
Chapter 11
Selected Topics in Deep Learning

11.1 Deep Learning Under Model Uncertainty

We revisit claim size modeling in this section. Claim size modeling is challenging
because often there is no (simple) off-the-shelf distribution that allows one to
appropriately describe all claim size observations. E.g., the main body of the claim
size data may look like gamma distributed, and, at the same time, large claims seem
to be more heavy-tailed (contradicting a gamma model assumption). Moreover,
different product and claim types may lead to multi-modality in the claim size
densities. In Sects. 5.3.7 and 5.3.8 we have explored a gamma and an inverse
Gaussian GLM to model a motorcycle claims data set. In that example, the results
have been satisfactory because this motorcycle data is neither multi-modal nor does
it have heavy tails. These two GLM approaches have been based on the EDF (2.14),
modeling the mean x �→ μ(x) with a regression function and assuming a constant
dispersion parameter ϕ > 0. There are two natural ways to extend this approach.
One considers a double GLM with a dispersion submodel x �→ ϕ(x), see Sect. 5.5,
the other explores multi-parameter extensions like the generalized inverse Gaussian
model, which is a k = 3 vector-valued EF, see (2.10), or the GB2 family that
involves 4 parameters, see (5.79). These extensions providemore complexity, also in
MLE. In this section, we are not going to consider multi-parameter extensions, but
in a first step we aim at robustifying (mean) parameter estimation within the EDF.
In a second step we are going to analyze the resulting dispersion ϕ(x). For these
steps, we perform representation learning and parameter estimation under model
uncertainty by simultaneously considering multiple models from Tweedie’s family.
These considerations are closely related to Tweedie’s forecast dominance given in
Definition 4.22.

© The Author(s) 2023
M. V. Wüthrich, M. Merz, Statistical Foundations of Actuarial Learning and its
Applications, Springer Actuarial, https://doi.org/10.1007/978-3-031-12409-9_11

453

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12409-9_11&domain=pdf

 799 4612 a 799 4612 a

https://doi.org/10.1007/978-3-031-12409-9_11

454 11 Selected Topics in Deep Learning

We emphasize that we remain within a single distribution function choice in this
section, i.e., we neither consider mixture distributions nor composite models in this
section. Mixture density networks are going to be considered in Sect. 11.6, below,
and a composite model approach is studied in Sect. 11.3, below. These mixture
density networks and composite models allow us to model the body and the tail
of the data with different distribution functions by either mixing or concatenating
suitable distributions.

11.1.1 Recap: Tweedie’s Family

Tweedie’s family with power variance function V (μ) = μp, p ≥ 2, provides us
with a rich model class for claim size modeling if the claim sizes are strictly positive,
a.s., and extending top ∈ (1, 2) allows us to model claimswith a positive point mass
in 0. This class of distribution functions contains the gamma case (p = 2) and the
inverse Gaussian case (p = 3). In general, p > 2 provides us with positive stable
generated distributions and p ∈ (1, 2) gives Tweedie’s CP models, see Table 2.1.
Tweedie’s family has cumulant function for p > 1

κ(θ) = κp(θ) =
{

1
2−p

((1 − p)θ)
2−p
1−p for p > 1 and p �= 2,

−log(−θ) for p = 2,
(11.1)

on the effective domain θ ∈ � ∈ (−∞, 0) for p ∈ (1, 2], and θ ∈ � ∈ (−∞, 0]
for p > 2. The mean and the power variance function are for p > 1 given by

θ �→ μ = μ(θ) = ((1 − p)θ)
1

1−p and μ �→ V (μ) = μp.

The unit deviance takes the following form for p > 1 and p �= 2, see (4.18),

dp(y, μ) = 2

(
y

y1−p − μ1−p

1 − p
− y2−p − μ2−p

2 − p

)
≥ 0, (11.2)

and in the gamma case p = 2 we have, see Table 4.1,

d2(y, μ) = 2

(
y

μ
− 1 + log

(
μ

y

))
≥ 0. (11.3)

Figure 11.1 (lhs) shows the unit deviances y �→ dp(y, μ) for fixed mean parameter
μ = 2 and power variance parameters p ∈ {0, 2, 2.5, 3, 3.5}; the case p = 0
corresponds to the symmetric Gaussian case d0(y, μ) = (y − μ)2. We observe
that with an increasing power variance parameter p large claims Y = y receive a
smaller loss punishment (if we interpret the unit deviance as a loss function). This
is the situation where we have a fixed mean μ and where we assess claim sizes

11.1 Deep Learning Under Model Uncertainty 455

0 1 2 3 4 5 6

0
2

4
6

8
10

unit deviances of power variance examples

data y

un
it

de
vi

an
ce

Gauss p=0
gamma p=2
case p=2.5
inverse Gauss p=3
case p=3.5

0 1 2 3 4 5 6

0
2

4
6

8
10

unit deviances of power variance examples

mean mu
un

it
de

vi
an

ce

Gauss p=0
gamma p=2
case p=2.5
inverse Gauss p=3
case p=3.5

Fig. 11.1 (lhs) Unit deviances y �→ dp(y, μ) ≥ 0 for fixed mean μ = 2 and (rhs) unit
deviances μ �→ dp(y, μ) ≥ 0 for fixed observation y = 2 for power variance parameters
p ∈ {0, 2, 2.5, 3, 3.5}

Y = y relative to this mean. For estimation purposes we have fixed observations
Y = y and we study the sensitivities in μ. Note that, in general, the unit deviances
dp(y, μ) are not symmetric in y and μ. This second case is shown in Fig. 11.1 (rhs),
and the general behavior in p is similar. As a result, by selecting different hyper-
parameters p > 1, we can control the influence of large (and small) claims on
parameter estimation, because the unit deviances dp(y, ·) have different slopes for
different p’s. Basically, the choice of the loss function (unit deviance) determines
the choice of the underlying distributional model, which then assesses the claim
observations Y = y according to their sizes and how these sizes match the model
assumptions made.

In Lemma 2.22 we have seen that the unit deviances dp (y, μ) ≥ 0 are zero if and
only if y = μ. The second derivatives given in Lemma 2.22 allow us to consider a
second order Taylor expansion around a minimum μ0 = y0

dp (y0 + εy,μ0 + εμ) = ε2

μ
p

0

(y − μ)2 + o(ε2) as ε → 0.

Thus, locally around the minimum the unit deviances behave symmetric and like
Gaussian squares, but this is only a local approximation around a minimumμ0 = y0
as can be seen from Fig. 11.1. I.e., in general, model fitting turns out to be rather
different from the Gaussian square loss if we have small and large claim sizes under
choices p > 1.

456 11 Selected Topics in Deep Learning

Remarks 11.1

• Since unit deviances are Bregman divergences, we know that every unit deviance
gives us a strictly consistent scoring function for the mean functional, see
Theorem 4.19. Therefore, the specific choice of the power variance parameter p

seems less relevant. However, strict consistency is an asymptotic statement, and
choosing a unit deviance that matches the property of the data has better finite
sample properties, i.e., a smaller variance in asymptotic normality; we come back
to this in Sect. 11.1.4, below.

• A function (y, μ) �→ ψ(y,μ) is called b-homogeneous if there exists b ∈ R

such that for all (y, μ) and all λ > 0 we have ψ(λy, λμ) = λbψ(y,μ). Unit
deviances dp are b-homogeneous with b = 2 − p. This b-homogeneity has
the nice consequence that the decisions taken are independent of the scale, i.e.,
we have an invariance under changes of currencies. On the other hand, such a
scaling influences the estimation of the dispersion parameter, i.e., if we scale the
observation and the mean with λ we have unit deviance

dp(λy, λμ) = λ2−p dp(y, μ). (11.4)

This influences the dispersion estimation for the cases different from the gamma
case p = 2, see, e.g., saddlepoint approximation (5.60)–(5.62). This also relates
to the different parametrizations in Sect. 5.3.8 where we study the inverse
Gaussian model p = 3, which has a dispersion ϕi = 1/αi in the reproductive
form and ϕi = 1/α2

i in parametrization (5.51).
• We only consider power variance parameters p > 1 in this section for non-

negative claim size modeling. Technically, this analysis could be extended to
p ∈ {0, 1}. We do not consider the Gaussian case p = 0 to exclude negative
claims, and we do not consider the Poisson case p = 1 because this is used for
claim counts modeling.

We recall that unit deviances of the EDF are equal to twice the corresponding
KL divergences, which in turn are special cases of Bregman divergences. From
Theorem 4.19 we know that Bregman divergences Dψ are the only strictly
consistent loss/scoring functions for mean estimation.

Lemma 11.2 Choose p > 1. The scaled unit deviance dp(y, μ)/2 is a Bregman
divergence Dψp(y,μ) on R+ × R+ with strictly decreasing and strictly convex

11.1 Deep Learning Under Model Uncertainty 457

function on R+

ψp(y) = yhp(y) − κp(hp(y)) =
{

1
(2−p)(1−p)

y2−p for p > 1 and p �= 2,

−1 − log(y) for p = 2,

for canonical link hp(y) = (κ ′
p)−1(y) = y1−p/(1 − p).

Proof of Lemma 11.2 The Bregman divergence property follows from (2.29). For
p > 1 and y > 0 we have the strictly decreasing property

ψ ′
p(y) = hp(y) = y1−p/(1 − p) < 0.

The second derivative is ψ ′′
p(y) = h′

p(y) = y−p = 1/V (y) > 0 which provides the
strict convexity. 	

In the Gaussian case we have ψ0(y) = y2/2, and ψ ′
0(y) > 0 on R+ implies

that this is a strictly increasing convex function for positive claims y > 0. This is
different to Lemma 11.2.

Assume we have independent observations (Yi , xi) following the same
Tweedie’s distribution, and with means given by μϑ (xi) for some parameter ϑ .
The M-estimator of ϑ using this Bregman divergence is given by

ϑ̂ = argmax
ϑ

	Y (ϑ) = argmin
ϑ

n∑
i=1

vi

ϕ
Dψp (Yi, μϑ (xi)) .

If we turn this M-estimator into a Z-estimator (supposed we have differentiability),
the parameter estimate ϑ̂ is found as a solution of the score equations

0
!= −∇ϑ

n∑
i=1

vi

ϕ
Dψp (Yi, μϑ (xi))

=
n∑

i=1

vi

ϕ
ψ ′′

p(μϑ (xi)) (Yi − μϑ (xi)) ∇ϑμϑ (xi)

=
n∑

i=1

vi

ϕ

Yi − μϑ (xi)

V (μϑ (xi))
∇ϑμϑ (xi) (11.5)

=
n∑

i=1

vi

ϕ

Yi − μϑ (xi)

μϑ (xi)p
∇ϑμϑ (xi).

In the GLM case this exactly corresponds to (5.9). To determine the Z-estimator
from (11.5), we scale the residuals Yi − μi inversely proportional to the variances
V (μi) = μ

p

i of the chosen Tweedie’s distribution. It is a well-known result that

458 11 Selected Topics in Deep Learning

if we scale individual unbiased estimators inversely proportional to their variances,
we receive the unbiased estimator with minimal variance, we come back to this
in (11.16), below. This gives us the intuition behind a specific choice of the power
variance parameter for mean estimation, as the sizes of the variances μ

p
i scale

(weight) the observed residuals Yi − μi , and balance potential outliers in the
observations correspondingly.

11.1.2 Lab: Claim Size Modeling Under Model Uncertainty

We present a proposal for deep learning under model uncertainty in this section. We
explain this on an explicit example within Tweedie’s distributions. We emphasize
that this methodology can be applied in more generality, but it is beneficial here to
have an explicit example in mind to illustrate the different phenomena.

Generalized Linear Models

We analyze a Swiss accident insurance claims data set. This data is illustrated in
Sect. 13.4, and an excerpt of the data is given in Listing 13.7. In total we have
339’500 claims with positive payments. We choose this data set because it ranges
from very small claims of 1 CHF to very large claims, the biggest one exceeding
1’300’000CHF. These claims are supported by feature information such as the labor
sector, the injury type or the injured body part, see Listing 13.7 and Fig. 13.25. For
our analysis, we partition the data into a learning data set L and a test data set T .
We do this partition stratified w.r.t. the claim sizes and in a ratio of 9 : 1. This
results in a learning data set L of size n = 305′550 and in a test data set T of
size T = 33′950.

We consider three Tweedie’s distributions with power variance parameters p ∈
{2, 2.5, 3}, the first one is the gammamodel, the last one the inverseGaussian model,
and the power variance parameter p = 2.5 gives a model in between. In a first step
we consider GLMs, this requires feature engineering. We have three categorical
features, one binary feature and two continuous ones. For the categorical and binary
features we use dummy coding, and the continuous features Age and AccQuart
are just included in its raw form. As link function g we choose the log-link which
respects the positivity of the dual mean parameter space M, see Table 2.1, but
this is not the canonical link of the selected models. In the gamma GLM this
leads to a convex minimization problem, but in Tweedie’s GLM with p = 2.5

11.1 Deep Learning Under Model Uncertainty 459

Table 11.1 In-sample and out-of-sample losses (gamma loss, power variance case p = 2.5 loss
(in 10−2) and inverse Gaussian (IG) loss (in 10−3)) and AIC values; the losses use unit dispersion
ϕ = 1, AIC relies on the MLE of ϕ

In-sample loss on L Out-of-sample loss on T AIC

dp=2 dp=2.5 dp=3 dp=2 dp=2.5 dp=3 value

Null model 3.0094 10.2208 4.6979 3.0240 10.2420 4.6931 4’707’115 (IG)

