
Chapter 12
Appendix A: Technical Results on
Networks

The reader may have noticed that for GLMs we have developed an asymptotic
theory that allowed us to assess the quality of predictors as well as it allowed us to
validate the fitted models. For networks there does not exist such a theory, yet, and
the purpose of this appendix is to present more technical results on the asymptotic
behavior of FN networks and their estimators that may lead to an asymptotic
theory. This appendix hopefully stimulates further research in this field of statistical
modeling.

12.1 Universality Theorems

We present a specific version of the universality theorems for shallow FN networks;
we refer to the discussion in Sect. 7.2.2. This section follows Hornik et al. [192].
Choose an input dimension q0 ∈ N and consider the set of all affine functions

Aq0 =
{
A : {1} × R

q0 → R; x �→ A(x) = 〈w, x〉, w ∈ R
q0+1

}
,

we add a 0th component in feature x = (x0 = 1, x1, . . . , xq0)
� ∈ {1} × R

q0 for the
intercept. Choose a measurable (activation) function φ : R → R and define

�q0(φ) =
⎧
⎨
⎩f : {1} × R

q0 → R; x �→ f (x) =
q1∑

j=0

βjφ(Aj (x)), Aj ∈ Aq0 , βj ∈ R, q1 ∈ N

⎫
⎬
⎭ .
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This is the set of all shallow FN networks f (x) = 〈β, z(1:1)(x)〉 with activation
function φ and the linear output activation, see (7.8); the intercept component of
the output is integrated into the 0th component j = 0. Moreover, we define the
networks

��q0(φ) =
{
f : {1} × R

q0 → R;x �→ f (x) =
q1∑

j=0

βj

lj∏
k=1

φ(Aj,k(x)),

Aj,k ∈ Aq0 , βj ∈ R, lj ∈ N, q1 ∈ N

}
.

The latter networks contain the former �q0(φ) ⊂ ��q0(φ), by setting lj = 1 for
all 0 ≤ j ≤ q1. We are going to prove a universality theorem first for the networks
��q0(φ), and afterwards for the shallow FN networks �q0(φ).

Definition 12.1 The function φ : R → [0, 1] is called a squashing function if it is
non-decreasing with limx→−∞ φ(x) = 0 and limx→∞ φ(x) = 1.

Since squashing functions can have at most countably many discontinuities,
they are measurable; a continuous and a non-continuous example are given by the
sigmoid and by the step function activation, respectively, see Table 7.1.

Lemma 12.2 The sigmoid activation function is Lipschitz with constant 1/4.

Proof The derivative of the sigmoid function is given by φ′ = φ(1 − φ). This
provides for the second derivative φ′′ = φ′ − 2φφ′ = φ′(1 − 2φ). The latter is zero
for φ(x) = 1/2. This says that the maximal slope of φ is attained for x = 0 and it
is φ′(0) = 1/4. �

We denote by C(Rq0) the set of all continuous functions from {1} × R
q0 to

R, and by M(Rq0) the set of all measurable functions from {1} × R
q0 to R. If

the measurable activation function φ is continuous, we have ��q0(φ) ⊂ C(Rq0),
otherwise ��q0(φ) ⊂ M(Rq0).

Definition 12.3 A subset S ⊂ M(Rq0) is said to be uniformly dense on compacta
in C(Rq0) if for every compact subsetK ⊂ {1}×R

q0 the set S is ρK -dense in C(Rq0)

meaning that for all ε > 0 and all g ∈ C(Rq0) there exists f ∈ S such that

ρK(g, f ) = sup
x∈K

|g(x) − f (x)| < ε.

Theorem 12.4 (Theorem 2.1 in Hornik et al. [192]) Assume φ is a non-constant
and continuous activation function. ��q0(φ) ⊂ C(Rq0) is uniformly dense on
compacta in C(Rq0).

Proof The proof is based on the Stone–Weierstrass theorem. We briefly recall the
Stone–Weierstrass theorem. AssumeA is a family of real functions defined on a set
E. A is called an algebra if it is closed under addition, multiplication and scalar
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multiplication. A family A separates points in E, if for every x, z ∈ E with x �= z

there exists a function A ∈ A with A(x) �= A(z). The family A does not vanish at
any point of E if for all x ∈ E there exists a function A ∈ A such that A(x) �= 0.

LetA be an algebra of continuous real functions on a compact set K . The Stone–
Weierstrass theorem says that if A separates points in K and if it does not vanish at
any point of K , then A is ρK -dense in the space of all continuous real functions on
K .

