

dF (y; θ ) = exp

{
θ�T (y) + 2(θ1θ2)

1/2 + 1

2
log(−2θ2) − 1

2
log(2πy3)

}
dν(y)

= 1

(2πy3)1/2 (−2θ2)
1/2 exp

{
− 1

2y

(
(−2θ1)y

2 + (−2θ2) − 4(θ1θ2)
1/2y

)}
dν(y)

= α

(2πy3)1/2
exp

{
−α2

2y

(
1 − β

α
y

)2
}

dν(y). (2.8)

This is a vector-valued parameter EF with k = 2 and with first moment

Eθ

[
(Y, 1/Y )�

]
= ∇θκ(θ) =

(
α/β, β/α + 1/α2

)�
.

For receiving (2.8) we have chosen canonical parameter θ = (θ1, θ2)
� ∈ (−∞, 0)2.

Interestingly, we can close this parameter space for θ1 = 0, i.e., the effective domain
� is not open in this example. The choice θ1 = 0 gives us cumulant function κ(θ) =
− 1

2 log(−2θ2) and boundary case

dF(y; θ) = exp

{
θ�T (y) + 1

2
log(−2θ2) − 1

2
log(2πy3)

}
dν(y)

= 1

(2πy3)1/2 (−2θ2)
1/2 exp

{
−−2θ2

2y

}
dν(y)

= α

(2πy3)1/2 exp

{
−α2

2y

}
dν(y). (2.9)
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This is the distribution of the first-passage time of level α > 0 of a standard
Brownian motion, see Bachelier [20]; this distribution is also known as Lévy
distribution.

If we treat α > 0 as a nuisance parameter, we can turn the inverse Gaussian
distribution into a single-parameter linear EF by setting T (y) = y,

a(y) = log

(
α

(2πy3)1/2

)
− α2

2y
, κ(θ) = −α(−2θ)1/2,

μ = κ ′(θ) = α

(−2θ)1/2 , θ = h(μ) = −1

2

α2

μ2 ,

for θ ∈ (−∞, 0), dual parameter space M = (0,∞) and support T = (0,∞). With
these choices we have the inverse Gaussian model for β = (−2θ)1/2 > 0

dF(y; θ) = exp{a(y)} exp

{
− 1

2y

(
(−2θ)y2 − 2α(−2θ)1/2y

)}
dν(y)

= α

(2πy3)1/2 exp

{
−α2

2y

(
1 − β

α
y

)2
}

dν(y).

This provides us with mean and variance

μ = Eθ [Y ] = α

β
and σ 2 = Varθ (Y ) = α

β3
= 1

α2
μ3.

For parameter estimation one often needs to invert these identities, which gives us

α = μ3/2

σ
and β = μ1/2

σ
.

Figure 2.2 gives examples of inverse Gaussian densities for parameter choices
α = β ∈ {1/2, 1, 3/2, 2} all providing the same mean μ = Eθ [Y ] = α/β = 1.

Generalized Inverse Gaussian Distribution as a Vector-Valued Parameter
EF

For the generalized inverse Gaussian distribution with parameters α, β > 0 and
γ ∈ R we choose as ν the Lebesgue measure on R+. We combine the terms of
the gamma and the inverse Gaussian models to the vector-valued choice: T (y) =
(y, logy, 1/y)� with k = 3. Moreover, we choose a(y) = −logy and cumulant
function

κ(θ) = log
(

2Kθ2(2
√

θ1θ3)
)

− θ2

2
log(θ1/θ3),
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Fig. 2.2 Inverse Gaussian
densities for parameters
α = β ∈ {1/2, 1, 3/2, 2} all
providing the same mean
μ = α/β = 1
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for θ = (θ1, θ2, θ3)
� ∈ (−∞, 0) × R × (−∞, 0), and where Kθ2 denotes the

modified Bessel function of the second kind with index γ = θ2 ∈ R. With these
choices we obtain generalized inverse Gaussian density

dF(y; θ) = exp

{
θ�T (y) − log

(
2Kθ2(2

√
θ1θ3)

)
+ θ2

2
log(θ1/θ3) − logy

}
dν(y)

= (α/β)γ/2

2Kγ (
√

αβ)
yγ−1 exp

{
−1

2

(
αy + βy−1

)}
dν(y), (2.10)

setting α = −2θ1 and β = −2θ3. This is a vector-valued parameter EF with k = 3,
and the first moment is given by

Eθ

[(
Y, logY,

1

Y

)�]
= ∇θκ(θ)

=
(

Kγ+1(
√

αβ)

Kγ (
√

αβ)

√
β

α
, log

√
β

α
+ ∂

∂γ
logKγ (

√
αβ),

Kγ+1(
√

αβ)

Kγ (
√

αβ)

√
α

β
− 2γ

β

)�
.

The effective domain � is a bit complicated because the possible choices of (θ1, θ3)

depend on θ2 ∈ R, namely, for θ2 < 0 the negative half-line (−∞, 0] can be closed
at the origin for θ1, and for θ2 > 0 it can be closed at the origin for θ3. The inverse
Gaussian model is obtained for θ2 = −1/2 and the gamma model is obtained for
θ3 = 0. For further properties of the generalized inverse Gaussian distribution we
refer to the textbook of Jørgensen [200].
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2.1.4 Vector-Valued Parameter EF: Count Variable Example

We close our EF examples by giving a discrete example with a vector-valued
parameter.

Categorical Distribution as a Vector-Valued Parameter EF

For the categorical distribution with k ∈ N and p ∈ (0, 1)k such that
∑k

i=1 pi < 1,
we choose as ν the counting measure on the finite set {1, . . . , k + 1}. Then we make
the following choices: T (y) = (1{y=1}, . . . ,1{y=k})� ∈ R

k , θ = (θ1, . . . , θk)
�,

eθ = (eθ1, . . . , eθk )� and

a(y) = 0, κ(θ) = log

(
1 +

k∑
i=1

eθi

)
, p = ∇θκ(θ) = eθ

1 +∑k
i=1 eθi

,

for effective domain � = R
k , dual parameter space M = (0, 1)k, and the support

T of T (Y ) are the k + 1 corners of the unit simplex in R
k . This representation is

minimal, see Assumption 2.6. With these choices we have (set θk+1 = 0)

dF(y; θ ) = exp

{
θ�T (y) − log

(
1 +

k∑
i=1

eθi

)}
dν(y) =

k+1∏
j=1

(
eθj∑k+1
i=1 eθi

)1{y=j }
dν(y).