Gamma GLM 2.0695 7.7127 3.9582 2.1043 7.7852 3.9763 4’741’472

p = 2.5 GLM 2.0744 7.6971 3.9433 2.1079 7.7635 3.9580 4’648’698

IG GLM 2.0865 7.7069 3.9398 2.1191 7.7730 3.9541 4’653’501

and in the inverse Gaussian GLM we have non-convex minimization problems, see
Example 5.6. Therefore, we initialize Fisher’s scoringmethod (5.12) in the latter two
GLMs with the solution of the gamma GLM. The gamma and the inverse Gaussian
cases can directly be fitted with the R command glm [307], for the power variance
parameter case p = 2.5 we have coded our ownMLE routine using Fisher’s scoring
method.
Table 11.1 shows the in-sample losses on the learning data L and the corresponding
out-of-sample losses on the test data T . The fitted GLMs (gamma, power variance
parameter p = 2.5 and inverse Gaussian) are always evaluated on all three unit
deviances dp=2(y, μ), dp=2.5(y, μ) and dp=3(y, μ), respectively. We give some
remarks. First, we observe that the in-sample loss is always minimized for the
GLM with the same power variance parameter p as the loss dp studied (2.0695,
7.6971 and 3.9398 in bold face). This result simply states that the parameter
estimates are obtained by minimizing the in-sample loss (or maximizing the
corresponding in-sample log-likelihood). Second, the minimal out-of-sample losses
are also highlighted in bold face. From these results we cannot give any preference
to a single model w.r.t. Tweedie’s forecast dominance, see Definition 4.20. Third,
we calculate the AIC values for all models. The gamma and the inverse Gaussian
cases have a closed-form solution for the normalizing term a(y; v/ϕ) in the EDF
density, and we can directly calculate AIC. The case p = 2.5 is more difficult
and we use the saddlepoint approximation of Sect. 5.5.2. Considering AIC we give
preference to Tweedie’s GLM with p = 2.5. Note that the AIC values use the
MLE for ϕ which is obtained from a general purpose optimizer, and which uses
the saddlepoint approximation in the power variance case p = 2.5. Fourth, under
a constant dispersion parameter ϕ, the mean estimation μ̂i can be done without
explicitly specifying ϕ because it cancels in the score equations. In fact, we perform
this mean estimation in the additive form and not in the reproductive form, see (2.13)
and the discussions in Sects. 5.3.7–5.3.8.
Figure 11.2 plots the deviance residuals (for unit dispersion) against the logged
fitted means μ̂(xi) for p ∈ {2, 2.5, 3} for 2’000 randomly selected claims; this
is the Tukey–Anscombe plot. The green line has been obtained by a spline fit
to the deviance residuals as a function of the fitted means μ̂(xi), and the cyan

460 11 Selected Topics in Deep Learning

5 6 7 8 9 10

−
5

0
5

Tukey−Anscombe plot: gamma

logged fitted means

de
vi

an
ce

 r
es

id
ua

ls

residuals
average
dispersion

5 6 7 8 9 10

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Tukey−Anscombe plot: p=2.5

logged fitted means
de

vi
an

ce
 r

es
id

ua
ls

residuals
average
dispersion

5 6 7 8 9 10

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Tukey−Anscombe plot: inverse Gaussian

logged fitted means

de
vi

an
ce

 r
es

id
ua

ls

residuals
average
dispersion

Fig. 11.2 Tukey–Anscombe plots showing the deviance residuals against the logged GLM fitted
means μ̂(xi): (lhs) gamma GLM p = 2, (middle) power variance case p = 2.5, (rhs) inverse
Gaussian GLM p = 3; the cyan lines show twice the estimated standard deviation of the deviance
residuals as a function of the size of the logged estimated means μ̂

lines give twice the estimated standard deviation of the deviance residuals as
a function of the fitted means (also obtained from spline fits). This estimated
standard deviation corresponds to the square-rooted deviance dispersion estimate
ϕ̂D, see (5.30), however, in the additive form because we work with unscaled claim
size observations. A constant dispersion assumption is supported by cyan lines of
roughly constant size. In the gamma case the dispersion seems increasing in the
mean estimate, and in the inverse Gaussian case it is decreasing, thus, the power
variance parameters p = 2 and p = 3 do not support a constant dispersion in this
example. Only the choice p = 2.5 may support a constant dispersion assumption
(because it does not have an obvious trend). This says that the variance should scale
as V (μ) = μ2.5 as a function of the mean μ, see also (11.5).

Deep FN Networks

We compare the above GLMs to FN networks of depth d = 3 with (q1, q2, q3) =
(20, 15, 10) neurons. The categorical features are modeled with embedding layers
of dimension b = 2. We fit this network architecture with Tweedie’s deviances
losses having power variance parameters p ∈ {2, 2.5, 3}. Moreover, we use 20%
of the learning data L as validation data V to explore the early stopping rule.1 To
reduce the randomness coming from early stopping with different seeds, we average
the deviance losses over 20 runs (this is not the nagging predictor: we only average
the deviance losses to have stable conclusions concerning forecast dominance). The
results are presented in Table 11.2.

1 In the standard implementation of SGD with early stopping, the learning and validation data
partition is done non-stratified. If necessary, this can be changed manually.

11.1 Deep Learning Under Model Uncertainty 461

Table 11.2 In-sample and out-of-sample losses (gamma loss, power variance case p = 2.5 loss
(in 10−2) and inverse Gaussian (IG) loss (in 10−3)) and average claim amounts; the losses use unit
dispersion ϕ = 1 and the network losses are averaged deviance losses over 20 runs with different
seeds

In-sample loss on L Out-of-sample loss on T Average

dp=2 dp=2.5 dp=3 dp=2 dp=2.5 dp=3 claim

Null model 3.0094 10.2208 4.6979 3.0240 10.2420 4.6931 1’774

Gamma GLM 2.0695 7.7127 3.9582 2.1043 7.7852 3.9763 1’701

p = 2.5 GLM 2.0744 7.6971 3.9433 2.1079 7.7635 3.9580 1’652

IG GLM 2.0865 7.7069 3.9398 2.1191 7.7730 3.9541 1’614

Gamma network 1.9738 7.4556 3.8693 2.0543 7.6478 3.9211 1’748

p = 2.5 network 1.9712 7.4128 3.8458 2.0654 7.6551 3.9178 1’739

IG network 1.9977 7.4568 3.8525 2.0762 7.6682 3.9188 1’712

First, we observe that the networks outperform the GLMs, saying that the feature
engineering has not been done optimally for GLMs. Second, in-sample we no longer
receive the lowest deviance loss in the model with the same p. This comes from the
fact that we exercise early stopping, and, for instance, the gamma in-sample loss of
the gamma network (p = 2) 1.9738 is bigger than the corresponding gamma loss
of 1.9712 from the network with p = 2.5. Third, considering forecast dominance,
preference is given either to the gamma network or to the power variance parameter
p = 2.5. In general, it seems that fitting with higher power variance parameters
leads to less stable results, but this statement needs more analysis. The disadvantage
of this fitting approach is that we independently fit the models with the different
power variance parameters to the observations, and, thus, the learned representations
z(d :1)(xi) are rather different for different p’s. This makes it difficult to compare
these models. This is exactly the point that we address next.

Robustified Representation Learning

To deal with the drawback of missing comparability of the network approaches
with different power variance parameters, we can try to learn a representation
that simultaneously fits different models. The implementation of this idea is rather
straightforward in network modeling. We choose the above network of depth d = 3,
which gives us the new (learned) representation zi = z(d :1)(xi) in the last FN
layer. The general idea now is that we design multiple outputs for this learned
representation to fit the different distributional models. That is, in the case of
three Tweedie’s loss functions with power variance parameters p ∈ {2, 2.5, 3} we
consider a three-dimensional output mapping

x �→ (
μp=2(x), μp=2.5(x), μp=3(x)

)� (11.6)

=
(
g−1〈β2, z

(d :1)(x)〉, g−1〈β2.5, z
(d :1)(x)〉, g−1〈β3, z

(d :1)(x)〉
)� ∈ R

3,

462 11 Selected Topics in Deep Learning

for different output parameters β2,β2.5,β3 ∈ R
qd+1. These three expected

responses (11.6) share the network parameters w = (w
(1)
1 , . . . ,w

(d)
qd

) in the FN
layers, and the network fitting should learn these parameters such that zi =
z(d :1)(xi) gives a good representation for all considered loss functions. Choose
positive weights ηp > 0, and define the combined deviance loss function

D
(
Y , (w,β2,β2.5,β3)

) =
∑

p∈{2,2.5,3}

ηp

ϕp

n∑
i=1

vi dp

(
Yi, μp(xi)

)
, (11.7)

for the given observations (Yi, x i , vi), 1 ≤ i ≤ n. Note that the unit deviances
dp live on different scales for different p’s. We use the (constant) weights ηp > 0
to balance these scales so that all power variance parameters p roughly equally
contribute to the total loss, while setting ϕp ≡ 1 (which can be done for a constant
dispersion). This approach is now fitted to the available learning data L. The
correspondingR code is given in Listing 11.1. Note that the fitting also requires that
we triplicate the observations (Yi, Yi , Yi) so that we can simultaneously evaluate the
three chosen power variance deviance losses, see lines 18–21 of Listing 11.1. We
fit this model to the Swiss accident insurance data, and the results are presented in
Table 11.3 on the lines called ‘multi-out’.

Listing 11.1 FN network with multiple output

1 Design = layer_input(shape = c(q0), dtype = ’float32’, name = ’Design’)
2 #
3 Network = Design %>%
4 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
5 layer_dense(units=15, activation=’tanh’, name=’FNLayer2’) %>%
6 layer_dense(units=10, activation=’tanh’, name=’FNLayer3’)
7 #
8 Output1 = Network %>%
9 layer_dense(units=1, activation=’exponential’, name=’Output1’)
10 #
11 Output2 = Network %>%
12 layer_dense(units=1, activation=’exponential’, name=’Output2’)
13 #
14 Output3 = Network %>%
15 layer_dense(units=1, activation=’exponential’, name=’Output3’)
16
17 #
18 keras_model(inputs = c(Design), outputs = c(Output1, Output2, Output3))
19 #
20 model %>% compile(loss = list(loss1, loss2, loss3),
21 loss_weights=list(eta1, eta2, eta3), optimizer = ’nadam’)

This simultaneous representation learning across different loss functions leads to
more stability in the results between the different loss function choices, i.e., there
is less variability between the losses of the different outputs compared to fitting the
three different models independently. The predictive performance seems slightly
better in this robustified vs. the independent case (see bold face out-of-sample
figures). The similarity of the results across the different loss functions (using the

11.1 Deep Learning Under Model Uncertainty 463

Table 11.3 In-sample and out-of-sample losses (gamma loss, power variance case p = 2.5 loss
(in 10−2) and inverse Gaussian (IG) loss (in 10−3)) and average claim amounts; the losses use unit
dispersion ϕ = 1 and the network losses are averaged deviance losses over 20 runs with different
seeds

In-sample loss on L Out-of-sample loss on T Average

dp=2 dp=2.5 dp=3 dp=2 dp=2.5 dp=3 claim

Null model 3.0094 10.2208 4.6979 3.0240 10.2420 4.6931 1’774

Gamma network 1.9738 7.4556 3.8693 2.0543 7.6478 3.9211 1’748

p = 2.5 network 1.9712 7.4128 3.8458 2.0654 7.6551 3.9178 1’739

IG network 1.9977 7.4568 3.8525 2.0762 7.6682 3.9188 1’712

Gamma multi-output (11.6) 1.9731 7.4275 3.8519 2.0581 7.6422 3.9146 1’745

p = 2.5 multi-output (11.6) 1.9736 7.4281 3.8522 2.0576 7.6407 3.9139 1’732

IG multi-output (11.6) 1.9745 7.4295 3.8525 2.0576 7.6401 3.9134 1’705

Multi-loss fitting (11.8) 1.9677 7.4118 3.8468 2.0580 7.6417 3.9144 1’744

2 4 6 8 10 12

0.
90

0.
95

1.
00

1.
05

1.
10

comparison of gamma, p=2.5 and inverse Gauss

logged observed claim sizes

ra
tio

 w
ith

 p
=

2.
5

m
od

el

gamma/p=2.5 model
inverse Gauss/p=2.5 model

5 6 7 8 9 10

0.
90

0.
95

1.
00

1.
05

1.
10

comparison of gamma, p=2.5 and inverse Gauss

logged claim prediction

ra
tio

 w
ith

 p
=

2.
5

m
od

el

gamma/p=2.5 model
inverse Gauss/p=2.5 model

Fig. 11.3 Ratios μ̂p=2(xi)/μ̂p=2.5(xi) (black color) and μ̂p=3(xi)/μ̂p=2.5(xi) (blue color) of the
three predictors (lhs) in-sample figures ordered on the x-axis w.r.t. the logged observed claims Yi ,
darkgray and cyan lines give spline fits, (rhs) out-of-sample figures ordered on the x-axis w.r.t. the
logged average size of the three predictors

jointly learned representation zi) allows us to directly compare the corresponding
predictors μ̂p(xi) for the different p’s.
Figure 11.3 compares the three predictors by considering the ratios
μ̂p=2(xi)/μ̂p=2.5(xi) in black color and μ̂p=3(xi)/μ̂p=2.5(xi) in blue color, i.e.,
we divide by the (middle) predictor with power variance parameter p = 2.5.
The figure on the left-hand side shows these ratios in-sample and ordered on
the x-axis w.r.t. the observed claim sizes Yi , and the darkgray and cyan lines
give spline fits to these ratios. The figure on the right-hand side shows these
ratios out-of-sample and ordered on the x-axis w.r.t. the average predictors
μ̄i = (μ̂p=2(xi) + μ̂p=2.5(xi) + μ̂p=3(xi))/3. In view of (11.5) we expect that the

464 11 Selected Topics in Deep Learning

models with a smaller power variance parameter p over-fit more to large claims.
From Fig. 11.3 (lhs) we can observe that, indeed, this is the case (see gray and cyan
spline fits which bifurcate for large claims). That is, models with a smaller power
variance parameter react more sensitively to large observations Yi . The ratios in
Fig. 11.3 provide differences of up to 7% for large claims.

Remark 11.3 The loss function (11.7) can also be interpreted as regularization.
For instance, if we choose η2 = 1, and if we assume that this is our preferred
model, then we can regularize this model with further models, and their weights
ηp > 0 determine the degree of regularization. Thus, in contrast to ridge and
LASSO regularization of Sect. 6.2, regularization does not directly act on the
model parameters, here, but rather on what we learn in terms of the representation
zi = z(d :1)(xi).