Choose any compact set K ⊂ {1}×R
q0 . For any activation function φ, ��q0(φ)

is obviously an algebra. So there remains to prove that this algebra separates points
and does not vanish at any point. Firstly, choose x, z ∈ K such that x �= z. Since
φ is non-constant we can choose a, b ∈ R such that φ(a) �= φ(b). Next choose
A ∈ Aq0 such that A(x) = a and A(z) = b. Then, φ(A(x)) �= φ(A(z)) and
��q0(φ) separates points. Secondly, since φ is non-constant, we can choose a ∈ R

such that φ(a) �= 0. Moreover, choose weight w = (a, 0, . . . , 0)� ∈ R
q0+1. Then

for this A ∈ Aq0 , A(x) = 〈w, x〉 = a for any x ∈ K . Henceforth, φ(A(x)) �= 0,
therefore ��q0(φ) does not vanish at any point of K . The claim then follows from
the Stone–Weierstrass theorem and using that φ is continuous by assumption. �

For Theorem 12.4 to hold, the activation function φ can be any continuous and
non-constant function, i.e., it does not need to be a squashing function. This is
fairly general, but it rules out the step function activation as it is not continuous.
However, for squashing functions continuity is not needed and one still receives
the uniformly dense on compacta property of ��q0(φ) in C(Rq0), this has been
proved in Theorem 2.3 of Hornik et al. [192]. The following theorem also does not
need continuity, i.e., we do not require �q0(φ) ⊂ C(Rq0) as φ only needs to be
measurable (and squashing).

Theorem 12.5 (Universality, Theorem 2.4 in Hornik et al. [192]) Assume φ is a
squashing activation function. �q0(φ) is uniformly dense on compacta in C(Rq0).

Sketch of Proof For the (continuous) cosine activation function choice cos(·),
Theorem 12.4 applies to ��q0(cos). Repeatedly applying the trigonometric identity
cos(a) cos(b) = cos(a + b) − cos(a − b) allows us to rewrite any trigonometric

polynomial
∏lj

k=1 cos(Aj,k(x)) as
∑T

t=1 αt cos(At (x)) for suitable At ∈ Aq0 ,
αt ∈ R and T ∈ N. This allows us to identify �q0(cos) = ��q0(cos). As a
consequence of Theorem 12.4, shallow FN networks �q0(cos) are uniformly dense
on compacta in C(Rq0).

The remaining part relies on approximating the cosine activation function.
Firstly, Lemma A.2 of Hornik et al. [192] says that for any continuous squashing
function ψ and any ε > 0 there exists Hε(x) = ∑q1

j=1 βjφ(w
j

0 + w
j

1x) ∈ �1(φ),
x ∈ R, such that

sup
x∈R

|ψ(x) − Hε(x)| < ε. (12.1)

For the proof we refer to Lemma A.2 of Hornik et al. [192], it uses that ψ is a
continuous squashing function, implying that for every δ ∈ (0, 1) there existsm > 0
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such that ψ(−m) < δ and ψ(m) > 1− δ. ApproximationHε ∈ �1(φ) of ψ is then
constructed on (−m,m) so that the error bound holds (and for δ sufficiently small).

Secondly, choose ε > 0 and M > 0, there exists cosM,ε ∈ �1(φ) such that

sup
x∈[−M,M]

∣∣cos(x) − cosM,ε(x)
∣∣ < ε. (12.2)

This is Lemma A.3 of Hornik et al. [192]; to prove this, we consider the cosine
squasher of Gallant–White [150], for x ∈ R

χ(x) = 1

2

(
1 + cos

(
x + 3π

2

))
1{−π/2≤x≤π/2} + 1{x>π/2} ∈ [0, 1].

This is a continuous squashing function. Adding, subtracting and scaling a finite
number of affinely shifted versions of the cosine squasher χ can exactly replicate
the cosine on [−M,M]. Claim (12.2) then follows from the fact that we need a
finite number of cosine squashers χ to replicate the cosine on [−M,M], the triangle
equality, and the fact that the (continuous) cosine squasher can be approximated
arbitrarily well in �1(φ) using (12.1).

The final step is to patch everything together. Consider
∑T

t=1 αt cos(At (x))

which approximates on the compact set K ⊂ {1} × R
q0 a given continuous

function g ∈ C(Rq0) with a given tolerance ε/2. Choose M > 0 such that
At(K) ⊂ [−M,M] for all 1 ≤ t ≤ T . Note that this M can be found because
K is compact, At are continuous and T is finite. Define T ′ = T

∑T
t=1 |αt | < ∞.

By (12.2) we can then choose cosM,ε/(2T ′) ∈ �1(φ) such that

sup
x∈K

∣∣∣∣∣
T∑

t=1

αt cos(At (x)) −
T∑

t=1

αt cosM,ε/(2T ′)(At (x))

∣∣∣∣∣ < ε/2.