This is a vector-valued parameter EF with k ∈ N. The canonical link is slightly
more complicated. Set vectors v = exp{θ} ∈ R

k and w = (1, . . . , 1)� ∈ R
k . This

provides p = ∇θκ(θ) = 1
1+w�v

v ∈ R
k . Set matrix Ap = 1 − pw� ∈ R

k×k , the
latter gives us p = Apv, and since Ap has full rank k, we obtain canonical link

p 
→ θ = h(p) = log
(
A−1

p p
)

= log

(
p

1 − w�p

)
.

The last identity can be verified by explicit calculation

log

(
p

1 − w�p

)
= log

(
eθ/(1 +∑k

j=1 eθj )

1 −∑k
i=1 eθi /(1 +∑k

j=1 eθj )

)
= log

(
eθ
)

= θ .

Remarks 2.11

• There are many more examples that belong to the EF. From Theorem 2.4, we
know that all examples of the EF are light-tailed in the sense that all moments of
T (Y ) exist. If we want to model heavy-tailed distributions within the EF, we first
need to apply a suitable transformation. We could model the Pareto distribution
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using transformation T (y) = logy, and assuming that the transformed random
variable has an exponential distribution. Different light-tailed examples are
obtained by, e.g., using transformation T (y) = yτ for the Weibull distribution
or T (y) = (logy, log(1 − y))� for the beta distribution. We refrain from giving
explicit formulas for these or other examples.

• Observe that in all examples above we have T ⊂ M, i.e., the support of T (Y )

is contained in the closure of the dual parameter space M, we come back to this
observation in Sect. 2.2.4, below.

2.2 Exponential Dispersion Family

In the previous section we have introduced the EF, and we have explicitly studied the
vector-valued parameter EF examples of the Gaussian, the gamma and the inverse
Gaussian models. We have highlighted that these three vector-valued parameter
EFs can be turned into single-parameter EFs by declaring one parameter to be
a nuisance parameter that is not modeled (and acts as a hyper-parameter). This
changes these three models into single-parameter EFs. These three single-parameter
EFs with nuisance parameter can also be interpreted as EDF models. In this section
we discuss the single-parameter EDF; this is sufficient for our purposes, and vector-
valued parameter extensions can be obtained in a canonical way.

2.2.1 Definition and Properties

The EFs of Sect. 2.1 can be extended to EDFs. In the single-parameter case this
is achieved by a transformation Y = X/ω, where ω > 0 is a scaling and where X

belongs to a single-parameter linear EF, i.e., with T (x) = x. We restrict ourselves to
the single-parameter case k = 1 throughout this section. Choose a σ -finite measure
ν1 on R and a measurable function a1 : R → R. These choices give a single-
parameter linear EF, directly modeling a real-valued random variable T (X) = X.
By (2.2) we have distribution for the single-parameter linear EF random variable X

dF(x; θ, 1) = f (x; θ, 1)dν1(x) = exp
{
θx − κ(θ) + a1(x)

}
dν1(x),

on the effective domain

� =
{
θ ∈ R;

∫
R

exp {θx + a1(x)} dν1(x) < ∞
}

, (2.11)
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and with cumulant function

θ ∈ � 
→ κ(θ) = log

(∫
R

exp {θx + a1(x)} dν1(x)

)
. (2.12)

Throughout, we assume that the effective domain � has a non-empty interior �̊.
Thus, since � is convex, we assume that �̊ is a non-empty (possibly infinite) open
interval in R.

Following Jørgensen [201, 202], we extend this linear EF to an EDF as follows.
Choose a family of σ -finite measures νω on R and measurable functions aω : R →
R for a given index set W � ω with {1} ⊂ W ⊂ R+. Assume that we have an
ω-independent scaled cumulant function κ on this index set W , that is,

θ ∈ � 
→ κ(θ) = 1

ω

(
log
∫
R

exp {θx + aω(x)} dνω(x)

)
for all ω ∈ W,

with effective domain � defined by (2.11), i.e., for ω = 1. This allows us to consider
the distribution functions

dF(x; θ, ω) = f (x; θ, ω)dνω(x) = exp
{
θx − ωκ(θ) + aω(x)

}
dνω(x)

= exp
{
ω (θy − κ(θ)) + aω(ωy)

}
dνω(ωy), (2.13)

in the third identity we did a change of variable x 
→ y = x/ω. By re-
parametrizing the function aω(ω ·) and the σ -finite measures νω(ω ·) slightly
differently, depending on the particular structure of the chosen σ -finite measures,
we arrive at the following single-parameter EDF.

Definition 2.12 The (single-parameter) EDF is given by densities of the form

Y ∼ f (y; θ, v/ϕ) = exp

{
yθ − κ(θ)

ϕ/v
+ a(y; v/ϕ)

}
, (2.14)

with

κ : � → R is the cumulant function (2.12),

θ ∈ � is the canonical parameter in the effective domain (2.11),

v > 0 is a given weight (exposure, volume),

ϕ > 0 is the dispersion parameter,

a(·; ·) is the normalization, not depending on the canonical parameter θ.



30 2 Exponential Dispersion Family

Remarks 2.13

• Exposure v > 0 and dispersion parameter ϕ > 0 provide the parametrization
usually used for ω = v/ϕ ∈ W . Their meaning and interpretation will become
clear below, and they will always appear as a ratio ω = v/ϕ.

• The support of these EDF distributions does not depend on the explicit choice of
the canonical parameter θ ∈ �, but it may depend on ω = v/ϕ ∈ W through
the choices of the σ -finite measures νω, for ω ∈ W . Consequently, a(y; ω) is
a normalization such that f (y; θ, ω) integrates to 1 w.r.t. the chosen σ -finite
measure νω to receive a proper distributional model.

• The transformation x 
→ y = x/ω in (2.13) is called duality transformation, see
Section 3.1 in Jørgensen [203]. It provides the duality between the additive form
(in variable x in (2.13)) and the reproductive form (in variable y in (2.13)) of the
EDF; Definition 2.12 is the reproductive form.

• Lemma 2.1 tells us that � is convex, thus, it is a possibly infinite interval in R.
To exclude trivial cases we will always assume that the σ -finite measure ν1 is not
concentrated in one single point (this relates to the minimal representation for
k = 1 in the linear EF case, see Assumption 2.6), and that the interior �̊ of the
effective domain � is non-empty.