Using Forecast Dominance to Deal with Model Uncertainty

In GLMs, the power variance parameter p typically acts as a hyper-parameter, i.e.,
one fits different GLMs for different choices of p. Model selection is then done, e.g.,
by analyzing the Tukey–Anscombe plot, AIC, cross-validation or by studying out-
of-sample forecast dominance. In networks we should not use AIC as we neither
have a parsimonious network parameter nor do we use the MLE. Here, we focus
on forecast dominance for the network predictors (based on the different chosen
power variance parameters). If we are mainly interested in receiving a model that
provides optimal forecast dominance, we should not consider three different outputs
as in (11.7), but rather fit the same output to different loss functions; the required
changes are minimal, see Listing 11.2. Namely, consider one FN network with one
output μ(xi), but evaluate this output simultaneously on the different chosen loss
functions

D (Y ,ϑ) =
∑

p∈{2,2.5,3}

ηp

ϕp

n∑
i=1

vi dp (Yi, μ(xi)) . (11.8)

In contrast to (11.7), we only have one FN network regression function xi �→ μ(xi),
here.
We present the results on the last line of Table 11.3, called ‘multi-loss’. In our
case, this approach is slightly less competitive (out-of-sample), however, it is less
sensitive to outliers since we need to have a good regression function simultaneously
for multiple loss functions. Of course, this multiple loss fitting approach is not
restricted to different power variance parameters. As stated in Theorem 4.19,
Bregman divergences are the only consistent loss functions for mean estimation,
and the unit deviances are examples of Bregman divergences. Forecast dominance
now suggests that we may choose any Bregman divergence as a loss function in
Listing 11.2 as long as it reflects the expected properties of the model (and of

11.1 Deep Learning Under Model Uncertainty 465

Listing 11.2 FN network with a single output for multiple losses

1 Design = layer_input(shape = c(q0), dtype = ’float32’, name = ’Design’)
2 #
3 Network = Design %>%
4 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
5 layer_dense(units=15, activation=’tanh’, name=’FNLayer2’) %>%
6 layer_dense(units=10, activation=’tanh’, name=’FNLayer3’)
7 #
8 Output = Network %>%
9 layer_dense(units=1, activation=’exponential’, name=’Output’)
10 #
11 keras_model(inputs = c(Design), outputs = c(Output, Output, Output))
12 #
13 model %>% compile(loss = list(loss1, loss2, loss3),
14 loss_weights=list(eta1, eta2, eta3), optimizer = ’nadam’)

the observed data), otherwise we will receive bad convergence properties, see also
Sect. 11.1.4, below. For instance, we can robustify the Poisson claim counts model
by additionally considering the deviance loss of the negative binomial model that
also assesses over-dispersion.

Nagging Predictor

The loss figures in Table 11.3 are averaged deviance losses over 20 different runs of
the gradient descent algorithm with different seeds (to receive stable results). Rather
than averaging over the losses, we should improve the models by averaging over the
predictors and, then, calculate the losses on these averaged predictors; this is exactly
the proposal of the nagging predictor (7.44). We calculate the nagging predictor of
the models that are simultaneously fit to the different loss functions (lines ‘multi-
output’ and ‘multi-loss’ of Table 11.3). The resulting nagging predictors are reported
in Table 11.4. This table shows that we give a clear preference to the nagging
predictors. The simultaneous loss fitting (11.8) gives the best out-of-sample results
for the nagging predictor, see the last line of Table 11.4.
Figure 11.4 shows the Tukey–Anscombe plot of the multi-loss nagging predictor for
the different deviance losses (for unit dispersion). Again, the case p = 2.5 is closest
to having a constant dispersion, and the other cases will require dispersion modeling
ϕ(x).
Figure 11.5 shows the empirical auto-calibration property of the multi-loss nagging
predictor. This auto-calibration property is calculated as in Listing 7.8. We observe
that the auto-calibration property holds rather accurately. Only for claim predictors
μ̂(xi) above 10’000 CHF (vertical dotted line in Fig. 11.5) the fitted means under-
estimate the observed average claim sizes. This affects (only) 1.7% of all claims and
it could be corrected as described in Example 7.19.

466 11 Selected Topics in Deep Learning

Table 11.4 In-sample and out-of-sample losses (gamma loss, power variance case p = 2.5 loss
(in 10−2) and inverse Gaussian (IG) loss (in 10−3)) and average claim amounts; the losses use unit
dispersion ϕ = 1

In-sample loss on L Out-of-sample loss on T Average

dp=2 dp=2.5 dp=3 dp=2 dp=2.5 dp=3 claim

Null model 3.0094 10.2208 4.6979 3.0240 10.2420 4.6931 1’774

Gamma multi-output (11.6) 1.9731 7.4275 3.8519 2.0581 7.6422 3.9146 1’745

p = 2.5 multi-output (11.6) 1.9736 7.4281 3.8522 2.0576 7.6407 3.9139 1’732

IG multi-output (11.6) 1.9745 7.4295 3.8525 2.0576 7.6401 3.9134 1’705
Multi-loss fitting (11.8) 1.9677 7.4118 3.8468 2.0580 7.6417 3.9144 1’744

Gamma multi-out & nagging 1.9486 7.3616 3.8202 2.0275 7.5575 3.8864 1’745

p = 2.5 multi-out & nagging 1.9496 7.3640 3.8311 2.0276 7.5578 3.8864 1’732

IG multi-out & nagging 1.9510 7.3666 3.8320 2.0281 7.5583 3.8865 1’705

Multi-loss with nagging 1.9407 7.3403 3.8236 2.0244 7.5490 3.8837 1’744

5 6 7 8 9 10

−
5

0
5

logged fitted means
5 6 7 8 9 10

logged fitted means
5 6 7 8 9 10

logged fitted means

de
vi

an
ce

 r
es

id
ua

ls

residuals
average
dispersion

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

de
vi

an
ce

 r
es

id
ua

ls

de
vi

an
ce

 r
es

id
ua

ls

Tukey−Anscombe plot: gamma Tukey−Anscombe plot: inverse GaussianTukey−Anscombe plot: p=2.5

residuals
average
dispersion

residuals
average
dispersion

Fig. 11.4 Tukey–Anscombe plots giving the deviance residuals of the multi-loss nagging predic-
tor of Table 11.4 for different power variance parameters: (lhs) gamma deviances p = 2, (middle)
power variance deviances p = 2.5, (rhs) inverse Gaussian deviances p = 3; the cyan lines show
twice the estimated standard deviation of the deviance residuals as a function of the size of the
logged estimated means μ̂

11.1.3 Lab: Deep Dispersion Modeling

From the Tukey–Anscombe plots in Fig. 11.4 we conclude that the dispersion
requires regression modeling, too, as the dispersion does not seem to be constant
over the whole range of the expected claim sizes. We therefore explore a double FN
network model, in spirit this is similar to the double GLM of Sect. 5.5. We therefore
assume to work within Tweedie’s family with power variance parametersp ≥ 2, and
with unit deviances given by (11.2)–(11.3). The saddlepoint approximation (5.59)
gives us

f (y; θ, v/ϕ) ≈
(
2πϕ

v
V (y)

)−1/2

exp

{
− 1

2ϕ/v
dp(y, μ)

}
,

11.1 Deep Learning Under Model Uncertainty 467

Fig. 11.5 Empirical
auto-calibration property of
the claim size predictor; the
blue curve shows the
empirical density of the
multi-loss nagging predictor
μ̂(xi)

5

auto-c.

density

6 7

fitted means (log scale)

auto-calibration of network prediction

au
to

-c
al

ib
ra

ti
o

n
 (

lo
g

 s
ca

le
)

8 9 10

5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

6
7

8
9

10
with power variance function V (y) = yp. This saddlepoint approximation is
formulated in the reproductive form for Y = X/ω = Xϕ/v. This requires scaling of
the observations X with the unknown ϕ to receive Y . In Sect. 5.5.4 we have shown
how this problem can be solved. In this section we give a different proposal which
is more robust in network fitting, and which benefits from the b-homogeneity of dp,
see (11.4).

We consider the variable transformation y �→ x = yω = yv/ϕ. In the absolutely
continuous case p ≥ 2 this gives us the approximation

f (x; θ, v/ϕ) ≈
(
2πϕ1+p

v1+p
V (x)

)−1/2

exp

{
− 1

2ϕ/v
dp

(
xϕ

v
,
μϕv

ϕv

)}
ϕ

v

=
(
2πϕp−1

vp−1 V (x)

)−1/2

exp

{
− 1

2ϕp−1/vp−1 dp

(
x,μp

)}
,

with mean μp = μv/ϕ of X = Yv/ϕ. We set φ = −1/ϕp−1 < 0. This gives us the
approximation

	X(μp, φ) ≈ vp−1dp(X,μp)φ − (−log (−φ))

2
−1

2
log

(
2π

vp−1 V (X)

)
. (11.9)

For given mean μp we again have a gamma approximation on the right-hand side,
but we scale the dispersion differently. This gives us the approximate first moment

Eφ

[
vp−1dp(X,μp)

∣∣∣μp

]
≈ κ ′

2(φ) = − 1/φ = ϕp−1 def.= ϕp.

The remainder of this modeling is similar to the residual MLE approach in
Section 5.5.3. Namely, we set up two FN network regression functions

x �→ μp(x) and x �→ ϕp(x) = κ ′
2(φ(x)) = −1/φ(x).

468 11 Selected Topics in Deep Learning

Parameter fitting is achieved by alternating the network parameter fitting of μp(x)

and ϕp(x) see also Section 5.5.4. We start the iteration by setting the dispersion

constant to ϕ̂
(0)
p (x) ≡ const. In this case, the dispersion cancels in the score

equations and the mean μ̂
(1)
p (x) can be estimated without the explicit knowledge

of the (constant) dispersion parameter ϕ̂
(0)
p ; this exactly provides the results of the

previous Sect. 11.1.2. Then, we iterate this procedure for t ≥ 1. For given mean
estimate μ̂

(t)
p (x) we receive deviances vp−1dp(X, μ̂

(t)
p (x)), and this allows us to

estimate ϕ̂
(t)
p (x) from the approximate gamma model (11.9), and for given disper-

sion parameters ϕ̂
(t)
p (x) we estimate μ̂

(t+1)
p (x) from the corresponding Tweedie’s

model for the observation X.

Example 11.4 We revisit the Swiss accident insurance data example of Sect. 11.1.2,
and we use the robustified representation learning approach (11.7) that simulta-
neously fits Tweedie’s models for the power variance parameters p = 2, 2.5, 3.
The initial calibration step is done for constant dispersions ϕ̂

(0)
p (x) ≡ const, and

it provides us with the estimated means μ̂
(1)
p (x) as illustrated in Fig. 11.3. For

stability reasons we choose the nagging predictor averaging over 20 different SGD
runs with 20 different seeds. These estimated means μ̂

(1)
p (x) give us the deviances

vp−1dp(X, μ̂
(1)
p (x)).

Using these deviances allows us to alternate the dispersion and mean estimation
for t ≥ 1. For given means μ̂

(t)
p (x), p = 2, 2.5, 3, we set up a deep FN network

x �→ z(d :1)(x) that allows for a robustified deep dispersion learning ϕp(x), for
p = 2, 2.5, 3. Under the log-link choice we consider the regression function with
multiple outputs

x �→ (
ϕp=2(x), ϕp=2.5(x), ϕp=3(x)

)� (11.10)

=
(
exp〈α2, z

(d :1)(x)〉, exp〈α2.5, z
(d :1)(x)〉, exp〈α3, z

(d :1)(x)〉
)� ∈ R

3+,

for different output parameters α2,α2.5,α3 ∈ R
qd+1. These three dispersion

responses (11.10) share the common network parameter w̃ = (w̃
(1)
1 , . . . , w̃

(d)
qd

) in
the FN layers of z(d :1). The network fitting learns these parameters simultaneously
for the different power variance parameters. Choose positive weights η̃p > 0, and
define the combined deviance loss function (based on the gamma model κ2 and
having dispersion parameter 2)

D
(
d(X, μ̂(t)), (w̃, α2, α2.5, α3)

)
=

∑
p∈{2,2.5,3}

η̃p

2

n∑
i=1

d2

(
v

p−1
i dp(Xi, μ̂(t)

p (xi)), ϕp(xi)
)

,

(11.11)

11.1 Deep Learning Under Model Uncertainty 469

where X = (X1, . . . , Xn) collects the unscaled observations Xi = Yivi/ϕi . Thus,
for all power variance parameters p = 2, 2.5, 3 we fit a gamma model d2(·, ·)/2
to the observed deviances (observations) v

p−1
i dp(Xi, μ̂

(t)
p (xi)) providing us with

the estimated dispersions ϕ̂
(t)
p (xi). This fitting step is received by the R code

of Listing 11.1, where the losses on line 20 are all given by gamma deviance
losses (11.11) and the deviances v

p−1
i dp(Xi, μ̂

(t)
p (xi)) play the role of the responses

(observations).
In the next step we update the mean estimates μ̂

(t+1)
p (xi), given the estimated

dispersions ϕ̂
(t)
p (xi) from the previous step. This requires that we optimize the

expected responses (11.6) for given heterogeneous dispersion parameters. We
therefore consider the loss function for positive weights ηp > 0, see (11.7),

D
(
X, ϕ̂(t), (w,β2,β2.5,β3)

)
=

∑
p∈{2,2.5,3}

ηp

n∑
i=1

v
p−1
i

ϕ̂
(t)
p (xi)

dp

(
Xi,μp(xi)

)
.

(11.12)

We fit this model by iterating this approach for t ≥ 1: we start from the predictors
of Sect. 11.1.2 providing us with the first mean estimates μ̂

(1)
p (xi). Based on these

mean estimates we iterate this robustified estimation of ϕ̂
(t)
p (xi) and μ̂

(t)
p (xi). We

give some remarks:

1. We use the robustified versions (11.11) and (11.12), respectively, where we
simultaneously fit all power variance parameters p = 2, 2.5, 3 on the commonly
learned representations zi = z(d :1)(xi) in the last FN layer of the mean and the
dispersion network, respectively.

2. For both FN networks of mean μ and dispersion ϕ modeling we use the same
network architecture of depth d = 3 having (q1, q2, q3) = (20, 15, 10) neurons
in the FN layers, the hyperbolic tangent activation function, and the log-link
for the output. These two networks only differ in their network parameters
(w,β2,β2.5,β3) and (w̃,α2,α2.5,α3), respectively.

3. For fitting we use the nadam version of SGD. For the early stopping we use a
training data U to validation data V split of 8 : 2.

4. To ensure consistency within the individual SGD runs across t ≥ 1, we use the
learned network parameter of loop t as initial value for loop t + 1. This ensures
monotonicity across the iterations in the log-likelihood and the loss function,
respectively, up to the fact that the random mini-batches in SGD may distort this
monotonicity.

5. To reduce the elements of randomness in SGD fitting we run this iteration
procedure 20 times with different seeds, and we output the nagging predictors
for μ̂

(t)
p (xi) and ϕ̂

(t)
p (xi) averaged over the 20 runs for every t in Table 11.5.