This completes the proof. �

12.2 Consistency and Asymptotic Normality

Universality Theorem 12.5 tells us that we can approximate any compactly sup-
ported continuous function arbitrarily well by a sufficiently large shallow FN
network, say, with sigmoid activation function φ. The next natural question is
whether we can learn these approximations from data (Yi , xi )i≥1 that follow the true
but unknown regression function x �→ μ0(x), or in other words whether we have
consistency for a certain class of learning methods. This is the question addressed,
e.g., in White [379, 380], Barron [26], Chen–Shen [73], Döhler–Rüschendorf [109]
and Shen et al. [336]. This turns the algebraic universality question into a statistical
question about consistency.
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Assume that the true data model satisfies

Y = μ0(x) + ε = E[Y |x] + ε, (12.3)

for a continuous regression function μ0 : X → R on a compact set X ⊂ {1} ×R
q0 ,

and with a centered error ε satisfying E[|ε|2+δ] < ∞ for some δ > 0 and being
independent of x. The question now is whether we can learn this (true) regression
function μ0 from independent data (Yi , xi ), 1 ≤ i ≤ n, obeying (12.3). Throughout
this section we use the square error loss function L(y, a) = (y − a)2. For given
data, this results in solving

μ̃n = argmin
μ∈C(X )

1

n

n∑
i=1

L (Yi, μ(xi )) = argmin
μ∈C(X )

1

n

n∑
i=1

(Yi − μ(xi ))
2 , (12.4)

where C(X ) denotes the set of continuous functions on the compact set X ⊂
{1}×R

q0. The main question is whether estimator μ̃n approaches the true regression
function μ0 for increasing sample size n.

Typically, the family of continuous functions C(X ) is much too rich to be able to
solve optimization problem (12.4), and the solution may have undesired properties.
In particular, the solution to (12.4) will over-fit to the data for any sample size
n, and consistency will not hold, see, e.g., Section 2.2.1 in Chen [72]. Therefore,
the optimization needs to be done over (well-chosen) smaller sets Sn ⊂ C(X ).
For instance, Sn can be the set of shallow FN networks having a maximal width
q1 = q1(n), depending on the sample size n of the data. Considering this regression
problem in a non-parametric sense, we let grow these sets Sn with the sample size
n. This idea is attributed to Grenander [172] and it is called the method of sieve
estimators of μ0. We define for d ∈ N, � > 0, �̃ > 0 and activation function φ

S(d,�, �̃, φ) =
⎧⎨
⎩f ∈ �q0(φ); q1 = d,

q1∑
j=0

|βj | ≤ �, max
1≤j≤q1

q0∑
l=0

|wl,j | ≤ �̃

⎫⎬
⎭ .

These sets S(d,�, �̃, φ) are shallow FN networks of a given width q1 = d and with
some restrictions on the network parameters.1 We then choose increasing sequences

1 The bound
∑q1

j=0 |βj | ≤ � in S(d,�, �̃, φ) allows us to view this set of shallow FN networks
as a symmetric convex hull of the family of functions S0(φ) = {x �→ φ(A(x)); A ∈ Aq0 }, see
Sect. 2.6.3 in Van der Vaart–Wellner [364]. If we choose an increasing activation function φ, this
family of functions φ ◦A is a composition of a fixed increasing function φ and a finite dimensional
vector space Aq0 of functions A. This implies that S0(φ) is a VC-class saying that it has a finite
Vapnik–Chervonenkis (VC) dimension [365]; see also Condition A and Theorem 2.1 in Döhler–
Rüschendorf [109]. This VC-class is an important property in many proofs as it leads to a finite
covering (metric entropy) of function spaces, and this allows to apply limit theorems to point
processes, we refer to Van der Vaart–Wellner [364].
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(dn)n≥1, (�n)n≥1 and (�̃n)n≥1 which provides us with an increasing sequence of
sieves (becoming finer as n increases)

. . . ⊆ Sn(φ)
def.= S(dn,�n, �̃n, φ) ⊆ Sn+1(φ)

def.= S(dn+1,�n+1, �̃n+1, φ) ⊆ . . . .

The following corollary is a simple consequence of Theorem 12.5.

Corollary 12.6 Assume φ is a squashing activation function, and let the increasing
sequences (dn)n≥1, (�n)n≥1 and (�̃n)n≥1 tend to infinity for n → ∞. Then⋃

n≥1 Sn(φ) is uniformly dense in C(X ).

This corollary says that for any regression functionμ0 ∈ C(X )we can find n ∈ N

and μn ∈ Sn(φ) such that μn is arbitrarily close to μ0; remark that all functions are
continuous on the compact setX , and uniformly dense means ρX -dense in that case.
Corollary 12.6 does not hold true if �n ≡ � > 0, for all n. In that case we can only
approximate the smaller function class

⋃
n≥1 Sn(φ) ⊂ C(X ). This is going to be

used in one of the cases, below.
For increasing sequences (dn)n≥1, (�n)n≥1 and (�̃n)n≥1 we define the sieve

estimator (μ̂n)n≥1 by

μ̂n = argmin
μ∈Sn(φ)

1

n

n∑
i=1

L (Yi, μ(xi )) . (12.5)

Under the following assumptions one can prove a consistency theorem.