Corollary 2.14 Assume �̊ is non-empty and that ν1 is not concentrated in
one single point. Choose Y ∼ F(·; θ, v/ϕ) for fixed θ ∈ �̊. The moment
generating function of Y for small r ∈ R satisfies

MY (r) = Eθ

[
exp {rY }] = exp

{
v

ϕ
[κ(θ + rϕ/v) − κ(θ)]

}
.

The first two moments of Y are given by

μ = Eθ [Y ] = κ ′(θ) and Varθ (Y ) = ϕ

v
κ ′′(θ) > 0.

The cumulant function κ is smooth and strictly convex on �̊ with canonical
link h = (κ ′)−1. The variance function is defined byμ 
→ V (μ) = (κ ′′◦h)(μ)

and, consequently, for the variance of Y we have Varμ (Y ) = ϕ
v
V (μ) for

μ ∈ M.

Proof This follows analogously to Theorem 2.4. The linear case T (y) = y with ν1
not being concentrated in one single point guarantees that the minimal dimension is
k = 1, providing a minimal representation in this dimension, see Assumption 2.6.

�	
Before giving explicit examples we state the so-called convolution formula.
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Corollary 2.15 (Convolution Formula) Assume �̊ is non-empty and that ν1 is not
concentrated in one single point. Assume that Yi ∼ F(·; θ, vi/ϕ) are independent,
for 1 ≤ i ≤ n, with fixed θ ∈ �̊. Set v+ =∑n

i=1 vi . Then

Y+ = 1

v+

n∑
i=1

viYi ∼ F(·; θ, v+/ϕ).

Proof The proof immediately follows from calculating the moment generating
function MY+(r) and from using the independence between the Yi’s. �	

2.2.2 Exponential Dispersion Family Examples

The single-parameter linear EF examples introduced above can be reformulated as
EDF examples.

Binomial Distribution as a Single-Parameter EDF

For the binomial distribution with parameters p ∈ (0, 1) and n ∈ N we choose
the counting measure on {0, 1/n, . . . , 1} with ω = n. Then we make the following
choices

a(y) = log
(

n

ny

)
, κ(θ) = log(1+eθ ), p = κ ′(θ) = eθ

1 + eθ
, θ = h(p) = log

(
p

1 − p

)
,

for effective domain � = R and dual parameter space M = (0, 1). With these
choices we have

f (y; θ, n) =
(

n

ny

)
exp

{
n
(
θy − log(1 + eθ )

)} =
(

n

ny

)(
eθ

1 + eθ

)ny (
1

1 + eθ

)n−ny

.

This is a single-parameter EDF. The canonical link p 
→ h(p) gives the logit
function. Mean and variance are given by

p = Eθ [Y ] = κ ′(θ) = eθ

1 + eθ
and Varθ (Y ) = 1

n
κ ′′(θ) = 1

n

eθ

(1 + eθ )2
= 1

n
p(1 − p),

and the variance function is given by V (μ) = μ(1 − μ). The binomial random
variable is obtained by setting X = nY ∼ Binom(n, p).
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Poisson Distribution as a Single-Parameter EDF

For the Poisson distribution with parameters λ > 0 and v > 0 we choose the
counting measure on N0/v for exposure ω = v. Then we make the following choices

a(y) = log

(
vvy

(vy)!
)

, κ(θ) = eθ , λ = κ ′(θ) = eθ , θ = h(λ) = log(λ),

for effective domain � = R and dual parameter space M = (0,∞). With these
choices we have

f (y; θ, v) = vvy

(vy)! exp
{
v
(
θy − eθ

)} = e−vλ (vλ)vy

(vy)! . (2.15)

This is a single-parameter EDF. The canonical link λ 
→ h(λ) is the log-link. Mean
and variance are given by

λ = Eθ [Y ] = κ ′(θ) = eθ and Varθ (Y ) = 1

v
κ ′′(θ) = 1

v
eθ = 1

v
λ,

and the variance function is given by V (λ) = λ, that is, the variance function is
linear in the mean parameter λ. The Poisson random variable is obtained by setting
X = vY ∼ Poi(vλ). We choose ϕ = 1, here, meaning that we have neither under-
nor over-dispersion. Thus, the choices v and ϕ in ω = v/ϕ have the interpretation
of an exposure and a dispersion parameter, respectively. This interpretation is going
to be important in claim counts modeling, below.

Gamma Distribution as a Single-Parameter EDF

For the gamma distribution with parameters α, β > 0 we choose the Lebesgue
measure on R+ and shape parameter ω = v/ϕ = α. We make the following choices

a(y) = (α − 1)logy + αlogα − log�(α), κ(θ) = −log(−θ),

μ = κ ′(θ) = −1/θ, θ = h(μ) = −1/μ,

for effective domain � = (−∞, 0) and dual parameter space M = (0,∞). With
these choices we have

f (y; θ, α) = αα

�(α)
yα−1 exp

{
α
(
yθ + log(−θ)

)} = (−θα)α

�(α)
yα−1 exp {−(−θα)y} .
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This is analogous to (2.6) with shape parameter α > 0 and scale parameter β =
−θ > 0. Mean and variance are given by

μ = Eθ [Y ] = κ ′(θ) = −θ−1 and Varθ (Y ) = 1

α
κ ′′(θ) = 1

α
θ−2,

and the variance function is given by V (μ) = μ2, that is, the variance function
is quadratic in the mean parameter μ. The gamma random variable is obtained by
setting X = αY ∼ �(α, β). This gives us for the first two moments of X

μX = Eθ [X] = α

β
and Varθ (X) = α

β2 = 1

α
μ2

X.

Suppose v = 1, for shape parameter α > 1, we have under-dispersion ϕ = 1/α < 1
and the gamma density is unimodal; for shape parameter α < 1, we have over-
dispersion ϕ = 1/α > 1 and the gamma density is strictly decreasing, we refer to
Fig. 2.1.