We iterate this algorithm over two loops, and the results are presented in Table 11.5.
We observe a decrease of −2	X(μ̂

(t)
p , ϕ̂

(t)
p) by iterating the fitting algorithm for t ≥

1. For AIC, we would have to correct twice the negative log-likelihood by twice

470 11 Selected Topics in Deep Learning

Table 11.5 Iteration of mean μ̂
(t)
p and dispersion ϕ̂

(t)
p estimation for the gamma model p = 2,

the power variance parameter p = 2.5 model and the inverse Gaussian model p = 3: the numbers
correspond to−2	X(μ̂

(t)
p , ϕ̂

(t)
p); the last line corrects −2	X(μ̂

(t)
p , ϕ̂

(t)
p) by 2·2·812 = 3′248 (twice

the number of parameters used in the mean and dispersion FN networks)

Iteration −2· log-likelihood
t Gamma p = 2 Power variance p = 2.5 Inverse Gaussian p = 3

(μ̂(1), ϕ̂(0)) 4’722’961 4’635’038 4’644’869

(μ̂(1), ϕ̂(1)) 4’702’247 4’622’097 4’617’593

(μ̂(2), ϕ̂(1)) 4’701’234 4’621’123 4’616’869

(μ̂(2), ϕ̂(2)) 4’700’686 4’620’845 4’616’588

“AIC” 4’703’978 4’624’137 4’619’880

the number of MLE estimated parameters. We also adjust here correspondingly,
though the correction is not justified by any theory, because we do not work with
the MLE nor do we have a parsimonious model for mean and dispersion estimation.
Nevertheless, we receive smaller values than in Table 11.1 which supports the use
of this more complex double FN network model.

Comparing the three power variance parameter models, we now give preference
to the inverse Gaussian model, as it has the biggest log-likelihood. Note that we
directly compare all power variance models as the complexity is equal in all models
(they only differ in the chosen power variance parameter) and the joint robustified
fitting applies the same stopping rule to all power variance parameter models. The
same result is obtained by comparing the out-of-sample log-likelihoods. Note that
we do not compare the deviance losses, here, because the unit deviances are not
designed to estimate parameters in vector-valued parameter families; we model
dispersion as a second parameter.

Next, we study the estimated dispersions ϕ̂p(xi) as a function of the estimated
means μ̂p(xi). We fit a spline to ϕ̂p(xi) as a function of μ̂p(xi), and we receive
estimates that almost perfectly match the cyan lines in Fig. 11.4. This provides
a proof of concept that the dispersion regression model finds the right level of
dispersion as a function of the expected means.

Using the mean and dispersion estimates, we can calculate the dispersion scaled
deviance residuals

rDi = sign(Xi − μ̂p(xi))

√
v

p−1
i d

(
Xi, μ̂p(xi)

)
/ϕ̂p(xi). (11.13)

This then allows us to give the Tukey–Anscombe plots for the three considered
power variance parameters.
The corresponding plots are given in Fig. 11.6; the difference to Fig. 11.4 is that
the latter considers unit dispersion whereas the former scales the residuals with
the rooted dispersion

√
ϕ̂p(xi); note that vi ≡ 1 in this example. By scaling with

the rooted dispersion the resulting deviance residuals rDi should roughly have unit
standard deviation. From Fig. 11.6 we observe that indeed this is the case, the cyan

11.1 Deep Learning Under Model Uncertainty 471

5 6 7 8 9 10

−
6

−
4

−
2

0
2

4
6

Tukey−Anscombe plot: gamma

logged fitted means

de
vi

an
ce

 r
es

id
ua

ls

−
6

−
4

−
2

0
2

4
6

de
vi

an
ce

 r
es

id
ua

ls

−
6

−
4

−
2

0
2

4
6

de
vi

an
ce

 r
es

id
ua

ls

residuals
average
2 std.dev.

5 6 7 8 9 10

Tukey−Anscombe plot: p=2.5

logged fitted means
5 6 7 8 9 10

Tukey−Anscombe plot: inverse Gaussian

logged fitted means

residuals
average
2 std.dev.

residuals
average
2 std.dev.

Fig. 11.6 Tukey–Anscombe plots giving the dispersion scaled deviance residuals rDi (11.13) of
the models jointly fitting the mean parameters μ̂p(xi) and the dispersion parameters ϕ̂p(xi): (lhs)
gamma model, (middle) power variance parameter p = 2.5 model, and (rhs) inverse Gaussian
models; the cyan lines correspond to 2 standard deviations

−10 −5 0 5 10

2
4

6
8

10
12

gamma model: fitted model vs. observations

simulation (log−scale)

ob
se

rv
at

io
ns

 (
lo

g−
sc

al
e)

0.
5

1.
0

1.
5

gamma model: estimated shape parameters

es
tim

at
ed

 s
ha

pe
 p

ar
am

et
er

s

2 4 6 8 10 12

2
4

6
8

10
12

inverse Gaussian: fitted model vs. observations

simulation (log−scale)

ob
se

rv
at

io
ns

 (
lo

g−
sc

al
e)

Fig. 11.7 (lhs) Gamma model: observations vs. simulations on log-scale, (middle) gamma model:
estimated shape parameters α̂

†
t = 1/ϕ̂2(x

†
t) < 1, 1 ≤ t ≤ T , and (rhs) inverse Gaussian model:

observations vs. simulations on log-scale

line shows a spline fit of twice the standard deviation of the deviance residuals rDi .
These splines are of magnitude 2 which verifies the unit standard deviation property.
Moreover, the cyan lines are roughly horizontal which indicates that the dispersion
estimation and the scaling works across all expected claim sizes μ̂p(xi). The three
different power variance parameters p = 2, 2.5, 3 show different behaviors in the
lower and upper tails in the residuals (centering around the orange horizontal zero
line in Fig. 11.6) which corresponds to the different distributional properties of the
chosen models.
We further analyze the gamma and the inverse Gaussian models. Note that the
analysis of the power variance models for general power variance parameters p �=
0, 1, 2, 3 is more difficult because neither the EDF density nor the EDF distribution
function have a closed form. To analyze the gamma and the inverse Gaussian models
we simulate observationsXsim

t , t = 1, . . . , T , from the estimated models (using the
out-of-sample features x

†
t of the test data T), and we compare them against the

true out-of-sample observations X
†
t . Figure 11.7 shows the results for the gamma

model (lhs) and the inverse Gaussian model (rhs) on the log-scale. A good fit has

472 11 Selected Topics in Deep Learning

been achieved if the black dots lie on the red diagonal line (in the colored version),
because then the simulated data shares similar features as the observed data. The fit
of the inverse Gaussian model seems reasonably good.

On the other hand, we see that the gamma model gives a poor fit, especially
in the lower tail. This supports the AIC values of Table 11.5. The problem with
the gamma model is that the data is more heavy-tailed than the gamma model can
accomplish. As a consequence, the dispersion parameter estimates ϕ̂2(x

†
t) in the

gammamodel are compensating for this by taking values bigger than 1. A dispersion
parameter bigger than 1 implies a shape parameter in the gamma model of α̂

†
t =

1/ϕ̂2(x
†
t) < 1, and the resulting gamma density is strictly decreasing, see Fig. 2.1. If

we simulate from this model we receive many observationsXsim
t close to zero (from

the strictly decreasing density). This can be seen from the lower-left part of the graph
in Fig. 11.7 (lhs), suggesting that we havemany observationswithX

†
t ∈ (0, 1), or on

the log-scale log(X†
t) < 0. However, the graph shows that this is not the case in the

real data. Figure 11.7 (middle) shows the boxplot of the estimated shape parameters
α̂
†
t on the test data, 1 ≤ t ≤ T , verifying that most insurance policies of the test data

T receive a shape parameter α̂
†
t less than 1.

We conclude that the inverse Gaussian double FN network model seems to work
well for this data, and we give preference to this model. �

11.1.4 Pseudo Maximum Likelihood Estimator

This short section gives a mathematical foundation to parameter estimation under
model uncertainty and model misspecification. We summarize the results of
Gourieroux et al. [168], and we refrain from giving any proofs in this section.
Assume that the real-valued observations Yi , 1 ≤ i ≤ n, have been generated by the
model

Yi = μζ0(xi) + εi, (11.14)

with (true) parameter ζ0 ∈ � ⊂ R
r , feature xi ∈ X ⊆ {1} × R

q , and where
the conditional distribution of the noise random variables (εi)1≤i≤n satisfies the
conditional independence property pε(ε1, . . . , εn|x1, . . . , xn) = ∏n

i=1 pε(εi |xi).
Denote by px(x) the portfolio distribution of the features x. Thus, under (11.14), the
claim Y of a randomly selected policy is generated by the joint probability measure
pε,x(ε, x) = pε(ε|x)px(x). The technical assumptions under which the following
statements hold are given in Assumption 11.9 at the end of this section.

Let F0(·|xi) denote the true conditional distribution of Yi , given xi . Typically,
this (true) conditional distribution is unknown. It is assumed to provide the first two
conditional moments

Eζ0 [Yi |xi] = μζ0(xi) and Varζ0 (Yi | xi) = σ 2
0 (xi).

11.1 Deep Learning Under Model Uncertainty 473

Thus, εi |xi
is assumed to be centered with conditional variance σ 2

0 (xi), see (11.14).
Our goal is to estimate the (true) parameter ζ0 ∈ �, based on the fact that the
conditional distribution F0(·|x) of the observations is unknown. Throughout we
assume parameter identifiability, i.e., if μζ1(x) = μζ2(x), px-a.s., then ζ1 = ζ2.
The following estimator is called pseudo maximum likelihood estimator (PMLE)

ζ̂ PMLE
n = argmin

ζ∈�

1

n

n∑
i=1

d(Yi , μζ (xi)), (11.15)

where d(y, μ) is the unit deviance of a (pre-chosen) single-parameter linear EDF
being parametrized by the same parameter space � ⊂ R

r as the original random
variables (11.14); note that � is not the effective domain � of the chosen EDF.
ζ̂ PMLE
n is called PMLE because it is a MLE for ζ0 ∈ �, but not in the right
model, because the pre-chosen EDF in (11.15) typically differs from the (unknown)
true conditional distribution F0(·|x). Nevertheless, we may hope to find the true
parameter ζ0, but possibly at a slower asymptotic rate. This is exactly what is going
to be stated in the next theorems.

Theorem 11.5 (Theorem 1 of Gourieroux et al. [168]) Denote by M = κ ′(�̊)

the dual mean parameter space of the pre-chosen EDF (having cumulant function
κ), and assume that μζ (x) ∈ M for all x ∈ X and ζ ∈ �. Let Assumption 11.9,
below, hold. The PMLE ζ̂ PMLE

n is strongly consistent for ζ0, i.e., it converges a.s. as
n → ∞.

This theorem tells us that we can perform MLE in a pre-chosen EDF (which may
differ from the true data model), and asymptotically we find the true parameter ζ0
of the data model F0(·|x). Of course, this uses the fact that any unit deviance d is
a strictly consistent loss function for mean estimation, see Theorem 4.19. We do
not only receive consistency, but the following theorem also gives us the rate of
convergence.

Theorem 11.6 (Theorem 3 of Gourieroux et al. [168]) Set the same assumptions
as in Theorem 11.5. The PMLE ζ̂ PMLE

n has the following asymptotic behavior

√
n
(̂
ζ PMLE
n − ζ0

)
�⇒ N

(
0,I∗(ζ0)−1�(ζ0)I∗(ζ0)−1

)
for n → ∞,

with the following matrices evaluated in ζ = ζ0

I∗(ζ) = Ex

[
I∗(ζ ; x)

] = Ex

[
J (ζ ; x)�κ ′′(h(μζ (x)))J (ζ ; x)

]
∈ R

r×r ,

�(ζ) = Ex

[
J (ζ ; x)�σ 2

0 (x)J (ζ ; x)
]

∈ R
r×r ,

474 11 Selected Topics in Deep Learning

where h = (κ ′)−1 is the canonical link of the pre-chosen EDF, and with the change
of variable ζ �→ θ = θ(ζ) = h(μζ (x)) ∈ �, for given feature x, having Jacobian

J (ζ ; x) =
(

∂

∂ζk

h(μζ (x))

)
1≤k≤r

= 1

κ ′′(h(μζ (x))

(∇ζ μζ (x)
)� ∈ R

1×r .

Remark that I∗(ζ) averages Fisher’s information I∗(ζ ; x) (of the chosen EDF)
over the feature distribution px . This theorem can be seen as a modification of (3.36)
to the regression case. Theorem 11.6 gives us the asymptotic normality of the
PMLE, and the resulting asymptotic variance depends on how well the pre-chosen
EDF matches the true data distribution F0(·|x). The following lemma corresponds
to Property 5 in Gourieroux et al. [168].

Lemma 11.7 The asymptotic variance in Theorem 11.6 has the lower bound, set
ζ = ζ0 and σ 2(x) = σ 2

0 (x),

I∗(ζ)−1�(ζ)I∗(ζ)−1 ≥ H(ζ) = Ex

[
∇ζ μζ (x)σ−2(x)

(∇ζ μζ (x)
)�]−1 ∈ R

r×r .

Proof We set τ 2(x) = κ ′′(h(μζ (x))). We have J (ζ ; x)� = ∇ζ μζ (x)τ−2(x). The
following matrix is positive semi-definite and it satisfies

Ex

[[
I∗(ζ)−1J (ζ ;x)� − H(ζ)J (ζ ;x)�τ2(x)σ−2(x)

]
σ 2(x)

×
[
I∗(ζ)−1J (ζ ;x)� − H(ζ)J (ζ ;x)�τ2(x)σ−2(x)

]�]
= I∗(ζ)−1�(ζ)I∗(ζ)−1 − H(ζ)I∗(ζ)I∗(ζ)−1 − I∗(ζ)−1I∗(ζ)H(ζ) + H(ζ)H(ζ)−1H(ζ)

= I∗(ζ)−1�(ζ)I∗(ζ)−1 − H(ζ).

This proves the claim. 	

Theorem 11.6 and Lemma 11.7 tell us that if we estimate the parameter ζ0 of

the unknown model F0(·|x) with PMLE based on a single-parameter linear EDF,
we receive minimal asymptotic variance if we can match the variance V (μζ0(x)) =
κ ′′(h(μζ0(x))) of the chosen EDF with the variance σ 2

0 (x) of the true data model.
E.g., if we know that the variance in the true model behaves as σ 2

0 (x) = μ3
ζ0

(x)

we should select the inverse Gaussian model with variance function V (μ) = μ3 for
PMLE.

If the members of the single-parameter linear EDF do not fully match the
variance structure of the true data, we can turn our attention to a dispersion submodel
as in Sect. 5.5.1. Assume for the variance structure of the true data

Varζ0(Yi |xi) = σ 2
0 (xi) = 1

vi

s2α0(xi),

11.1 Deep Learning Under Model Uncertainty 475

for a regression function x �→ s2α0(x) involving the (true) regression parameter α0
and exposures vi > 0. If we choose a fixed EDF, we have the log-likelihood function

(μ, ϕ) �→ 	Y (μ, ϕ; v) = v

ϕ
[Yh(μ) − κ(h(μ))] + a(y; v/ϕ).