Assumption 12.7 Choose a complete probability space (�,A,P)2 and X = {1} ×
[0, 1]q0.
(1) Assume μ0 ∈ C(X ). Assume (Yi ,Xi )i≥1 are i.i.d. on (�,A,P) following the

regression structure (12.3) with εi being centered, having E[|εi |2+δ] < ∞ for
some δ > 0 and being independent of Xi . Set σ 2 = Var(εi) < ∞.

(2) The activation function φ is the sigmoid function.
(3) The sequences (dn)n≥1, (�n)n≥1 and (�̃n)n≥1 are increasing and tending to

infinity as n → ∞ with dn�
2
n log(dn�n) = o(n).

Most results that we are going to present below hold for activation functions that
are Lipschitz. The sigmoid activation function is Lipschitz, see Lemma 12.2.

The following considerations are based on the pseudo-norm, given (Xi )1≤i≤n,

‖μ‖n =
√√√√ 1

n

n∑
i=1

(μ(Xi ))
2 for μ ∈ C(X ).

2 A probability space (�,A,P) is complete if for any P-null set B ∈ A with P[B] = 0 and every
subset A ⊂ B it follows that A ∈ A.
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This is a pseudo-norm because it is positive ‖μ‖n ≥ 0, absolutely homogeneous
‖aμ‖n = |a| ‖μ‖n and the triangle inequality holds, but it is not definite because
‖μ‖n = 0 does not imply that μ is the zero function (i.e. it is not point-separating).
This pseudo-norm ‖·‖n depends on the (random) features (Xi )1≤i≤n and, therefore,
the subsequent statements involving this pseudo-norm hold in probability. The
following result provides consistency, and that the true regression function μ0,
indeed, can be learned from i.i.d. data.

Theorem 12.8 (Consistency, Theorem 3.1 of Shen et al. [336]) Under Assump-
tion 12.7, the sieve estimator (μ̂n)n≥1 in (12.5) exists. We have consistency
‖μ̂n − μ0‖n → 0 in probability as n → ∞, i.e., for all ε > 0

lim
n→∞P

[‖μ̂n − μ0‖n > ε
] = 0.

Remarks 12.9

• Such a consistency result for FN networks has first been proved in Theorem 3.3
of White [380], however, on slightly different spaces and under slightly different
assumptions. Similar consistency results have been obtained for related point
process situations by Döhler–Rüschendorf [109] and for time-series in White
[380] and Chen–Shen [73].

• Item (3) of Assumption 12.7 gives upper complexity bounds on shallow FN
networks as a function of the sample size n of the data, so that asymptotically
they do not over-fit to the data. These bounds allow for much freedom in the
choice of the growth rates, and different choices may lead to different speeds of
convergence. The conditions of Assumption 12.7 are, e.g., satisfied for �n =
O(logn) and dn = O(n1−δ′

), for any small δ′ > 0. Under these choices, the
complexity dn of the shallow FN network grows rather quickly. Table 1 of White
[380] gives some examples, for instance, if for n = 100 data points we have a
shallow FN network with 5 neurons, then these magnitudes support 477 neurons
for n = 10′000 and 45’600 neurons for n = 1′000′000 data points (for the
specific choice δ′ = 0.01). Of course, these numbers do not provide any practical
guidance on the selection of the (shallow) FN network size.

• Theorem 12.8 requires that we can explicitly calculate the sieve estimator
μ̂n, i.e., the global minimizer of the objective function in (12.5). In practical
applications, relying on gradient descent algorithms, typically, this is not the case.
Therefore, Theorem 12.8 is mainly of theoretical value saying that learning the
true regression function μ0 is possible within FN networks.

Sketch of Proof of Theorem 12.8 The proof of this theorem is based on a theorem
in White–Woolridge [381] which states that if we have a sequence (Sn(φ))n≥1 of
compact subsets of C(X ), and if Ln : � × Sn(φ) → R is a A ⊗ B(Sn(φ))/B(R)-
measurable sequence, n ≥ 1, with Ln(ω, ·) being lower-semicontinuous on Sn(φ)

for all ω ∈ �. Then, there exists μ̂n : � → Sn(φ) being A/B(Sn(φ))-measurable
such that for each ω ∈ �, Ln(ω, μ̂n(ω)) = min

μ∈Sn(φ)
Ln(ω,μ). For the proof of the
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compactness of Sn(φ) in C(X ) we need that dn and �n are finite for any n. This
then provides the existence of the sieve estimator, for details we refer Lemma 2.1
and Corollary 2.1 in Shen et al. [336]. The proof of the consistency result then uses
the growth rates on (dn)n≥1 and (�n)n≥1, for the details of the proof we refer to
Theorem 3.1 in Shen et al. [336]. �

The next step is to analyze the rates of convergence of the sieve estimator
μ̂n → μ0, as n → ∞. These rates heavily depend on (additional) regularity
assumptions on the true regression function μ0 ∈ C(X ); we refer to Remark 3
in Sect. 5 of Chen–Shen [73]. Here, we present some results of Shen et al. [336].
From the proof of Theorem 12.8 we know that Sn(φ) is a compact set in C(X ). This
motivates to consider the closest approximation πnμ ∈ Sn(φ) to μ ∈ C(X ). The
uniform denseness of

⋃
n≥1 Sn(φ) in C(X ) implies that πnμ converges to μ. The

aforementioned rates of convergence of the sieve estimators will depend on how fast
πnμ0 ∈ Sn(φ) converges to the true regression function μ0 ∈ C(X ).