Inverse Gaussian Distribution as a Single-Parameter EDF

For the inverse Gaussian distribution with parameters α, β > 0 we choose the
Lebesgue measure on R+ and we set ω = v/ϕ = α. We make the following choices

a(y) = log

(
α1/2

(2πy3)1/2

)
− α

2y
, κ(θ) = −(−2θ)1/2,

μ = κ ′(θ) = 1

(−2θ)1/2 , θ = h(μ) = − 1

2μ2 ,

for θ ∈ (−∞, 0) and dual parameter space M = (0,∞). With these choices we
have

f (y; θ, α)dy = α1/2

(2πy3)1/2 exp

{
α
(
θy + (−2θ)1/2

)
− α

2y

}
dy

= α1/2

(2πy3)1/2 exp

{
− α

2y

(
1 − (−2θ)1/2y

)2
}

dy

= α

(2πx3)1/2 exp

{
−α2

2x

(
1 − (−2θ)1/2

α
x

)2}
dx,
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where in the last step we did a change of variable y 
→ x = αy. This is exactly (2.8).
Mean and variance are given by

μ = Eθ [Y ] = κ ′(θ) = (−2θ)−1/2 and Varθ (Y ) = 1

α
κ ′′(θ) = 1

α
(−2θ)−3/2,

and the variance function is given by V (μ) = μ3, that is, the variance function is
cubic in the mean parameter μ. The inverse Gaussian random variable is obtained by
setting X = αY . The mean and variance of X are given by, set β = (−2θ)1/2 > 0,

μX = Eθ [X] = α

β
and Varθ (X) = α

β3 = 1

α2 μ3
X.

This inverse Gaussian density is illustrated in Fig. 2.2.
Similarly to (2.9), we can extend the inverse Gaussian model to the boundary

case θ = 0, i.e., the effective domain � = (−∞, 0] is not open. This provides us
with density

f (y; θ = 0, α)dy = α

(2πx3)1/2 exp

{
−α2

2x

}
dx, (2.16)

using, as above, the change of variable y 
→ x = αy. An additional transformation
x 
→ 1/x gives a gamma distribution with shape parameter 1/2 and scale parameter
α2/2.

Remark 2.16 The inverse Gaussian case gives an example of a non-open effective
domain � = (−∞, 0]. It is worth noting that for the boundary parameter θ = 0,
the first moment does not exist, i.e., Corollary 2.14 only makes statements in the
interior �̊ of the effective domain �. This also relates to Remarks 2.9 on the dual
parameter space M.

2.2.3 Tweedie’s Distributions

Tweedie’s compound Poisson (CP) model was introduced in 1984 by Tweedie [358],
and it has been studied in detail in Jørgensen [202], Jørgensen–de Souza [204],
Smyth–Jørgensen [342] and in the review paper of Delong et al. [94]. Tweedie’s CP
model belongs to the EDF. We spend more time on explaining Tweedie’s CP model
because it plays an important role in actuarial modeling.

Tweedie’s CP model is received by choosing as σ -finite measure ν1 a mixture of
the Lebesgue measure on (0,∞) and a point measure in 0. Furthermore, we choose
power variance parameter p ∈ (1, 2) and cumulant function

κ(θ) = κp(θ) = 1

2 − p
((1 − p)θ)

2−p
1−p , (2.17)
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on the effective domain θ ∈ � = (−∞, 0). This provides us with Tweedie’s CP
model

Y ∼ f (y; θ, v/ϕ) = exp

{
yθ − κp(θ)

ϕ/v
+ a(y; v/ϕ)

}
,

with exposure v > 0 and dispersion parameter ϕ > 0; the normalizing function
a(·; v/ϕ) does not have any simple closed form, we refer to Section 2.1 in
Jørgensen–de Souza [204] and Section 4.2 in Jørgensen [203].

The first two moments of Tweedie’s CP random variable Y are given by

μ = Eθ [Y ] = κ ′
p(θ) = ((1 − p)θ)

1
1−p ∈ M = (0,∞), (2.18)

Varθ (Y ) = ϕ

v
κ ′′
p(θ) = ϕ

v
((1 − p)θ)

p
1−p = ϕ

v
μp > 0. (2.19)

The parameter p ∈ (1, 2) determines the power variance functions V (μ) =
μp between the Poisson p = 1 and the gamma p = 2 cases, see Sect. 2.2.2.

The moment generating function of Tweedie’s CP random variable X = vY/ϕ =
ωY in its additive form is given by, we use Corollary 2.14,

MX(r) = MvY/ϕ(r) = exp

⎧⎨
⎩

v

ϕ
κp(θ)

⎛
⎝
( −θ

−θ − r

) 2−p
p−1 − 1

⎞
⎠
⎫⎬
⎭ for r < −θ.

Some readers will notice that this is the moment generating function of a CP
distribution having i.i.d. gamma claim sizes. This is exactly the statement of the
next proposition which is found, e.g., in Smyth–Jørgensen [342].

Proposition 2.17 Assume S = ∑N
i=1 Zi is CP distributed with Poisson claim

counts N ∼ Poi(λv) and i.i.d. gamma claim sizes Zi ∼ �(α, β) being independent

of N . We have S
(d)= vY/ϕ by identifying the parameters as follows

p = α + 2

α + 1
∈ (1, 2), β = −θ > 0 and λ = 1

ϕ
κp(θ) > 0.

Proof of Proposition 2.17 Assume S is CP distributed with i.i.d. gamma claim
sizes. From Proposition 2.11 and Section 3.2.1 in Wüthrich [387] we receive that
the moment generating function of S is given by

MS(r) = exp

{
λv

((
β

β − r

)α

− 1

)}
for r < β.
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Using the proposed parameter identification, the claim immediately follows. �	

Proposition 2.17 gives us a second interpretation of Tweedie’s CP model which
was introduced in an EDF fashion, above. This second interpretation explains the
name of this EDF model, it explains the mixture of the Lebesgue measure and the
point measure in 0, and it also highlights why the Poisson model and the gamma
model are the boundary cases in terms of power variance functions.

An interesting question is whether the EDF can be extended beyond power
variance functions V (μ) = μp with p ∈ [1, 2]. The answer to this question is
yes, and the full answer is provided in Theorem 2 of Jørgensen [202]:

Theorem 2.18 (Jørgensen [202], Without Proof) Only power variance parame-
ters p ∈ (0, 1) do not allow for EDF models.

Table 2.1 gives the EDF distributions that have a power variance function. These
distributions are called Tweedie’s distributions, with the special case of Tweedie’s
CP distributions for p ∈ (1, 2). The densities for p ∈ {0, 1, 2, 3} have a closed form,
but the other Tweedie’s distributions do not have a closed-form density. Thus, they
cannot explicitly be constructed as suggested in Sect. 2.2.1. Besides the constructive
approach presented above, there is a uniqueness theorem saying that the variance
function V (·) on the domain M characterizes the single-parameter linear EF, see
Theorem 2.11 in Jørgensen [203]. This uniqueness theorem is the basis of the proof
of Theorem 2.18. Tweedie’s distributions for p �∈ [0, 1]∪{2, 3} involve infinite sums
for the normalization exp{a(·, ·)}, we refer to formulas (4.19), (4.20) and (4.31) in
Jørgensen [203], this is the reason that one has to go via the uniqueness theorem
to prove Theorem 2.18. Dunn–Smyth [112] provide methods of fast calculation
of some of these infinite sums; in Sect. 5.5.2, below, we present an approximation
(saddlepoint approximation). The uniqueness theorem is also useful to construct
new examples within the EF, see, e.g., Section 2 of Awad et al. [15].