Equating the variance structure of the true data model with the variance in this pre-
specified EDF, we obtain feature-dependent dispersion parameter

ϕ(xi) = s2α0(xi)

V (μζ0(xi))
, (11.16)

with variance function V (μ) = (κ ′′ ◦ h)(μ). The following theorem proposes a
two-step procedure for this estimation problem.

Theorem 11.8 (Theorem 4 of Gourieroux et al. [168]) Assume ζ̃n and α̃n are
strongly consistent estimators for ζ0 and α0, as n → ∞, such that

√
n(̃ζn − ζ0) and√

n(̃αn − α0) are bounded in probability. The quasi-generalized pseudo maximum
likelihood estimator (QPMLE) of ζ0 is obtained by

ζ̂QPMLE
n = arg max

ζ∈�

n∑
i=1

	Yi

(
μζ (xi),

s2α̃n
(xi)

V (μζ̃n
(xi))

; vi

)
.

Under Assumption 11.9, below, ζ̂
QPMLE
n is strongly consistent and best asymptoti-

cally normal, i.e.,

√
n
(̂
ζQPMLE
n − ζ0

)
�⇒ N (0,H(ζ0)) for n → ∞.

This justifies the approach(es) in the previous chapters and sections, though,
not fully, because we neither work with the MLE in FN networks nor do we
care about identifiability in parameters. Nevertheless, this short section suggests
to find strongly consistent estimators ζ̃n and α̃n for ζ0 and α0. This gives us a first
model calibration step that allows us to specify the dispersion structure x �→ ϕ(x)

via (11.16). Using this dispersion structure and the deviance loss function (4.9) for
a variable dispersion parameter ϕ(x), the QPMLE is obtained in the second step by,
we replace the likelihood maximization by the deviance loss minimization,

ζ̂QPMLE
n = argmin

ζ∈�

1

n

n∑
i=1

vi

s2α̃n
(xi)/V (μζ̃n

(xi))
d(Yi , μζ (xi)).

This QPMLE is best asymptotically normal, thus, asymptotically optimal within the
EDF. There might still be better estimators for ζ0, but these are outside the EDF.

476 11 Selected Topics in Deep Learning

If we turn M-estimation into Z-estimation we have the requirement for ζ , see
also (11.5),

1

n

n∑
i=1

vi

V (μζ̃n
(xi))

s2α̃n
(xi)

Yi − μζ (xi)

V (μζ (xi))
∇ζ μζ (xi)

!= 0.

Thus, it all boils down to find the right variance structure to receive the optimal
asymptotic behavior.

The previous statements hold true under the following technical assumptions.
These are taken fromAppendix 1 of Gourieroux et al. [167], and they are an adapted
version of the ones in Burguete et al. [61].

Assumption 11.9

(i) μζ (x) and d(y, μζ (x)) are continuous w.r.t. all variables and twice continu-
ously differentiable in ζ ;

(ii) � ⊂ R
r is a compact set and the true parameter ζ0 is in the interior of �;

(iii) almost every realization of (εi, xi) is a Cesàro sum generator w.r.t. the
probability measure pε,x(ε, x) = pε(ε|x)px(x) and to a dominating function
b(ε, x);

(iv) the sequence (xi)i is a Cesàro sum generator w.r.t. px and b(x) =∫
R

b(ε, x)dpε(ε|x);
(v) for each x ∈ {1} × R

q , there exists a neighborhood Nx ⊂ {1} × R
q such that

∫
R

sup
x′∈Nx

b(ε, x′) dpε(ε|x) < ∞;

(vi) the functions d(Y, μζ (x)), ∂d(Y, μζ (x))/∂ζk, ∂2d(Y, μζ (x))/∂ζk∂ζl are dom-
inated by b(ε, x).

11.2 Deep Quantile Regression

So far, in network regression modeling, we have not addressed the question of
prediction uncertainty. As mentioned in Remarks 4.2 on forecast evaluation, there
are different sources that contribute to prediction uncertainty. There is the model
and parameter estimation uncertainty, which may result in an inappropriate model
choice, and there is the irreducible risk which comes from the fact that we forecast
random variables which inherit a natural randomness that cannot be controlled.

We have discussed methods of evaluating model and parameter estimation error,
such as the asymptotic normality of MLEs within GLMs, and we have discussed
forecast dominance, the bootstrap method or the nagging predictor that allow
one to assess the different sources of prediction uncertainty. However, we have
not explicitly quantified these sources of uncertainty within the class of network

11.2 Deep Quantile Regression 477

regression models. We do an attempt in Sect. 11.4, below, by considering the
fluctuations generated by bootstrap simulations. The irreducible risk can be assessed
once we have a suitable statistical model; in Example 11.4 we have studied a
gamma and an inverse Gaussian model on an explicit data set, and these models
can be used, e.g., to calculate quantiles. In this section we consider a distribution-
free approach that directly estimates these quantiles. Recall from Section 5.8.3 that
quantiles are elicitable with the pinball loss as a strictly consistent loss function, see
Theorem 5.33. This allows us to directly estimate the quantiles from the data.

11.2.1 Deep Quantile Regression: Single Quantile

In this section we present a way of assessing the irreducible risk which does not
require a sophisticated model evaluation of distributional assumptions. Quantile
regression is increasingly used in the machine learning community because it is
a robust way of quantifying the irreducible risk, we refer to Meinshausen [270],
Takeuchi et al. [350] and Richman [314]. We recall that quantiles are elicitable
having the pinball loss as a strictly consistent loss function, see Theorem 5.33.
We define a FN network regression model that allows us to directly estimate the
quantiles based on the pinball loss. We therefore use an adapted version of the
R code of Listing 9 in Richman [314], this adapted version has been proposed in
Fissler et al. [130] to ensure that different quantiles respect monotonicity. For any
two quantile levels 0 < τ1 < τ2 < 1 we have

F−1(τ1) ≤ F−1(τ2), (11.17)

where F−1 denotes the generalized inverse of distribution function F , see (5.80).
If we simultaneously learn these quantiles for different quantile levels τ1 < τ2,
we need to enforce the network to respect this monotonicity (11.17). This can be
achieved by exploring a special network architecture in the output layer, and this is
going to be presented in the next section.

We start by considering a single deep τ -quantile regression for a quantile level
τ ∈ (0, 1). For datum (Y, x) we consider the regression function

x �→ F−1
Y |x(τ) = g−1〈βτ , z

(d :1)(x)〉, (11.18)

for a strictly monotone and smooth link function g, output parameter βτ ∈ R
qd+1,

and where x �→ z(d :1)(x) is a deep network. We add a lower index Y |x to the
generalized inverse F−1

Y |x to highlight that we consider the conditional distribution
of Y , given feature x ∈ X . In the case of a deep FN network, (11.18) involves
a network parameter ϑ = (w

(1)
1 , . . . ,w

(d)
qd

,βτ)
� that needs to be estimated. Of

course, the deep network architecture x �→ z(d :1)(x) could also involve any other
feature, such as CN or LSTM layers, embedding layers or a NLP text recognition

478 11 Selected Topics in Deep Learning

feature. This would change the network architecture, but it would not change
anything from a methodological viewpoint.

To estimate this regression parameter ϑ from independent data (Yi, xi), 1 ≤ i ≤
n, we consider the objective function

ϑ �→
n∑

i=1

Lτ

(
Yi, g

−1〈βτ , z
(d :1)(xi)〉

)
,

with the strictly consistent pinball loss function Lτ for the τ -quantile. Alternatively,
we could choose any other loss function satisfying Theorem 5.33, and we may try
to find the asymptotically optimal one (similarly to Theorem 11.8). We refrain from
doing so, but we mention Komunjer–Vuong [222]. Fitting the network parameter
ϑ is then done in complete analogy to finding an optimal network parameter for
network mean modeling. The only change is that we replace the deviance loss
function by the pinball loss, e.g., in Listing 7.3 we have to exchange the loss function
on line 5 correspondingly.

11.2.2 Deep Quantile Regression: Multiple Quantiles

We now turn our attention to the multiple quantile case that should satisfy the
monotonicity requirement (11.17) for any quantile levels 0 < τ1 < τ2 < 1.
A separate deep quantile estimation for both quantile levels, as described in the
previous section, may violate the monotonicity property, at least, in some part of
the feature space X , especially if the two quantile levels are close. Therefore, we
enforce the monotonicity by a special choice of the network architecture.

For simplicity, in the remainder of this section, we assume that the response Y is
positive, a.s. This implies for the quantiles τ �→ F−1

Y |x(τ) ≥ 0, and we should choose

a link function with g−1 ≥ 0 in (11.18). To ensure the monotonicity (11.17) for the
quantile levels 0 < τ1 < τ2 < 1, we choose a second positive link function with
g−1+ ≥ 0, and we set for multi-task forecasting

x �→
(
F−1

Y |x(τ1), F−1
Y |x(τ2)

)�
(11.19)

=
(
g−1〈βτ1

, z(d:1)(x)〉, g−1〈βτ1
, z(d:1)(x)〉 + g−1+ 〈βτ2

, z(d:1)(x)〉
)� ∈ R

2+,

for a regression parameter ϑ = (w
(1)
1 , . . . ,w

(d)
qd

,βτ1
,βτ2

)�. The positivity g−1+ ≥ 0
enforces the monotonicity in the two quantiles.We call (11.19) an additive approach
as we start from a base level characterized by the smaller quantile F−1

Y |x(τ1), and any
bigger quantile is modeled by an additive increment. To ensure monotonicity for
multiple quantiles we proceed recursively by choosing the lowest quantile as the
initial base level.

11.2 Deep Quantile Regression 479

We can also consider the upper quantile as the base level by multiplicatively
lowering this upper quantile. Choose the (sigmoid) function g−1

σ ∈ (0, 1) and set
for the multiplicative approach

x �→
(
F−1

Y |x(τ1), F−1
Y |x(τ2)

)�
(11.20)

=
(
g−1

σ 〈βτ1
, z(d :1)(x)〉 g−1〈βτ2

, z(d :1)(x)〉, g−1〈βτ2
, z(d :1)(x)〉

)� ∈ R
2+.

Remark 11.10 In (11.19) and (11.20) we directly enforce the monotonicty by a
corresponding regression function choice. Alternatively, we can also design a (plain-
vanilla) multi-output network

x �→
(
F−1

Y |x(τ1), F−1
Y |x(τ2)

)�
(11.21)

=
(
g−1〈βτ1

, z(d :1)(x)〉, g−1〈βτ2
, z(d :1)(x)〉

)� ∈ R
2+.

If we just use a classical SGD fitting algorithm, we will likely result in a situation
where the monotonicity will be violated in some part of the feature space. Kellner
et al. [211] consider this problem. They add a penalization (regularization term) that
punishes during SGD training network parameters that violate the monotonicity.
Such a penalization can be constructed, e.g., with the ReLU function.

11.2.3 Lab: Deep Quantile Regression

We revisit the Swiss accident insurance data of Sect. 11.1.2, and we provide an
example of a deep quantile regression using both the additive approach (11.19) and
the multiplicative approach (11.20).
We select 5 different quantile levels Q = (τ1, τ2, τ3, τ4, τ5) = (10%, 25%, 50%,

75%, 90%). We start with the additive approach (11.19). It requires to set τ1 =
10% as the base level, and the remaining quantile levels are modeled additively in
a recursive way for τj < τj+1, 1 ≤ j ≤ 4. The corresponding R code is given on
lines 8–20 of Listing 11.3, and this compiles to the 5-dimensional output on line 22.
For the multiplicative approach (11.20) we set τ5 = 90% as the base level, and the
remaining quantile levels are receivedmultiplicatively in a recursive way for τj+1 >

τj , 4 ≥ j ≥ 1, see Listing 11.4. The additive and the multiplicative approaches take
the extreme quantiles as initialization. One may also be interested in initializing the
model in the median τ3 = 50%, the smaller quantiles can then be received by the
multiplicative approach and the bigger quantiles by the additive approach. We also
explore this case and we call it the mixed approach.

480 11 Selected Topics in Deep Learning

Listing 11.3 Multiple FN quantile regression: additive approach

1 Design = layer_input(shape = c(q0), dtype = ’float32’, name = ’Design’)
2 #
3 Network = Design %>%
4 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
5 layer_dense(units=15, activation=’tanh’, name=’FNLayer2’) %>%
6 layer_dense(units=10, activation=’tanh’, name=’FNLayer3’)
7 #
8 q1 = Network %>% layer_dense(units=1, activation=’exponential’)
9 #
10 q20 = Network %>% layer_dense(units=1, activation=’exponential’)
11 q2 = list(q1,q20) %>% layer_add()
12 #
13 q30 = Network %>% layer_dense(units=1, activation=’exponential’)
14 q3 = list(q2,q30) %>% layer_add()
15 #
16 q40 = Network %>% layer_dense(units=1, activation=’exponential’)
17 q4 = list(q3,q40) %>% layer_add()
18 #
19 q50 = Network %>% layer_dense(units=1, activation=’exponential’)
20 q5 = list(q4,q50) %>% layer_add()
21 #
22 model = keras_model(inputs = list(Design), outputs = c(q1,q2,q3,q4,q5))

Listing 11.4 Multiple FN quantile regression: multiplicative approach

1 q5 = Network %>% layer_dense(units=1, activation=’exponential’)
2 #
3 q40 = Network %>% layer_dense(units=1, activation=’sigmoid’)
4 q4 = list(q5,q40) %>% layer_multiply()
5 #
6 q30 = Network %>% layer_dense(units=1, activation=’sigmoid’)
7 q3 = list(q4,q30) %>% layer_multiply()
8 #
9 q20 = Network %>% layer_dense(units=1, activation=’sigmoid’)
10 q2 = list(q3,q20) %>% layer_multiply()
11 #
12 q10 = Network %>% layer_dense(units=1, activation=’sigmoid’)
13 q1 = list(q2,q10) %>% layer_multiply()

Listing 11.5 Fitting a multiple FN quantile regression

1 Q_loss1 = function(y_true, y_pred){k_mean(k_maximum(y_true - y_pred, 0) * 0.1
2 + k_maximum(y_pred - y_true, 0) * (1 - 0.1))}
3 Q_loss2 = function(y_true, y_pred){k_mean(k_maximum(y_true - y_pred, 0) * 0.25
4 + k_maximum(y_pred - y_true, 0) * (1 - 0.25))}
5 Q_loss3 = function(y_true, y_pred){k_mean(k_maximum(y_true - y_pred, 0) * 0.5
6 + k_maximum(y_pred - y_true, 0) * (1 - 0.5))}
7 Q_loss4 = function(y_true, y_pred){k_mean(k_maximum(y_true - y_pred, 0) * 0.75
8 + k_maximum(y_pred - y_true, 0) * (1 - 0.75))}
9 Q_loss5 = function(y_true, y_pred){k_mean(k_maximum(y_true - y_pred, 0) * 0.9
10 + k_maximum(y_pred - y_true, 0) * (1 - 0.9))}
11 #
12 model %>% compile(loss = list(Q_loss1,Q_loss2,Q_loss3,Q_loss4,Q_loss5),
13 optimizer = ’nadam’)