If one cannot determine the global minimum of (12.5), then often an accurate
approximation is sufficient. For this one introduces an approximate sieve estimator.
A sequence (μ̂n)n≥1 is called an approximate sieve estimator if

1

n

n∑
i=1

(Yi − μ̂n(Xi ))
2 ≤ inf

μ∈Sn(φ)

1

n

n∑
i=1

(Yi − μ(Xi ))
2 + OP (ηn), (12.6)

where (ηn)n≥1 is a positive sequence converging to 0 as n → ∞. The last term
OP (ηn) denotes stochastic boundednessmeaning that for all ε > 0 there exitsKε >

0 such that for all n ≥ 1

P

[
1

n

n∑
i=1

(Yi − μ̂n(Xi ))
2 − inf

μ∈Sn(φ)

1

n

n∑
i=1

(Yi − μ(Xi ))
2 > Kεηn

]
< ε.

Theorem 12.10 (Theorem 4.1 of Shen et al. [336], Without Proof) Set Assump-
tion 12.7. If

ηn = O

(
min

{
‖πnμ0 − μ0‖2n,

dn log(dn�n)

n
,

dn logn

n

})
,

the following stochastic boundedness holds for n ≥ 1

‖μ̂n − μ0‖n = OP

(
max

{
‖πnμ0 − μ0‖n,

√
dn logn

n

})
.

Remarks 12.11

• Assumption 12.7 implies that dn log(dn�n) = o(n) as n → ∞. Therefore, ηn →
0 as n → ∞.
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• The statement in Theorem 4.1 of Shen et al. [336] is more involved because it
is stated under slightly different assumptions. Our assumptions are sufficient for
having consistency of the sieve estimator, see Theorem 12.8, and making these
assumptions implies that the rate of convergence in Theorem 12.10 is determined
by the rate of convergence of ‖πnμ0−μ0‖n and (n−1dn logn)1/2, see Remark 4.1
in Shen et al. [336].

• The rate of convergence in Theorem 12.10 crucially depends on the rate
‖πnμ0 − μ0‖n, as n → ∞. If μ0 lies in the (sub-)space of functions with
finite first absolute moments of the Fourier magnitude distributions, denoted by
F(X ) ⊂ C(X ), Makavoz [262] has shown that ‖πnμ0 − μ0‖n decays at least as
d

−(q0+1)/(2q0)
n = d

−1/2−1/(2q0)
n , this has improved the rate of d

−1/2
n obtained by

Barron [25]. This space F(X ) allows for the choices dn = (n/ logn)q0/(2+q0),
�n ≡ � > 0 and �̃n ≡ �̃ > 0 to receive consistency and the following rate of
convergence, see Chen–Shen [73] and Remark 4.1 in Shen et al. [336],

‖μ̂n − μ0‖n = OP (r−1
n ),

for

rn =
(

n

logn

)(q0+1)/(4q0+2)

n ≥ 2. (12.7)

Note that 1/4 ≤ (q0 + 1)/(4q0 + 2) ≤ 1/2. Thus, this is a slower rate than the
square root rule of typical asymptotic normality, for instance, for q0 = 1 we get
1/3. Interestingly, Barron [26] proposes the choice dn ∼ (n/ logn)1/2 to receive
an approximation rate of (n/ logn)−1/4.

Also note that the space F(X ) allows us to choose a finite �n ≡ � > 0
in the sieves, thus, here we do not receive denseness of the sieves in the space
of continuous functions C(X ), but only in the space of functions with finite first
absolute moments of the Fourier magnitude distributions F(X ).

The last step is to establish the asymptotic normality. For this we have to define
perturbations of shallow FN networks μ ∈ Sn(φ). Choose ηn ∈ (0, 1) and define
the function

μ̃n(μ) = (1 − η
1/2
n )μ + η

1/2
n (μ0 + 1).

This allows us to state the following asymptotic normality result.

Theorem 12.12 (Theorem 5.1 of Shen et al. [336], Without Proof) Set Assump-
tion 12.7. We make the following additional assumptions: suppose ηn = o(n−1) and
choose �n such that we have stochastic boundedness �n‖μ̂n − μ0‖n = OP (1). Let
the following conditions hold:

(C1) dn�n log(dn�n) = o(n1/4);
(C2) n�−2

n /�δ
n = o(1);
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(C3) sup
μ∈Sn(φ):‖μ−μ0‖n≤�−1

n
‖πnμ̃n(μ) − μ̃n(μ)‖n = OP (�nηn);

(C4) sup
μ∈Sn(φ):‖μ−μ0‖n≤�−1

n

1
n

∑n
i=1 εi (πnμ̃n(μ)(Xi ) − μ̃n(μ)(Xi )) = OP (ηn).