Table 2.1 Power variance function models V (μ) = μp within the EDF (taken from Table 4.1 in
Jørgensen [203])

p Distribution Support of Y � M
p < 0 Generated by extreme stable distributions R [0,∞) (0,∞)

p = 0 Gaussian distribution R R R

p = 1 Poisson distribution N0 R (0,∞)

1 < p < 2 Tweedie’s CP distribution [0,∞) (−∞, 0) (0,∞)

p = 2 Gamma distribution (0,∞) (−∞, 0) (0,∞)

p > 2 Generated by positive stable distributions (0,∞) (−∞, 0] (0,∞)

p = 3 Inverse Gaussian distribution (0,∞) (−∞, 0] (0,∞)
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2.2.4 Steepness of the Cumulant Function

Assume we have a fixed EF satisfying Assumption 2.6. All random variables T (Y )

belonging to this EF have the same support, not depending on the particular choice
of the canonical parameter θ ∈ �. We denote this support of T (Y ) by T.

Below, we are going to estimate the canonical parameter θ ∈ � from data using
maximum likelihood estimation. For this it is advantageous to have the property
T ⊂ M, because, intuitively, this allows us to directly select μ̂ = T (Y ) as the
parameter estimate in the dual parameter space M, for a given observation T (Y ) ∈
T. This then translates to a canonical parameter θ̂ = h(μ̂) = h(T (Y )) ∈ �, using
the canonical link h; this estimation approach will be better motivated in Chap. 3,
below. Unfortunately, many examples of the EF do not satisfy this propertyT ⊂ M.
For instance, in the Poisson model the observation T (Y ) = Y = 0 is not included
in M, see Table 2.1. This poses some challenges in parameter estimation, and the
purpose of this small discussion is to be prepared for these challenges.

A cumulant function κ is called steep if for all θ ∈ �̊ and all θ̃ in the boundary
of �

(̃
θ − θ

)� ∇θκ
(
αθ + (1 − α)̃θ

) → ∞ for α ↓ 0, (2.20)

we refer to Formula (20) in Section 8.1 of Barndorff-Nielsen [23]. Define the convex
closure of the support T by C = conv(T).

Theorem 2.19 (Theorem 9.2 in Barndorff-Nielsen [23], Without Proof) Assume
we have a fixed EF satisfying Assumption 2.6. The cumulant function κ is steep if
and only if C̊ = M = ∇θκ(�̊).

Theorem 2.19 tells us that for a steep cumulant function we have C = M =
∇θκ(�̊). In this case parameter estimation can be extended to observations T (Y ) �∈
M such that we may obtain a degenerate model at the boundary of M. Coming
back to our Poisson example from above, in this case we set μ̂ = 0, which gives a
degenerate Poisson model.

Throughout this book we will work under the assumption that κ is steep.
The classical examples satisfy this assumption: the examples with power variance
parameter p in {0} ∪ [1,∞) satisfy Theorem 2.19; this includes the Gaussian, the
Poisson, the gamma, the inverse Gaussian and Tweedie’s CP models, see Table 2.1.
Moreover, the examples we have met in Sect. 2.1 fulfill this assumption; these
are the single-parameter linear EF models of the Bernoulli, the binomial and the
negative binomial distributions, as well as the vector-valued parameter examples of
the Gaussian, the gamma and the inverse Gaussian models and of the categorical
distribution. The only models we have seen that do not have a steep cumulant
function are the power variance models with p < 0, see Table 2.1.

Remark 2.20 Working within the EDF needs some additional thoughts because the
supportT = Tω of the single-parameter linear EDF random variable Y = T (Y ) may
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depend on the specific choice of the dispersion parameter ω ∈ W ⊃ {1} through the
σ -finite measure dνω(ω ·), see (2.13). For instance, in the binomial case the support
of Y is given by Tω = {0, 1/n, . . . , 1} with ω = n, see Sect. 2.2.2.

Assume that the cumulant function κ is steep for the single-parameter linear
EF that corresponds to the single-parameter EDF with ω = 1. Theorem 2.19
then implies that for this choice we have C̊ω=1 = ∇θκ(�̊) with convex closure
Cω=1 = conv(Tω=1).

Consider ω ∈ W \{1} which corresponds to the choice νω of the σ -finite measure
on R. This choice belongs to the cumulant function θ 
→ ωκ(θ) in the additive form
(x-parametrization in (2.13)). Since steepness (2.20) holds for any ω > 0 we receive
that the convex closure of the support of this distribution in the x-parametrization

in (2.13) is given by ∇θωκ(�̊) = ω∇θκ(�̊). The duality transformation x 
→ y =
x/ω leads to the change of measure dνω(x) 
→ dνω(ωy) and to the corresponding
change of support, see (2.13). The latter implies that in the reproductive form (y-
parametrization) the convex closure of the support does not depend on the specific
choice of ω ∈ W . Since the EDF representation given in (2.14) corresponds to the
y-parametrization (reproductive form), we can use Theorem 2.19 without limitation
also for the single-parameter linear EDF given by (2.14), and C does not depend on
ω ∈ W .

2.2.5 Lab: Large Claims Modeling

From Corollary 2.14 we know that the moment generating function exists around the
origin for all examples belonging to the EDF. This implies that the moments of all
orders exist, and that we have an exponentially decaying survival function Pθ [Y >

y] = 1 − F(y; θ, ω) ∼ exp{−�y} for some � > 0 as y → ∞, see (1.2). In many
applied situations the data is more heavy-tailed and, thus, cannot be modeled by
such an exponentially decaying survival function. In such cases one often chooses
a distribution function with a regularly varying survival function; regular variation
with tail index β > 0 has been introduced in (1.3). A popular choice is a log-gamma
distribution which can be obtained from the gamma distribution (belonging to the
EDF). We briefly explain how this is done and how it relates to the Pareto and the
Lomax [256] distributions.