11.2 Deep Quantile Regression 481

These network architectures are fitted to the data using the pinball loss (5.81) for the
quantile levels of Q; note that the pinball loss requires the assumption of having a
finite first moment. Listing 11.5 shows the choice of the pinball loss functions. We
then fit the three architectures (additive, multiplicative and mixed) to our learning
data L, and we apply early stopping to prevent from over-fitting. Moreover, we
consider the nagging predictor over 20 runs with different seeds to reduce the
randomness coming from SGD fitting.
In Table 11.6 we give the out-of-sample pinball losses on the test data T of the three
considered approaches, and illustrating the 5 quantile levels ofQ. The losses of the
three approaches are rather close, giving a slight preference to the mixed approach,
but the other two approaches seem to be competitive, too. We further analyze these
quantile regression models by considering the empirical coverage ratios defined by

τ̂j = 1

T

T∑
t=1

1{
Y
†
t ≤F̂−1

Y |x†t
(τj)

}, (11.22)

where F̂−1
Y |x†

t

(τj) is the estimated quantile for level τj and feature x
†
t . Remark that the

coverage ratios (11.22) correspond to the identification functions that are essentially
the derivatives of the pinball losses, we refer to Dimitriadis et al. [106]. Table 11.7
reports these out-of-sample coverage ratios on the test data T . From these results
we conclude that on the portfolio level the quantiles are matched rather well.
In Fig. 11.8 we illustrate the estimated out-of-sample quantiles F̂−1

Y |x†
t

(τj) for

individual claims on the quantile levels τj ∈ {10%, 25%, 50%, 75%, 90%} (cyan,
blue, black, blue, cyan colors) using the mixed approach. The x-axis considers
the logged estimated medians F̂−1

Y |x†
t

(50%). We observe heteroskedasticity resulting

in quantiles that are not ordered w.r.t. the median (black line). This supports the
multiple deep quantile regression model because we cannot (simply) extrapolate the
median to receive the other quantiles.
In the final step we compare the estimated quantiles F̂−1

Y |x(τj) from the mixed deep
quantile regression approach to the ones that can be calculated from the fitted
inverse Gaussian model using the double FN network approach of Example 11.4.
In the latter model we estimate the mean μ̂(x) and the dispersion ϕ̂(x) with two
FN networks, which then allow us to calculate the quantiles using the inverse
Gaussian distributional assumption. Note that we cannot calculate the quantiles
in Tweedie’s family with power variance parameter p = 2.5 because there is no

Table 11.6 Out-of-sample pinball losses of quantile regressions using the additive, the multi-
plicative and the mixed approaches; nagging predictors over 20 different seeds

Out-of-sample losses on T
10% 25% 50% 75% 90%

Additive approach 171.20 412.78 765.60 988.78 936.31

Multiplicative approach 171.18 412.87 766.04 988.59 936.57

Mixed approach 171.15 412.55 764.60 988.15 935.50

482 11 Selected Topics in Deep Learning

Table 11.7 Out-of-sample coverage ratios τ̂j below the estimated deep FN quantile estimates
F̂ −1

Y |x†
t

(τj)

Out-of-sample coverage ratios

10% 25% 50% 75% 90%

Additive approach 10.27% 25.30% 50.19% 75.08% 90.03%

Multiplicative approach 10.18% 25.15% 49.64% 75.14% 90.22%

Mixed approach 10.13% 25.03% 50.32% 75.20% 90.08%

Fig. 11.8 Estimated
out-of-sample quantiles
F̂ −1

Y |x†
t

(τj) of 2’000 randomly

selected individual claims on
the quantile levels τj ∈
{10%, 25%, 50%, 75%, 90%}
(cyan, blue, black, blue, cyan
colors) using the mixed
approach, the red dots are the
out-of-sample observations
Y
†
t ; the x-axis gives

logF̂ −1
Y |x†

t

(50%) (also

corresponding to the black
diagonal line) 5 6 7 8 9

2
4

6
8

10
12

14

quantiles on individual claims

logged estimated median

cl
ai

m
s

on
 lo

g−
sc

al
e

observation
median
25%/75% quantile
10%/90% quantile

closed form of the distribution function. Figure 11.9 compares the two approaches
on the quantile levels ofQ. Overall we observe a reasonably good match though it is
not perfect. The small quantiles for level τ1 = 10% seem slightly under-estimated
by the inverse Gaussian approach (see Fig. 11.9 (top-left)), whereas big quantiles
τ4 = 75% and τ5 = 90% seem more conservative in the inverse Gaussian approach
(see Fig. 11.9 (bottom)). This may indicate that the inverse Gaussian distribution
does not fully fit the data, i.e., that one cannot fully recover the true quantiles
from the mean μ̂(x), the dispersion ϕ̂(x) and an inverse Gaussian assumption.
There are two ways to further explore these issues. One can either choose other
distributional assumptions which may better match the properties of the data, this
further explores the distributional approach. Alternatively, Theorem 5.33 allows us
to choose loss functions different from the pinball loss, i.e., one could consider
different increasing functions G in that theorem to further explore the distribution-
free approach. In general, any increasing choice of the function G leads to a strictly
consistent quantile estimation (this is an asymptotic statement), but these choices
may have different finite sample properties. Following Komunjer–Vuong [222], we
can determine asymptotically efficient choices for G. This would require feature
dependent choices Gxi (y) = FY |xi (y), where FY |x i is the (true) distribution of
Yi , conditionally given xi . This requires the knowledge of the true distribution,
and Komunjer–Vuong [222] derive asymptotic efficiency when replacing this true

11.3 Deep Composite Model Regression 483

4 5 6 7

4
5

6
7

estimated 0.1−quantile

quantile regression (log−scale)

in
ve

rs
e

G
au

ss
ia

n
(lo

g−
sc

al
e)

4 5 6 7 8 9

4
5

6
7

8
9

estimated 0.25−quantile

quantile regression (log−scale)
in

ve
rs

e
G

au
ss

ia
n

(lo
g−

sc
al

e)

5 6 7 8 9 10

5
6

7
8

9
10

estimated 0.5−quantile

quantile regression (log−scale)

in
ve

rs
e

G
au

ss
ia

n
(lo

g−
sc

al
e)

5 6 7 8 9 10 11

5
6

7
8

9
10

11

estimated 0.75−quantile

quantile regression (log−scale)

in
ve

rs
e

G
au

ss
ia

n
(lo

g−
sc

al
e)

6 7 8 9 10 11 12

6
7

8
9

10
11

12

estimated 0.9−quantile

quantile regression (log−scale)

in
ve

rs
e

G
au

ss
ia

n
(lo

g−
sc

al
e)

Fig. 11.9 Inverse Gaussian quantiles vs. deep quantile regression estimates of 2’000 randomly
selected claims on the quantile levels of Q = (10%, 25%, 50%, 75%, 90%)

distribution by a non-parametric estimator, this is in spirit similar to Theorem 11.8.
We refrain from giving more details but refer to the corresponding paper.

11.3 Deep Composite Model Regression

We have established a deep quantile regression in the previous section. Next we
jointly estimate quantiles and conditional tail expectations (CTEs), leading to a
composite regression model that has a splicing point determined by a quantile level;
for composite modelswe refer to Sect. 6.4.4. This is exactly the proposal of Fissler et
al. [130] which we are going to present in this section. Note that having a composite
model allows us to have different distributions and regression structures below and
above the splicing point, e.g., we can have a more heavy-tailed model in the upper
tail using a different feature engineering from the main body of the data.

11.3.1 Joint Elicitability of Quantiles and Expected Shortfalls

In the previous examples we have seen that the distributional models may misesti-
mate the true tail of the data because model fitting often pays more attention to an

484 11 Selected Topics in Deep Learning

accurate model fit in the main body of the data. An idea is to directly estimate this
tail in a distribution-free way by considering the (upper) CTE

CTE+
τ (Y |x) = E

[
Y

∣∣∣Y > F−1
Y |x(τ), x

]
, (11.23)

for a given quantile level τ ∈ (0, 1). The problem with (11.23) is that this is not an
elicitable quantity, i.e., there is no loss/scoring function that is strictly consistent for
the CTE functional.

If the distribution function FY |x is continuous, we can rewrite the upper CTE as
follows, see Lemma 2.16 in McNeil et al. [268] and (11.35) below,

CTE+
τ (Y |x) = ES+

τ (Y |x) = 1

1 − τ

∫ 1

τ

F−1
Y |x(p) dp ≥ F−1

Y |x(τ). (11.24)

This second object ES+
τ (Y |x) is called the upper expected shortfall (ES) of Y , given

x, on the security level τ . Fissler–Ziegel [131] and Fissler et al. [132] have proved
that ES+

τ (Y |x) is jointly elicitable with the τ -quantile F−1
Y |x(τ). That is, there is a

strictly consistent bivariate loss function that allows one to jointly estimate the τ -
quantile and the corresponding ES. In fact, Corollary 5.5 of Fissler–Ziegel [131]
give the full characterization of the strictly consistent bivariate loss functions for
the joint elicitability of the τ -quantile and the ES; note that Fissler–Ziegel [131]
use a different sign convention. This result is used in Guillén et al. [175] for the
joint estimation of the quantile and the ES within a GLM. Guillén et al. [175] use a
two-step approach to fit the quantile and the ES.

Fissler et al. [130] extend the results of Fissler–Ziegel [131], allowing for the
joint estimation of the composite triplet consisting of the lower ES, the τ -quantile
and the upper ES. This gives us a compositemodel that has the τ -quantile as splicing
point. The beauty of this approach is that we can fit (in one step) a deep learning
model to the upper and the lower ES, and perform a (potentially different) regression
in both parts of the distribution. The lower CTE and the lower ES are defined by,
respectively,

CTE−
τ (Y |x) = E

[
Y

∣∣∣Y ≤ F−1
Y |x(τ), x

]
,

and

ES−
τ (Y |x) = 1

τ

∫ τ

0
F−1

Y |x(p) dp ≤ F−1
Y |x(τ).

Again, in case of a continuous distribution function FY |x we have the following
identity CTE−

τ (Y |x) = ES−
τ (Y |x). From the lower and upper CTEs we receive the

mean of Y , given x, by

μ(x) = E[Y |x] = τ CTE−
τ (Y |x) + (1 − τ)CTE+

τ (Y |x). (11.25)

11.3 Deep Composite Model Regression 485

We introduce the auxiliary scoring functions

S−
τ (y, a) = (

1{y≤a} − τ
)
a − 1{y≤a}y,

S+
τ (y, a) = (

1 − τ − 1{y>a}
)
a + 1{y>a}y = S−

τ (y, a) + y,

for y, a ∈ R and for τ ∈ (0, 1). These auxiliary functions consider only the part
of the pinball loss (5.81) that depends on action a, and we get the pinball loss as
follows

Lτ (y, a) = S−
τ (y, a) + τy = S+

τ (y, a) − (1 − τ)y.

Therefore, all three functions provide strictly consistent scoring functions for the
τ -quantile, but only the pinball loss satisfies the calibration property (L0) on page
92.

For the following theorem we recall the general definition of the τ -quantile
Qτ(FY |x) of a distribution function FY |x , see (5.82).

Theorem 11.11 (Theorem 2.8 of Fissler et al. [130], Without Proof) Choose τ ∈
(0, 1) and let F contain only distributions with a finite first moment, and being
supported in the interval C ⊆ R. The loss function L : C × C3 → R+ of the form

L(y; e−, q, e+) = (G(y) − G(q))
(
τ − 1{y≤q}

)
(11.26)

+
〈
∇�(e−, e+),

(
e− + 1

τ
S−

τ (y, q)

e+ − 1
1−τ

S+
τ (y, q)

)〉
− �(e−, e+) + �(y, y),

is strictly consistent for the composite triplet (ES−
τ ,Qτ ,ES+

τ) relative to the class
F , if � is strictly convex with (sub-)gradient ∇� such that for all (e−, e+) ∈ C2

the function

q �→ Ge−,e+(q) = G(q) + 1

τ

∂

∂e− �(e−, e+)q − 1

1 − τ

∂

∂e+ �(e−, e+)q,

(11.27)

is strictly increasing, and if EF [|G(Y)|] < ∞, EF [|�(Y, Y)|] < ∞ for all Y ∼
F ∈ F .

This opens the door for regression modeling of CTEs for continuous distribution
functions FY |x , x ∈ X . Namely, we can choose a regression function ξϑ with a
three-dimensional output

x ∈ X �→ ξϑ (x) ∈ C3,

486 11 Selected Topics in Deep Learning

depending on a regression parameter ϑ . This regression function is now used to
describe the composite triplet (ES−

τ (Y |x), F−1
Y |x(τ),ES+

τ (Y |x)). Having i.i.d. data
(Yi, x i), 1 ≤ i ≤ n, it can be fitted by solving

ϑ̂ = argmin
ϑ

1

n

n∑
i=1

L (Yi; ξϑ (xi)) , (11.28)

with loss function L given by (11.26). This then provides us with the estimates for
the composite triplet

x �→ ξϑ̂ (x) =
(
ÊS

−
τ (Y |x), F̂−1

Y |x(τ), ÊS
+
τ (Y |x)

)
.

There remains the choice of the functions G and � , such that � is strictly convex
and Ge−,e+ , defined in (11.27), is strictly increasing. Section 2.3 in Fissler et
al. [130] discusses possible choices. A simple choice is to select the identity function
G(y) = y (which gives the pinball loss on the first line of (11.26)) and

�(e−, e+) = ψ1(e
−) + ψ2(e

+),

with ψ1 and ψ2 strictly convex and with (sub-)gradients ψ ′
1 > 0 and ψ ′

2 < 0.
Inserting this choice into (11.26) provides the loss function

L(y; e−, q, e+) =
[
1 + ψ ′

1(e
−)

τ
+ −ψ ′

2(e
+)

1 − τ

]
Lτ (y, q)+Dψ1(y, e−)+Dψ2 (y, e+),

(11.29)

where Lτ (y, q) is the pinball loss (5.81) and Dψ1 and Dψ2 are Bregman diver-
gences (2.28). There remains the choices of ψ1 and ψ2 which should be strictly
convex, the first one being strictly increasing and the second one being strictly
decreasing.