We have the following asymptotic normality for n → ∞

1√
n

n∑
i=1

(μ̂n(Xi ) − μ0(Xi )) ⇒ N
(
0, σ 2

)
.

The assumptions of Theorem 12.12 require a slower growth rate dn on the
shallow FN network compared to the consistency results. Shen et al. [336] bring
forward the argument that for the asymptotic normality result to hold, the shallow
FN network should grow slower in order to get the Gaussian property, otherwise the
sieve estimator may skew towards the true function μ0. Conditions (C3)–(C4) on
the other side give lower growth rates on the networks such that the approximation
error decreases sufficiently fast.

If the variance parameter σ 2 = Var(εi) is not known, we can empirically estimate
it

σ̂ 2
n = 1

n

n∑
i=1

(Yi − μ̂n(Xi ))
2 .

Theorem 5.2 in Shen et al. [336] proves that this estimator is consistent for
σ 2, and the asymptotic normality result also holds true under this estimated
variance parameter (using Slutsky’s theorem), and under the same assumptions as
in Theorem 12.12.

12.3 Functional Limit Theorem

Horel–Giesecke [190] push the above asymptotic results even one step further. Note
that the asymptotic normality of Theorem 12.12 is not directly useful for variable
selection, since the asymptotic result integrates over the feature space X . Horel–
Giesecke [190] prove a functional limit theorem which we briefly review in this
section.

A q0-tuple α = (α1, . . . , αq0)
� ∈ N

q0
0 is called a multi-index, and we set |α| =

α1 + . . . + αq0 . Define the derivative operator

∇α = ∂ |α|

∂x
α1
1 · · · ∂x

αq0
q0

.
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Consider the compact feature space X = {1} × [0, 1]q0 with q0 ≥ 3. Choose a
distribution ν on this feature space X and define the L2-space

L2(X , ν) =
{
μ : X → R measurable; Eν[μ(X)2] =

∫

X
μ(x)2dν(x) < ∞

}
.

Next, define the Sobolev space for k ∈ N

Wk,2(X , ν) =
{
μ ∈ L2(X , ν); ∇αμ ∈ L2(X , ν) for all α ∈ N

q0
0 with |α| ≤ k

}
,

where ∇αμ is the weak derivative of μ. The motivation for studying Sobolev
spaces is that for sufficiently large k and the existence of weak derivatives ∇αμ ∈
L2(X , ν), |α| ≤ k, we eventually receive a classical derivative of μ, see below. We
define the Sobolev norm for μ ∈ Wk,2(X , ν) by

‖μ‖k,2 =
⎛
⎝∑

|α|≤k

Eν

[(∇αμ(X)
)2]
⎞
⎠

1/2

.

The normed Sobolev space (Wk,2(X , p), ‖·‖k,2) is a Hilbert space. Since we would
like to consider gradient-based methods, we consider the following space

C1B(X , ν) = {
μ : X → R continuously differentiable; ‖μ‖�q0/2�+2,2 ≤ B

}
,

(12.8)

for some positive constantB < ∞. We will assume that the true regression function
μ0 ∈ C1B(X , ν), thus, the true regression function has a bounded Sobolev norm
‖·‖�q0/2�+2,2 of maximal size B. Assume that X̊ ⊂ R

q0 is the open interior of X
(excluding the intercept component), and that ν is absolutely continuous w.r.t. the
Lebesgue measure with a strictly positive and bounded density on X (excluding
the intercept component). The Sobolev number of the space W �q0/2�+2,2(X̊ , ν) is
given by m = �q0/2� + 2 − q0/2 ≥ 1.5 > 1. The Sobolev embedding theorem
then tells us that for any function μ ∈ W �q0/2�+2,2(X̊ , ν), there exists an �m�-
times continuously differentiable function on X̊ that is equal to μ a.e., thus, the
class of equivalent functions μ ∈ W �q0/2�+2,2(X̊ , ν) has a representative in C1(X̊ ),
�m� = 1, this motivates the consideration of the space in (12.8).

In practice, the bound B needs a careful consideration because the true μ0 is
unknown. Therefore, B should be sufficiently large so that μ0 is contained in the
space C1B(X , ν) and, on the other hand, it should not be too large as this will weaken
the power of the tests, below.
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We choose the sigmoid activation function for φ and we consider the approximate
sieve estimators (μ̂n)n≥1 for given data (Yi ,Xi )i obtained by a solution to

1

n

n∑
i=1

(Yi − μ̂n(Xi ))
2 ≤ inf

μ∈Sn(φ)

1

n

n∑
i=1

(Yi − μ(Xi ))
2 + oP (1), (12.9)

where we allow for an error term oP (1) that converges in probability to zero as
n → ∞. In contrast to (12.6) we do not specify the error rate, here.