We start from the gamma density (2.6). The random variable Z has a log-gamma
distribution with shape parameter α > 0 and scale parameter β = −θ > 0 if
log(Z) = Y has a gamma distribution with these parameters. Thus, the gamma
density of Y = log(Z) is given by

f (y; β, α)dy = βα

�(α)
yα−1 exp {−βy} dy for y > 0.
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We do a change of variable y 
→ z = exp{y} to receive the density of the log-gamma
distributed random variable Z = exp{Y }

f (z; β, α)dz = βα

�(α)
(logz)α−1z−(β+1)dz for z > 1.

This log-gamma density has support (1,∞). The distribution function of this log-
gamma distributed random variable needs to be calculated numerically, and its
survival function is regularly varying with tail index β > 0.

A special case of the log-gamma distribution is the Pareto distribution. The Pareto
distribution is more tractable and it is obtained by setting shape parameter α = 1 in
the log-gamma density. This gives us the Pareto density

f (z; β)dz = f (z; β, α = 1)dz = βz−(β+1)dz for z > 1.

The distribution function in this Pareto case is for z ≥ 1 given by

F(z; β) = 1 − z−β.

Obviously, this provides a regularly varying survival function with tail index β > 0;
in fact, in this case we do not need to go over to the limit in (1.3) because we
have an exact identity. The Pareto distribution has the nice property that it is closed
under thresholding (lower-truncation) with M , that is, we remain within the family
of Pareto distributions with the same tail index β by considering lower-truncated
claims: for 1 ≤ M ≤ z we have

F(z; β,M) = P [Z ≤ z|Z > M] = P [M < Z ≤ z]

P [Z > M]
= 1 −

( z

M

)−β

.

This is the classical definition of the Pareto distribution, and it allows to preserve
full flexibility in the choice of the threshold M > 0.

The disadvantage of the Pareto distribution is that it does not provide a
continuous density on R+ as there is a discontinuity in threshold M . For this reason,
one sometimes explores another change of variable Z 
→ X = Z − M for a Pareto
distributed random variable Z ∼ F(·; β,M). This provides the Lomax distribution,
also called Pareto Type II distribution. X has the following distribution function on
(0,∞)

P [X ≤ x] = 1 −
(

x + M

M

)−β

for x ≥ 0.

This distribution has again a regularly varying survival function with tail index β >

0. Moreover, we have

lim
x→∞

(
x+M

M

)−β

(
x
M

)−β
= lim

x→∞

(
1 + M

x

)−β

= 1.
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Fig. 2.3 Log-log plot of a
Pareto and a Lomax
distribution with tail index
β = 2 and threshold
M = 1′000′000
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This says that we should choose the same threshold M > 0 for both the Pareto and
the Lomax distribution to receive the same asymptotic tail behavior, and this also
quantifies the rate of convergence between the two survival functions. Figure 2.3
illustrates this convergence in a log-log plot choosing tail index β = 2 and threshold
M = 1′000′000.

For completeness we provide the density of the Pareto distribution

f (z; β,M) = β

M

( z

M

)−(β+1)

for z ≥ M,

and of the Lomax distribution

f (x; β,M) = β

M

(
x + M

M

)−(β+1)

for x ≥ 0.

2.3 Information Geometry in Exponential Families

We do a short excursion to information geometry. This excursion may look a bit
disconnected from what we have done so far, but it provides us with important
background information for the chapter on forecast evaluation, see Chap. 4, below.

2.3.1 Kullback–Leibler Divergence

There is literature in information geometry which uses techniques from differential
geometry to study EFs as Riemannian manifolds with points corresponding to EF
densities parametrized by their canonical parameters θ ∈ �, we refer to Amari [10],
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Ay et al. [16] and Nielsen [285] for an extended treatment of these mathematical
concepts.

Choose a fixed EF (2.2) with cumulant function κ on the effective domain
� ⊆ R

k and with σ -finite measure ν on R. We define the Kullback–Leibler (KL)
divergence (relative entropy) from model θ1 ∈ � to model θ0 ∈ � within this EF
by

DKL(f (·; θ0)||f (·; θ1)) =
∫
R

f (y; θ0)log

(
f (y; θ0)

f (y; θ1)

)
dν(y) ≥ 0.

Recall that the support of the EF does not depend on the specific choice of the
canonical parameter θ in �, see Remarks 2.3; this implies that the KL divergence
is well-defined, here. The positivity of the KL divergence is obtained from Jensen’s
inequality; this is proved in Lemma 2.21, below.

The KL divergence has the interpretation of having a data model that is
characterized by the distribution f (·; θ0), and we would like to measure how close
another model f (·; θ1) is to the data model. Note that the KL divergence is not
a distance function because it is neither symmetric nor does it satisfy the triangle
inequality.

We calculate the KL divergence within the chosen EF

DKL(f (·; θ0)||f (·; θ1)) =
∫
R

f (y; θ0)
[
(θ0 − θ1)

�T (y) − κ(θ0) + κ(θ1)
]
dν(y)

= (θ0 − θ1)
� ∇θκ(θ0) − κ(θ0) + κ(θ1) ≥ 0, (2.21)

where we have used Corollary 2.5, and the positivity of the KL divergence can be
seen from the convexity of κ . This allows us to consider the following (Taylor)
expansion

κ(θ1) = κ(θ0) + ∇θκ(θ0)
� (θ1 − θ0) + DKL(f (·; θ0)||f (·; θ1)). (2.22)

This illustrates that the KL divergence corresponds to second and higher order
differences between the cumulant value κ(θ0) and another cumulant value κ(θ1).
The gradients of the KL divergence w.r.t. θ1 in θ1 = θ0 and w.r.t. θ0 in θ0 = θ1 are
given by

∇θ1DKL(f (·; θ0)||f (·; θ1))
∣∣
θ1=θ0

(2.23)

= ∇θ0DKL(f (·; θ0)||f (·; θ1))
∣∣
θ0=θ1

= 0.

This emphasizes that the KL divergence reflects second and higher-order terms in
cumulant function κ ; and that the data model θ0 forms the minimum of this KL
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divergence (as a function of θ1) as we will just see. We calculate the Hessian (second
order term) w.r.t. θ1 in θ1 = θ0

∇2
θ1

DKL(f (·; θ0)||f (·; θ1))

∣∣∣
θ1=θ0

= ∇2
θ κ(θ)

∣∣∣
θ=θ0

def.= I(θ0).