We restrict ourselves to strictly convex functions ψ on the positive real line R+,
i.e., for positive claims Y > 0, a.s. For b ∈ R, we consider the following functions
on R+

ψ(b)(y) =

⎧⎪⎪⎨
⎪⎪⎩

1
b(b−1)y

b for b �= 0 and b �= 1,

−1 − log(y) for b = 0,

ylog(y) − y for b = 1.

(11.30)

11.3 Deep Composite Model Regression 487

We compute the first and second derivatives. These are for y > 0 given by

∂

∂y
ψ(b)(y) =

{
1

b−1y
b−1 for b �= 1,

log(y) for b = 1,
and

∂2

∂y2ψ(b)(y) = yb−2 > 0.

Thus, for any b ∈ R we have a convex function, and this convex function is
decreasing on R+ for b < 1 and increasing for b > 1. Therefore, we have to select
b > 1 for ψ1 and b < 1 for ψ2 to get suitable choices in (11.29). Interestingly,
these choices correspond to Lemma 11.2 with power variance parameters p =
2− b, i.e., they provide us with Bregman divergences from Tweedie’s distributions.
However, (11.30) is more general, because it allows us to select any b ∈ R,
whereas for power variance parameters p ∈ (0, 1) there do not exist any Tweedie’s
distributions, see Theorem 2.18.

In view of Lemma 11.2 and using the fact that unit deviances dp are Bregman
divergences, we select a power variance parameter p = 2 − b > 1 for ψ2 and we
select the Gaussian model p = 2 − b = 0 for ψ1. This gives us the special choice
for the loss function (11.29) for strictly positive claims Y > 0, a.s.,

L(y; e−, q, e+) =
[
1 + η1 e−

τ
+ η2 (e+)1−p

(1 − τ)(p − 1)

]
Lτ (y, q) + η1

2
d0(y, e−) + η2

2
dp(y, e+),

(11.31)

with the Gaussian unit deviance d0(y, e−) = (y −e−)2 and Tweedie’s unit deviance
dp with power variance parameter p > 1, see Sect. 11.1.1. The additional constants
η1, η2 > 0 are used to balance the contributions of the individual terms to the total
loss. Typically, we choose p ≥ 2 for the upper ES reflecting claim size models.
This choice for ψ2 implies that the residuals are weighted inversely proportional
to the corresponding variances μp within Tweedie’s family, see (11.5). Using
this loss function (11.31) in (11.28) allows us to estimate the composite triplet
(ES−

τ (Y |x), F−1
Y |x(τ),ES+

τ (Y |x)) with a strictly consistent loss function.

11.3.2 Lab: Deep Composite Model Regression

The joint elicitability of Theorem 11.11 allows us to directly estimate these
functionals for a fixed quantile level τ ∈ (0, 1). In a similar way to quantile
regression we set up a FN network that respects the monotonicity ES−

τ (Y |x) ≤

488 11 Selected Topics in Deep Learning

F−1
Y |x(τ) ≤ ES+

τ (Y |x). We set for the regression function in the additive approach
for multi-task learning

x �→
(
ES−

τ (Y |x), F−1
Y |x (τ), ES+

τ (Y |x)
)�

=
(
g−1〈β1, z

(d:1)(x)〉, g−1〈β1, z
(d:1)(x)〉 + g−1+ 〈β2, z

(d:1)(x)〉, (11.32)

g−1〈β1, z
(d:1)(x)〉 + g−1+ 〈β2, z

(d:1)(x)〉 + g−1+ 〈β3, z
(d:1)(x)〉

)� ∈ A,

for link functions g and g+ with g−1+ ≥ 0, deep FN network z(d :1) : R
q0+1 →

R
qd+1, regression parameters β1,β2,β3 ∈ R

qd+1, and with the action space
A = {(e−, q, e+) ∈ R

3+; e− ≤ q ≤ e+} for positive claims. We also remind of
Remark 11.10 for a different way of modeling the monotonicity.

Fitting this model is similar to the multiple deep quantile regression presented
in Listings 11.3 and 11.5. There is one important difference though. Namely, we
do not have multiple outputs and multiple loss functions, but we have a three-
dimensional output with a single loss function (11.31) simultaneously evaluating all
three components of the output (11.32). Listing 11.6 gives this loss for the inverse
Gaussian case p = 3 in (11.31).

Listing 11.6 Loss function (11.31) for p = 3

1 Bregman_IG = function(y_true, y_pred){
2 k_mean((k_maximum(y_true[,1]-y_pred[,2],0)*tau0 +
3 k_maximum(y_pred[,2]-y_true[,1],0)*(1-tau0)) *
4 (1 + eta1*y_pred[,1]/tau0 + eta2*y_pred[,3]^(-2)/(2*(1-tau0))) +
5 eta1*(y_true[,1]-y_pred[,1])^2/2 +
6 eta2*((y_true[,1]-y_pred[,3])^2/(y_pred[,3]^2*y_true[,1]))/2)}

We revisit the Swiss accident insurance data of Sect. 11.2.3. We again use a FN
network of depth d = 3 with (q1, q2, q3) = (20, 15, 10) neurons, hyperbolic
tangent activation, two-dimensional embedding layers for the categorical features,
exponential output activations for g−1 and g−1+ , and the additive structure (11.32).
We implement the loss function (11.31) for quantile level τ = 90% and with power
variance parameter p = 3, see Listing 11.6. This implies that for the upper ES
estimation we scale residuals with V (μ) = μ3, see (11.5). We then run an initial
calibration of this FN network. Based on this initial calibration we can calculate
the three loss contributions in (11.31) coming from the composite triplet. Based on
these figures we choose the constants η1, η2 > 0 in (11.31) so that all three terms
of the composite triplet contribute equally to the total loss. For the remainder of our
calibration we hold on to these choices of η1 and η2.

We calibrate this deep FN architecture to the learning data L, using the strictly
consistent loss function (11.31) for the composite triplet (ES−

90%(Y |x), F−1
Y |x(90%),

ES+
90%(Y |x)), and to reduce the randomness in prediction we average over 20 early

stopped SGD calibrations with different seeds (nagging predictor).

11.3 Deep Composite Model Regression 489

Fig. 11.10 Comparison of
the estimated lower
ÊS

−
90%(Y |x†

t) and the

estimated upper ÊS
+
90%(Y |x†

t)

against the estimated
90%-quantile F̂ −1

Y |x†
t

(90%) in

the deep composite regression

6 8 10 12

6
8

10
12

deep composite model regression

90%−quantile (log−scale)

lo
w

er
 &

 u
pp

er
 E

S
 (

lo
g−

sc
al

e)

lower ES
upper ES
spline fits
diagonal

Figure 11.10 shows the estimated lower and upper ES against the corresponding
90%-quantile estimates for 2’000 randomly selected insurance claims x

†
t . The

diagonal orange line shows the estimated 90%-quantiles F̂−1
Y |x†

t

(90%), and the cyan

lines give spline fits to the estimated lower and upper ES. It is clearly visible that
these respect the ordering

ÊS
−
90%(Y |x†

t) ≤ F̂−1
Y |x†

t

(90%) ≤ ÊS
+
90%(Y |x†

t),

for fixed features x
†
t ∈ X .

The deep quantile regression has been back-tested using the coverage
ratios (11.22). Back-testing the ES is more difficult, the standalone ES is not
elicitable, and the ES can only be back-tested jointly with the corresponding
quantile. The part of the joint identification function that corresponds to the ES is
given by, see (4.2)–(4.3) in Fissler et al. [130],

v̂− = 1

T

T∑
t=1

ÊS
−
τ (Y |x†

t) −
Y
†
t 1
{
Y
†
t ≤F̂−1

Y |x†t
(τ)

} + F̂−1
Y |x†

t

(τ)

(
τ − 1{

Y
†
t ≤F̂−1

Y |x†t
(τ)

})

τ
,

(11.33)

and

v̂+ = 1

T

T∑
t=1

ÊS
+
τ (Y |x†

t) −
Y
†
t 1
{
Y
†
t >F̂−1

Y |x†t
(τ)

} + F̂−1
Y |x†

t

(τ)

(
1{

Y
†
t ≤F̂−1

Y |x†t
(τ)

} − τ

)

1 − τ
.

(11.34)
These (empirical) identifications should be close too zero if the model fits the data.

490 11 Selected Topics in Deep Learning

Remark that the latter terms in (11.33)–(11.34) describe the lower and upper
ES also in the case of non-continuous distribution functions because we have the
identity

ES−
τ (Y |x) = 1

τ

(
E

[
Y1{

Y≤F−1
Y |x(τ)

}∣∣∣∣ x
]

+ F−1
Y |x(τ)

(
τ − FY |x

(
F−1

Y |x(τ)
)))

,

(11.35)

the second term being zero for a continuous distribution FY |x , but it is needed for
non-continuous distribution functions.

We compare the deep composite regression results of this section to the deep
gamma and inverse Gaussian models using a double FN network for dispersion
modeling, see Sect. 11.1.3. This requires to calculate the ES in the gamma and the
inverse Gaussian models. This can be done within the EDF, see Landsman–Valdez
[233]. The upper ES in the gamma model Y ∼ �(α, β) is given by, see (6.47),

E

[
Y

∣∣∣Y > F−1
Y (τ)

]
= α

β

⎛
⎝1 − G

(
α + 1, βF−1

Y (τ)
)

1 − τ

⎞
⎠ ,

where G is the scaled incomplete gamma function (6.48) and F−1
Y (τ) is the τ -

quantile of �(α, β).
Example 4.3 of Landsman–Valdez [233] gives the inverse Gaussian case (2.8)

with α, β > 0

E

[
Y

∣∣∣Y > F−1
Y (τ)

]
= α

β

(
1 + 1/α

1 − τ

√
F−1

Y (τ)ϕ(z(1)
τ)

)

+ α

β

1/α

1 − τ
e2αβ

(
2α�(−z(2)

τ) −
√

F−1
Y (τ)ϕ(−z(2)

τ)

)
,

where ϕ and � are the standard Gaussian density and distribution, respectively,
F−1

Y (τ) is the τ -quantile of the inverse Gaussian distribution and

z(1)
τ = α√

F−1
Y (τ)

(
F−1

Y (τ)

α/β
− 1

)
and z(2)

τ = α√
F−1

Y (τ)

(
F−1

Y (τ)

α/β
+ 1

)
.

This now allows us to calculate the identifications (11.33)–(11.34) in the fitted
deep double networks using the gamma and the inverse Gaussian distributions of
Sect. 11.1.3.
Table 11.8 shows the out-of-sample coverage ratios and the identifications of the
deep composite regression and the two distributional approaches. These figures
suggest that the gamma model is not competitive; the deep composite model has
the most precise coverage ratio. In terms of the ES identification terms, the deep

11.3 Deep Composite Model Regression 491

Table 11.8 Out-of-sample coverage ratios τ̂ and identifications v̂− and v̂+ of the deep composite
regression model and the deep double networks in the gamma and inverse Gaussian cases

Coverage Lower ES Upper ES

ratio identification identification

τ = 90% v̂− v̂+
Deep composite model 90.12% 32.9 -143.5

Deep double network gamma 93.51% 356.6 -2’409.0

Deep double network inverse Gaussian 92.56% −13.0 115.1

Fig. 11.11 Comparison of
the estimated means from the
deep double inverse Gaussian
model and the deep
composite model (11.25)

0 5000 15000 25000

0
50

00
15

00
0

25
00

0

deep double IG vs. composite model

estimate deep double inverse Gauss

es
tim

at
e

de
ep

 c
om

po
si

te
 m

od
el

composite model and the double network with inverse Gaussian claim sizes are
comparably accurate (out-of-sample) determining the lower and upper 90% ES.
Finally, we paste the lower and upper ES from the deep composite regression
model according to (11.25). This gives us an estimated mean (under a continuous
distribution function)

μ̂(x) = Ê[Y |x] = τ ÊS
−
τ (Y |x) + (1 − τ) ÊS

+
τ (Y |x).

Figure 11.11 compares these estimates of the deep composite regression model
to the deep double inverse Gaussian model estimates. The black dots show 2’000
randomly selected claims x

†
t , and the cyan line gives a spline fit to all out-of-sample

claims in T . The body of the estimates is rather similar in both approaches but the
deep composite approach provides more large estimates, the dotted orange lines
show the maximum estimate from the deep double inverse Gaussian model.

We conclude that in the case where no member of the EDF reflects the properties
of the data in the tail, the deep composite regression approach presented in this
section provides an alternative method for mean estimation that allows for separate
models in the main body and the tail of the data. Fixing the quantile level allows
for a straightforward fitting in one step, this is in contrast to the composite models
where we fix the splicing point. The latter approaches are more difficult in fitting,
e.g., using the EM algorithm.

492 11 Selected Topics in Deep Learning

11.4 Model Uncertainty: A Bootstrap Approach

As described in Sect. 4, there are different sources of prediction uncertainty when
forecasting random variables. There is the irreducible risk that comes from the fact
that we try to predict random variables. This source of uncertainty is always present,
even if we know the true data generating mechanism, i.e., it is irreducible. In most
applied situations we do not know the true data generating mechanism which results
in additional prediction uncertainty. Within GLMs this source of uncertainty has
mainly been allocated to parameter estimation uncertainty deriving from the fact that
we estimate the parameters from a finite sample, we refer to Sects. 3.4 and 11.1.4
on asymptotic results. In network modeling, the situation is more complicated.
Firstly, we have seen that there is no best network regression model even if the
architecture and the hyper-parameters are fully specified. In Fig. 7.18 we have seen
that in a claim frequency context the different solutions from an early stopped SGD
fitting can have a coefficient of variation of up to 40% on the individual policy
level, on average these coefficients of variation were around 10%. This has led to
the consideration of network ensembling and the nagging predictor in Sect. 7.4.4.
These considerations have been based on a fixed learning data set L. In this section,
we assume that also the learning data set L may look differently by considering
different realizations of the (randomly generated) observations Yi . To reflect this
source of randomness in outcomes we bootstrap new data from L by exploring
a non-parametric bootstrap with random drawings with replacements from L, see
Sect. 4.3.1. This will allow us to study the volatility implied in estimation by
considering a different set of observations, i.e., a different sample.