Assumption 12.13 Choose a complete probability space (�,A,P) andX = {1}×
[0, 1]q0.
(1) Assume μ0 ∈ C1B(X , ν) for some B > 0, and (Yi,Xi )i≥1 are i.i.d. on

(�,A,P) following regression structure (12.3) with εi being centered, having
E[|εi |2+δ] < ∞ for some δ > 0, being absolutely continuousw.r.t. the Lebesgue
measure, and being independent of Xi; the features Xi ∼ ν are absolutely
continuous w.r.t. the Lebesgue measure having a bounded and strictly positive
density on X (excluding the intercept component). Set σ 2 = Var(εi) < ∞.

(2) The activation function φ is the sigmoid function.
(3) The sequence (dn)n≥1 is increasing and going to infinity satisfying

d
2+1/q0
n log(dn) = O(n) as n → ∞, and �n ≡ � > 0, �̃n ≡ �̃ > 0

for n ≥ 1.
(4) Define Lμ(X, ε) = −2ε(μ(X)−μ0(X))+ (μ(X) − μ0(X))2, and it holds for

n ≥ 2

1√
n

n∑
i=1

(
Lμ̂n (Xi , εi) − Eν

[
Lμ̂n (X1, ε1)

])

≤ inf
h∈C1

B(X ,ν)

1√
n

n∑
i=1

(
Lμ0+h/rn (Xi , εi ) − Eν

[
Lμ0+h/rn (X1, ε1)

])+ oP (r−1
n ),

for rn being the rate defined in (12.7).

The first three items of this assumption are rather similar to Assumption 12.7
which provides consistency in Theorem 12.8 and the rates of convergence in
Theorem 12.10. Item (4) of Assumption 12.13 needs to be compared to (C3)–
(C4) of Theorem 12.12 which is used for getting the asymptotic normality. (rn)n
is the rate that provides convergence in probability of the sieve estimator to the true
regression function, and this magnitude is used for the perturbation, see also (C3)–
(C4) in Theorem 12.12.

Theorem 12.14 (Asymptotics, Theorem 1 of Horel–Gisecke [190], Without
Proof) Under Assumption 12.13 the approximate sieve estimator (μ̂n)n≥1 (12.9)
converges weakly in the metric space (C1B(X , ν), dν) with dν(μ,μ′) = Eν[(μ(X)−
μ′(X))2]:

rn (μ̂n − μ0) ⇒ μ� as n → ∞,
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where μ� is the argmax of the Gaussian process {Gμ; μ ∈ C1B(X , ν)} with mean
zero and covariance function Cov(Gμ,Gμ′ ) = 4σ 2

Eν[μ(X)μ′(X)].

Remarks 12.15 We highlight the differences between Theorems 12.12 and 12.14.

• Theorem 12.12 provides a convergence in distribution to a Gaussian random
variable, whereas the limit in Theorem 12.14 is a random function x �→ μ�(x) =
μ�

ω(x), ω ∈ �, thus, the former convergence result integrates over the (empirical)
feature distribution, whereas the latter also allows for a point-wise consideration
in feature x.

• The former theorem does not allow for variable selection in X whereas the latter
does because the limiting function still discriminates different feature values.

• For the proof of Theorem 12.14 we refer to Horel–Giesecke [190]. It is based
on asymptotic results on empirical point processes; we refer to Van der Vaart–
Wellner [364]. The Gaussian process {Gμ; μ ∈ C1B(X , ν)} is parametrized by the
(totally bounded) space C1B(X , ν), and it is continuous over this compact index
space. This implies that it takes its maximum. Uniqueness of the maximum then
gives us the random functionμ� which exactly describes the limiting distribution
of rn(μ̂n − μ0) as n → ∞.

12.4 Hypothesis Testing

Theorem 12.14 can be used to provide a significance test for feature component
selection, similarly to the LRT and the Wald test presented in Sect. 5.3.2 on GLMs.
We define gradient-based test statistics, for 1 ≤ j ≤ q0, and w.r.t. the approximate
sieve estimator μ̂n ∈ Sn(φ) given in (12.9),

�
(n)
j =

∫

X

(
∂μ̂n(x)

∂xj

)2

dν(x) and �̂
(n)
j = 1

n

n∑
i=1

(
∂μ̂n(Xi )

∂xj

)2

.

The test statistics �
(n)
j integrates the squared partial derivative of the sieve estimator

μ̂n w.r.t. the distribution ν, whereas �̂
(n)
j can be considered as its empirical

counterpart if X ∼ ν. Note that both test statistics depend on the data (Yi ,Xi )1≤i≤n

determining the sieve estimator μ̂n, see (12.9). These test statistics are used to test
the following null hypothesis H0 against the alternative hypothesis H1 for the true
regression function μ0 ∈ C1B(X , ν)

H0 : λj = Eν

[(
∂μ0(X)

∂xj

)2
]

= 0 against H1 : λj �= 0. (12.10)
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We emphasize that the expression λj in (12.10) is a deterministic number, for this

reason we use the expected value notation Eν[·]. This in contrast to �
(n)
j , which is

only a conditional expectation, conditionally given the data (Yi ,Xi )1≤i≤n.