The positive definite matrix I(θ0) (in a minimal representation) is called Fisher’s
information. Fisher’s information is an important tool in statistics that we will
meet in Theorem 3.13 of Sect. 3.3, below. A function satisfying (2.21) (with
being zero if and only if θ0 = θ1), fulfilling (2.23) and having positive definite
Fisher’s information is called divergence, see Definition 5 in Nielsen [285]. Fisher’s
information I(θ0) measures the curvature of the KL divergence in θ0 and we have
the second order Taylor approximation

κ(θ1) ≈ κ(θ0) + ∇θκ(θ0)
� (θ1 − θ0) + 1

2
(θ1 − θ0)

� I(θ0) (θ1 − θ0) .

Next-order terms are obtained from the so-called Amari–Chentsov tensor, see Amari
[10] and Section 4.2 in Ay et al. [16]. In information geometry one studies the
(possibly degenerate) Riemannian metric on the effective domain � induced by
Fisher’s information; we refer to Section 3.7 in Nielsen [285].

Lemma 2.21 Consider two densities p and q w.r.t. a given σ -finite measure ν. We
have DKL(p||q) ≥ 0, and DKL(p||q) = 0 if and only if p = q , ν-a.s.

Proof Assume Y ∼ pdν, then we can rewrite the KL divergence, using Jensen’s
inequality,

DKL(p||q) =
∫

p(y)log

(
p(y)

q(y)

)
dν(y) = − Ep

[
log

(
q(Y )

p(Y )

)]

≥ −logEp

[
q(Y )

p(Y )

]
= − log

∫
q(y)dν(y) ≥ 0. (2.24)

Equality holds if and only if p = q , ν-a.s. The last inequality of (2.24) considers
that q does not necessarily need to be a density w.r.t. ν, i.e., we can also have∫

q(y)dν(y) < 1. �	

2.3.2 Unit Deviance and Bregman Divergence

In the next chapter we are going to introduce maximum likelihood estimation for
parameters, see Definition 3.4, below. Maximum likelihood estimators are obtained
by maximizing likelihood functions (evaluated in the observations). Maximizing
likelihood functions within the EDF is equivalent to minimizing deviance loss
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functions. Deviance loss functions are based on unit deviances, which, in turn,
correspond to KL divergences. The purpose of this small section is to discuss this
relation. This should be viewed as a preparation for Chap. 4.

Assume we work within a single-parameter linear EDF, i.e., T (y) = y. Using
the canonical link h we obtain the canonical parameter θ = h(μ) ∈ � ⊆ R

from the mean parameter μ ∈ M. If we replace the (typically unknown) mean
parameter μ by an observation Y , supposed Y ∈ M, we get the specific model
that is exactly calibrated to this observation. This provides us with the canonical
parameter estimate θ̂Y = h(Y ) for θ . We can now measure the KL divergence from
any model represented by θ to the observation calibrated model θ̂Y = h(Y ). This
KL divergence is given by (we use (2.21) and we set ω = v/ϕ = 1)

DKL (f (·; h(Y ), 1)| |f (·; θ, 1)) =
∫
R

f (y; θ̂Y , 1)log

(
f (y; θ̂Y , 1)

f (y; θ, 1)

)
dν(y)

= (h(Y ) − θ) Y − κ(h(Y )) + κ(θ) ≥ 0.

This latter object is the unit deviance (up to factor 2) of the chosen EDF. It plays a
crucial role in predictive modeling.

We define the unit deviance under the assumption that κ is steep as follows:

d : C̊ × M → R+ (2.25)

(y, μ) 
→ d(y, μ) = 2
(
yh(y) − κ (h(y)) − yh(μ) + κ (h(μ))

)
≥ 0,

where C is the convex closure of the support T of Y and M is the dual parameter
space of the chosen EDF. Steepness of κ implies C̊ = M, see Theorem 2.19.

This unit deviance d is received from the KL divergence, and it is (twice) the dif-
ference of two log-likelihood functions, one using canonical parameter h(y) and the
other one having any canonical parameter θ = h(μ) ∈ �̊. That is, for μ = κ ′(θ),

d(y, μ) = 2 DKL(f (·; h(y), 1)||f (·; θ, 1)) (2.26)

= 2
ϕ

v
(logf (y; h(y), v/ϕ) − logf (y; θ, v/ϕ)) ,

for general ω = v/ϕ ∈ W . The latter can be rewritten as

f (y; θ, v/ϕ) = f (y; h(y), v/ϕ) exp

{
− 1

2ϕ/v
d(y, κ ′(θ))

}
. (2.27)

This looks like a generalization of the Gaussian distribution, where the square
difference (y − μ)2 in the exponent is replaced by the unit deviance d(y, μ) with
μ = κ ′(θ). This interpretation gets further support by the following lemma.
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Lemma 2.22 Under Assumption 2.6 and the assumption that the cumulant function
κ is steep, the unit deviance d (y, μ) ≥ 0 of the chosen EDF is zero if and only if
y = μ. Moreover, the unit deviance d (y, μ) is twice continuously differentiable
w.r.t. (y, μ) in C̊ × M, and

∂2d (y, μ)

∂μ2

∣∣∣∣
y=μ

= ∂2d (y, μ)

∂y2

∣∣∣∣
y=μ

= − ∂2d (y, μ)

∂μ∂y

∣∣∣∣
y=μ

= 2/V (μ) > 0.

Proof The positivity and the if and only if statement follows from Lemma 2.21 and
the strict convexity of κ . Continuous differentiability follows from the smoothness
of κ in the interior of �. Moreover we have

∂2d (y, μ)

∂μ2

∣∣∣∣
y=μ

= ∂

∂μ
2
(−yh′(μ) + μh′(μ)

)∣∣∣∣
y=μ

= 2h′(μ) = 2/κ ′′(h(μ)) = 2/V (μ) > 0,

where V (μ) is the variance function of the chosen EDF introduced in Corol-
lary 2.14. The remaining second derivatives are received by similar (straightfor-
ward) calculations. �	

Remarks 2.23

• Lemma 2.22 shows that the unit deviance definition of d(y, μ) provides a so-
called regular unit deviance according to Definition 1.1 in Jørgensen [203].
Moreover, any model that can be brought into the form (2.27) for a (regular) unit
deviance is called (regular) reproductive dispersion model, see Definition 1.2 of
Jørgensen [203].

• In general the unit deviance d(y, μ) is not symmetric in its two arguments y and
μ, we come back to this in Fig. 11.1, below.