Proposition 12.16 (Theorem 2 and Proposition 3 of Horel–Giesecke [190],
Without Proof) Under Assumption 12.13 and under the null hypothesis H0 we
have for n → ∞

r2n�
(n)
j , r2n�̂

(n)
j ⇒ �j

def.=
∫

X

(
∂μ�(x)

∂xj

)2

dν(x). (12.11)

In order to use this proposition we need to be able to calculate the limiting
distribution characterized by random variable �j . The maximal argument μ� of
the Gaussian process {Gμ; μ ∈ C1B(X , ν)} is given by a random function such that
for all ω ∈ �, μ�

ω(·) fulfills

Gμ�
ω(·)(ω) ≥ Gμ(ω) for all μ ∈ C1B(X , ν).

A discretization and simulation approach can be explored to approximate this
maximal argumentμ� for differentω ∈ �, see Section 5.7 in Horel–Giesecke [190].

1. Sample random functions fk from C1B(X , ν), k ≥ 1. The universality the-
orems suggest that we sample these random functions fk from the sieves
(Sn ∩ C1B(X , ν))n≥1. This requires sampling dimension q1 of the shallow FN
network and the corresponding network weights. This provides us with candidate
functions f1, . . . , fK ∈ C1B(X , ν), these candidate functions can be understood
as a random covering of the (totally bounded) index space C1B(X , ν).

2. Simulate K-dimensional multivariate Gaussian random variables G(t) (i.i.d.)
with mean zero and (empirical) covariance matrix

�̂ =
(
1

n

n∑
i=1

fk(Xi )fl(Xi )

)

1≤k,l≤K

.

These random variables G(1), . . . ,G(T ) play the role of discretized random
samples of the Gaussian process {Gμ; μ ∈ C1B(X , ν)}.

3. The empirical argmax of the sample G(t), 1 ≤ t ≤ T , is obtained by

μ̂�
t = argmax

fk : 1≤k≤K

G
(t)
fk

,

where G
(t)
fk

is the k-th component of G(t).
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4. The empirical distribution of the following sample �̂
(t)
j , 1 ≤ t ≤ T , gives us an

approximation to the limiting distribution in Proposition 12.16

�̂
(t)
j = 1

n

n∑
i=1

(
∂μ̂�

t (Xi )

∂xj

)2

,

i.e., under the null hypothesis H0 we approximate the right-hand side of (12.11)
by the empirical distribution of (�̂

(t)
j )1≤t≤T .

We close this section we some remarks.

Remarks 12.17

• The quality of the empirical approximation (�̂
(t)
j )1≤t≤T to the limiting distribu-

tion of �j will depend on how well we cover the index set C1B(X , ν). We could
try to use covering theorems to control the accuracy. However, this is often too
challenging. The simulation approach presented above suffers from not giving
us any control on the quality of this covering, nor is it clear how the Sobolev
norm condition for B in (12.8) can efficiently be checked during the simulation
approach. We highlight that this Sobolev norm bound ‖fk‖�q0/2�+2,2 ≤ B is
crucial when we want to empirically estimate the distribution of �j ; under
special assumptions Horel–Giesecke [190] prove in their Theorem 4 that �j

scales as B2. Thus, if we do not have any control over the Sobolev norm of the
sampled shallow FN networks fk , the above simulation algorithm is not useful to
approximate the limiting distribution in Proposition 12.16.

• The assumptions of Proposition 12.16 require that X ∼ ν has a strictly positive
density over the entire feature spaceX (excluding the intercept component). This
is necessary to be able to capture any non-zero partial derivative ∂μ0(x)/∂xj over
the entire feature space X . In practical applications, where we rely on a finite
sample (Xi )1≤i≤n, this may be problematic and needs some care. For instance,
there may be the situation where the samples cluster in two disjoint regions, say
C1 ⊂ X and C2 ⊂ X , because we may have ν(C1 ∪ C2) ≈ 1. That is, in that
case we rarely have observations Xi not lying in one of these two clusters. If
∂μ0(x)/∂xj = 0 on these two clusters x ∈ C1 ∪ C2, but if μ0 has a very steep
slope between the two clusters (i.e., if they are really different in terms of μ0),
then the test on this finite sample will not find the significant slope.

• The distribution X ∼ ν of the features is assumed to be absolutely continuous on
the hypercube [0, 1]q0, this is not fulfilled for binary and categorical features.

• Another question is how the test of Proposition 12.16 is affected by collinearity in
feature components. Note that we only test one component at a time. Moreover,
we would like to highlight the j -dependency in the limiting random variable �j .
This dependency is induced by the properties of the feature distribution ν that
may not be exchangeable in the components of x.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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