More generally, the KL divergence and the unit deviance can be embedded into
the framework of Bregman loss functions [50]. We restrict to the single-parameter
EDF case. Assume that ψ : C̊ → R is a strictly convex function. The Bregman
divergence w.r.t. ψ between y and μ is defined by

Dψ(y,μ) = ψ(y) − ψ(μ) − ψ ′(μ) (y − μ) ≥ 0, (2.28)

where ψ ′ is a (sub-)gradient of ψ . The lower bound holds because of convexity of
ψ . Consider the specific choice ψ(μ) = μh(μ) − κ(h(μ)) for the chosen EDF.
Similar to Lemma 2.22 we have ψ ′′(μ) = h′(μ) = 1/V (μ) > 0, which says that
this choice is strictly convex. Using this choice for ψ gives us unit deviance (up to
factor 1/2)

Dψ(y,μ) = yh(y) − κ(h(y)) + κ(h(μ)) − h(μ)y = 1

2
d(y, μ). (2.29)
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Thus, the unit deviance d can be understood as a difference of log-likelihoods
(2.26), as a KL divergence DKL and as a Bregman divergence Dψ .

Example 2.24 (Poisson Model) We start with a single-parameter EF example.
Consider cumulant function κ(θ) = exp{θ} for canonical parameter θ ∈ � = R,
this gives us the Poisson model. For the KL divergence from model θ1 to model θ0
we receive

DKL(f (·; θ0)||f (·; θ1)) = exp{θ1} − exp{θ0} − (θ1 − θ0) exp{θ0} ≥ 0,

which is zero if and only if θ0 = θ1. Fisher’s information is given by

I(θ) = κ ′′(θ) = exp{θ} > 0.

If we have observation Y > 0 we receive a model described by canonical parameter
θ̂Y = h(Y ) = log(Y ). This gives us unit deviance, see (2.26),

d(Y, μ) = 2DKL(f (·; h(Y ), 1)||f (·; θ, 1))

= 2
(
eθ − Y − (θ − log(Y ))Y

)

= 2
(
μ − Y − Y log

(μ

Y

))
≥ 0,

with μ = κ ′(θ) = exp{θ}. This Poisson unit deviance will commonly be used for
model fitting and forecast evaluation, see, e.g., (5.28). �

Example 2.25 (Gamma Model) The second example considers a vector-valued
parameter EF example. We consider the cumulant function κ(θ) = log�(θ2) −
θ2log(−θ1) for θ = (θ1, θ2)

� ∈ � = (−∞, 0) × (0,∞); this gives us the gamma
model, see Sect. 2.1.3. For the KL divergence from model θ1 to model θ0 we receive

DKL(f (·; θ0)||f (·; θ1)) = (θ0,2 − θ1,2
) �′(θ0,2)

�(θ0,2)
− log

(
�(θ0,2)

�(θ1,2)

)

+ θ1,2log

(−θ0,1

−θ1,1

)
+ θ0,2

(−θ1,1

−θ0,1
− 1

)
≥ 0.

Fisher’s information matrix is given by

I(θ) = ∇2
θ κ(θ) =

( θ2
(−θ1)2

1
−θ1

1
−θ1

�′′(θ2)�(θ2)−�′(θ2)
2

�(θ2)2

)
.
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The off-diagonal terms in Fisher’s information matrix I(θ) are non-zero which
means that the two components of the canonical parameter θ interact. Choosing
a different parametrization μ = θ2/(−θ1) (dual mean parametrization) and α = θ2
we receive diagonal Fisher’s information in (μ, α)

I(μ, α) =
(

α
μ2 0

0 �′′(α)�(α)−�′(α)2

�(α)2 − 1
α

)
=
(

α

μ2 0

0 � ′(α) − 1
α

)
, (2.30)

where � is the digamma function, see Footnote 2 on page 22. This transformation
is obtained by using the corresponding Jacobian matrix for variable transformation;
more details are provided in (3.16) below. In this new representation, the parameters
μ and α are orthogonal; the term � ′(α) − 1

α
is further discussed in Remarks 5.26

and Remarks 5.28, below.
Using this second parametrization based on mean μ and dispersion 1/α, we

arrive at the EDF representation of the gamma model. This allows us to calculate the
corresponding unit deviance (within the EDF), which in the gamma case is given by

d(Y, μ) = 2

(
Y

μ
− 1 + log

(μ

Y

))
≥ 0.

�

Example 2.26 (Inverse Gaussian Model) Our final example considers the inverse
Gaussian vector-valued parameter EF case. We consider the cumulant function
κ(θ) = −2(θ1θ2)

1/2 − 1
2 log(−2θ2) for θ = (θ1, θ2)

� ∈ � = (−∞, 0] × (−∞, 0),
see Sect. 2.1.3. For the KL divergence from model θ1 to model θ0 we receive

DKL(f (·; θ0)||f (·; θ1)) = −θ1,1

√
−θ0,2

−θ0,1
− θ1,2

√
−θ0,1

−θ0,2
− 2
√

θ1,1θ1,2

+ θ0,2 − θ1,2

−2θ0,2
+ 1

2
log

(−θ0,2

−θ1,2

)
≥ 0.

Fisher’s information matrix is given by

I(θ) = ∇2
θ κ(θ) =

⎛
⎝ (−2θ2)

1/2

(−2θ1)3/2 − 1
2(θ1θ2)1/2

− 1
2(θ1θ2)

1/2
(−2θ1)

1/2

(−2θ2)
3/2 + 2

(−2θ2)
2

⎞
⎠ .

Again the off-diagonal terms in Fisher’s information matrix I(θ ) are non-zero in
the canonical parametrization. We switch to the mean parametrization by setting
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μ = (−2θ2/(−2θ1))
1/2 and α = −2θ2. This provides us with diagonal Fisher’s

information

I(μ, α) =
(

α

μ3 0

0 1
2α2

)
. (2.31)

This transformation is again obtained by using the corresponding Jacobian matrix
for variable transformation, see (3.16), below. We compare the lower-right entries
of (2.30) and (2.31). Remark that we have first order approximation of the digamma
function

�(α) ≈ logα − 1

2α
,

and taking derivatives says that these entries of Fisher’s information are first order
equivalent; this is also used in the saddlepoint approximation in Sect. 5.5.2, below.
Using this second parametrization based on mean μ and dispersion 1/α, we arrive
at the EDF representation of the inverse Gaussian model with unit deviance

d(Y, μ) = (Y − μ)2

μ2Y
≥ 0.

�

More examples will be given in Chap. 4, below.
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