Ideally we would like to generate new observations from the true data generating
mechanism, but, since this mechanism is not known, we can at best generate data
from an estimated model. If we rely on a distributional model, we may suffer from
model error, e.g., in Sect. 11.3 we have seen that it is rather difficult to specify a
distributional regression model that has the right tail behavior. Therefore, we may
give preference to a distribution-free approach. Non-parametric bootstrapping is
such a distribution-free approach, the disadvantage being that we cannot enrich the
existing observations by new observations, but we can only rearrange the available
observations.

We revisit the robust representation learning approach of Sect. 11.1.2 on the
same Swiss accident insurance data as explored in that section. In particular,
we reconsider the deep multi-output models introduced in (11.6) and studied in
Table 11.3 for power variance parameters p = 2, 2.5, 3 (and constant dispersion
parameter). We perform exactly the same analysis, here, however we consider for
this analysis bootstrapped data L∗ for model fitting.
First, we fit 100 times the same deep FN network architecture as in (11.6)
with different seeds (on identical learning data L). From this we calculate the
nagging predictor. Second, we generate 100 different bootstrap samples L∗ =
L∗(s), 1 ≤ s ≤ 100, from L (having an identical sample size) with random
drawings with replacements, and we fit the same network architecture to these 100

11.4 Model Uncertainty: A Bootstrap Approach 493

Table 11.9 Out-of-sample losses (gamma loss, power variance case p = 2.5 loss (in 10−2) and
inverse Gaussian (IG) loss (in 10−3)) and average claim amounts; the losses use unit dispersion
ϕ = 1

Out-of-sample loss on T Average

dp=2 dp=2.5 dp=3 claim

Null model 4.6979 10.2420 4.6931 1’774

Gamma multi-output of Table 11.3 2.0581 7.6422 3.9146 1’745

p = 2.5 multi-output of Table 11.3 2.0576 7.6407 3.9139 1’732

IG multi-output of Table 11.3 2.0576 7.6401 3.9134 1’705

Gamma multi-output: nagging 100 2.0280 7.5582 3.8864 1’752

p = 2.5 multi-output: nagging 100 2.0282 7.5586 3.8865 1’739

IG multi-output: nagging 100 2.0286 7.5592 3.8865 1’711

Gamma multi-output: bootstrap 100 2.0189 7.5301 3.8745 1’803

p = 2.5 multi-output: bootstrap 100 2.0191 7.5305 3.8746 1’790

IG multi-output: bootstrap 100 2.0194 7.5309 3.8746 1’756

bootstrap samples. We then also average over these 100 predictors obtained from
the different bootstrap samples. Table 11.9 provides the resulting out-of-sample
deviance losses on the test data T . We always hold on to the same test data T
which is disjoint/independent from the learning data L and the bootstrap samples
L∗ = L∗(s), 1 ≤ s ≤ 100.

The nagging predictors over 100 seeds are roughly the same as over 20 seeds
(see Table 11.3), which indicates that 20 different network fits suffice, here.
Interestingly, the average bootstrapped version generally improves the nagging
predictors. Thus, here the average bootstrap predictor provides a better balance
among the observations to receive superior predictive power on the test data T ,
compare lines ‘nagging 100’ vs. ’bootstrap 100’ of Table 11.9.
The main purpose of this analysis is to understand the volatility involved in nagging
and bootstrap predictors. We therefore consider the coefficients of variation Vcot

introduced in (7.43) on individual policies 1 ≤ t ≤ T . Figure 11.12 shows these
coefficients of variation on the individual predictors, i.e., for the individual claims
x
†
t and the individual network calibrations with different seeds. The left-hand side

gives the coefficients of variation based on 100 bootstrap samples, the right-hand
side gives the coefficients of variation of 100 predictors fitted on the same data L
but with different seeds for the SGD algorithm; the y-scale is identical in both plots.
We observe that the coefficients of variation are clearly higher under the bootstrap
approach compared to holding on to the same data L for SGD fitting with different
seeds. Thus, the nagging predictor averages over the randomness in different seeds
for network calibrations, whereas bootstrapping additionally considers possible
different samples L∗ for model learning. We analyze the difference in magnitudes
in more detail.
Figure 11.13 compares the two coefficients of variation for different claim sizes. The
average coefficient of variation for fixed observations L is 15.9% (cyan columns).
This average coefficient of variation is increased to 24.8% under bootstrapping

494 11 Selected Topics in Deep Learning

0

individual policies
average
1 std.dev.
cubic spline

individual policies
average
1 std.dev.
cubic spline

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5000 10000 15000 25000 3500020000
estimated claim size

coefficients of variation: bootstrap 100
co

ef
fi

ci
en

ts
 o

f
va

ri
at

io
n

30000 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5000 10000 15000 25000 3500020000
estimated claim size

coefficients of variation: nagging 100

co
ef

fi
ci

en
ts

 o
f

va
ri

at
io

n

30000

Fig. 11.12 Coefficients of variation in individual estimators (lhs) bootstrap 100, and (rhs) nagging
100; the y-scale is identical in both plots

coefficients of variations

claim sizes

co
ef

fic
ie

nt
s

of
 v

ar
ia

tio
ns

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0 5000 10000 15000 20000 25000 30000 35000

bootstrap
nagging
relative increase

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 11.13 Coefficients of variation in individual predictors of the bootstrap and the nagging
approaches (ordered w.r.t. estimated claim sizes)

(orange columns). The blue line shows the average relative increase for the different
claim sizes (right axis), and the blue dotted line is at a relative increase of 40%. From
Fig. 11.13 we observe that this spread (relative increase) is rather constant across all
claim predictions; we remark that 93.5% of all claim predictions are below 5’000.
Thus, most claims are at the left end of Fig. 11.13.

From this small analysis we conclude that there is substantial model and
estimation uncertainty involved, recall that we fit the deep network architecture to
305’550 individual claims having 7 feature components, this is a comparably large
portfolio. On average, we have a coefficient of variation of 15% implied by SGD

11.5 LocalGLMnet: An Interpretable Network Architecture 495

fitting with different seeds, and this coefficient of variation is increased to roughly
25% under additionally bootstrapping the observations. This is considerable, and
it requires that we ensemble these predictors to receive more robust predictions.
The results of Table 11.9 support this re-sampling and ensembling approach as we
receive a better out-of-sample performance.

11.5 LocalGLMnet: An Interpretable Network Architecture

Network architectures are often criticized for not being (sufficiently) explainable.
Of course, this is not fully true as we have gained a lot of insight about the
data examples studied in this book. This criticism of non-explainability has led to
the development of the post-hoc model-agnostic tools studied in Sect. 7.6. This
approach has been questioned at many places, and it is not clear whether one
should try to explain black box models, or whether one should rather try to make
the models interpretable in the first place, see, e.g., Rudin [322]. In this section
we take this different approach by working with a network architecture that is
(more) interpretable. We present the LocalGLMnet proposal of Richman–Wüthrich
[317, 318]. This approach allows for interpreting the results, and it allows for
variable selection either using an empirical Wald test or LASSO regularization.

There are different other proposals that try to achieve similar explainability in
specific network architectures. There is the explainable neural network of Vaughan
et al. [367] and the neural additive model of Agarwal et al. [3]. These proposals
rely on parallel networks considering one single variable at a time. Of course,
this limits their performance because of a missing interaction potential. This has
been improved in the Combined Actuarial eXplainable Neural Network (CAXNN)
approach of Richman [314], which requires a manual specification of parallel
networks for potential interactions. The LocalGLMnet, proposed in this section,
does not require any manual engineering, and it still possesses the universal
approximation property.

11.5.1 Definition of the LocalGLMnet

Starting point of the LocalGLMnet is a classical GLM. Choose a strictly monotone
and smooth link function g. A GLM is received by considering the regression
function

x �→ g(μ(x)) = β0 + 〈β, x〉 = β0 +
q∑

j=1

βjxj , (11.36)

496 11 Selected Topics in Deep Learning

for features x ∈ X ⊂ R
q , intercept β0 ∈ R and regression parameter β ∈

R
q . Compared to (5.5) we change the notation in this section by excluding the

intercept component from the feature x = (x1, . . . , xq)�, because this will be
more convenient for the LocalGLMnet proposal. The beauty of this GLM regression
function is that we obtain a linear function after applying the link function g. This
linear function is considered to be explainable as we can precisely quantify how
much the expected response will change by slightly changing one of the feature
components xj . In particular, this holds true for the log-link which leads to a
multiplicative structure in the expected response.

The idea is to hold on to this additive structure (11.36) as far as possible, still
trying to benefit from the universal approximation property of network architectures.
Richman–Wüthrich [317] propose the following regression structure.

Definition 11.12 (LocalGLMnet) Choose a FN network architecture z(d :1) :
R

q → R
q of depth d ∈ N with equal input and output dimensions to model

the regression attention

β : Rq → R
q

x �→ β(x)
def.= z(d :1)(x) =

(
z(d) ◦ · · · ◦ z(1)

)
(x).

The LocalGLMnet is defined by the generalized additive decomposition

x �→ g (μ(x)) = β0 + 〈β(x), x〉 = β0 +
q∑

j=1

βj (x)xj ,

for a strictly monotone and smooth link function g.

This architecture is called LocalGLMnet because locally, around a given feature
value x, it can be understood as a GLM, supposed that β(x) does not change too
much in the environment of x. In the GLM context β is called regression parameter,
and in the LocalGLMnet context β(x) is called regression attention because the
components βj (x) determine howmuch attention there should be given to a specific
value xj . We highlight this in the following discussion. Select one component 1 ≤
j ≤ q and study the individual term

x �→ βj (x)xj . (11.37)

(1) If βj (x) ≡ 0, we should drop the term βj (x)xj from the regression function.
(2) If βj (x) ≡ βj (�= 0) is not feature dependent (and different from zero), we

receive a GLM term in xj with regression parameter βj .

11.5 LocalGLMnet: An Interpretable Network Architecture 497

(3) Property βj (x) = βj (xj) implies that we have a term βj (xj)xj that does not
interact with any other term xj ′ , j ′ �= j .

(4) Sensitivities of βj (x) in the components of x can be obtained by the gradient

∇xβj (x) =
(

∂

∂x1
βj (x), . . . ,

∂

∂xq

βj (x)

)�
∈ R

q . (11.38)

The j -th component of ∇xβj (x) determines the (non-)linearity in term xj , the
components different from j describe the interactions of term xj with the other
components.

(5) These interpretations need some care because we do not have identifiability. For
the special regression attention βj (x) = xj ′/xj we have

βj (x)xj = xj ′ . (11.39)

Therefore, we talk about terms in items (1)–(4), e.g., item (1) means that the
term βj (x)xj can be dropped, however, the feature component xj may still
play a significant role in some of the regression attentions βj ′(x), j ′ �= j .
In practical applications we have not experienced identifiability issue (11.39).
Having already the linear terms in the LocalGLMnet regression structure
and starting the SGD fitting in the GLM gives already quite pre-determined
regression functions, and the LocalGLMnet is built around this initialization,
hardly falling into a completely different model (11.39).

(6) The LocalGLMnet architecture has the universal approximation property dis-
cussed in Sect. 7.2.2, because networks can approximate any continuous
function arbitrarily well on a compact support for sufficiently large networks.
We can then select one component, say, x1 and let β1(x) = z

(d :1)
1 (x)

approximate a given continuous function f (x)/x1, i.e., f (x) ≈ β1(x)x1
arbitrarily well on the compact support.

11.5.2 Variable Selection in LocalGLMnets

The LocalGLMnet allows for variable selection through the regression attentions
βj (x). Roughly speaking, if the estimated regression attentions β̂j (x) ≈ 0, then the
term βj (x)xj can be dropped. We can also explore whether the entire variable xj

should be dropped (not only the corresponding term βj (x)xj). For this, we have to
refit the LocalGLMnet excluding the feature component xj . If the out-of-sample
performance on validation data does not change, then xj also does not play an
important role in any other regression attention βj ′(x), j ′ �= j , and it should be
completely dropped from the model.

In GLMs we can either use theWald test or the LRT to test a null hypothesisH0 :
βj = 0, see Sect. 5.3.We explore a similar idea in this section, however, empirically.

498 11 Selected Topics in Deep Learning

We therefore first need to ensure that all feature components live on the same scale.
We consider standardization with the empirical mean and the empirical standard
deviation, see (7.30), and from now on we assume that all feature components are
centered and have unit variance. Then, the main problem is to determine whether an
estimated regression attention β̂j (x) is significantly different from 0 or not.

We therefore extend the features x+ = (x1, . . . , xq, xq+1)
� ∈ R

q+1 by an addi-
tional independent and purely random component xq+1 that is also standardized.
Since this additional component is independent of all other components it cannot
have any predictive power for the response under consideration, thus, fitting this
extended model should result in a regression attention β̂q+1(x

+) ≈ 0. The estimate
will not be exactly zero, because there is noise involved, and the magnitude of this
fluctuation will determine the rejection/acceptance region of the null hypothesis of
not being significant.

We fit the LocalGLMnet to the learning data L with features x+
i ∈ R

q+1

extended by the standardized i.i.d. component xi,q+1 being independent of (Yi, x i).
This gives us the estimated regression attentions β̂1(x

+
i), . . . , β̂q(x+

i), β̂q+1(x
+
i).

We compute the empirical mean and standard deviation of the attention weight of
the additional component xq+1

b̄q+1 = 1

n

n∑
i=1

β̂q+1(x
+
i) and ŝq+1 =

√√√√ 1

n − 1

n∑
i=1

(
β̂q+1(x

+
i) − b̄q+1

)2
.

(11.40)

We expect approximate centering b̄q+1 ≈ 0 because this additional component xq+1
does not enter the true regression function, and the empirical standard deviation ŝq+1
quantifies the expected fluctuation around zero of insignificant components.

We can now test the null hypothesis H0 : βj (x) = 0 of component j on
significance level α ∈ (0, 1/2). We define centered interval

Iα =
[
�−1(α/2) · ŝq+1, �−1(1 − α/2) · ŝq+1

]
, (11.41)

where �−1(p) denotes the standard Gaussian quantile for p ∈ (0, 1). H0 should be
rejected if the coverage ratio of this centered interval Iα is substantially smaller than
1 − α, i.e.,

1

n

n∑
i=1

1{β̂j (x+
i)∈Iα} < 1 − α.

This proposal is designed for continuous feature components, and categorical
variables are discussed in Sect. 11.5.4, below. For xq+1 we can choose a standard
Gaussian distribution, a normalized uniform distribution or we can randomly

11.5 LocalGLMnet: An Interpretable Network Architecture 499

permute one of the feature components xi,j across the entire portfolio 1 ≤ i ≤ n.
Usually, the resulting empirical standard deviations ŝq+1 are rather similar.

11.5.3 Lab: LocalGLMnet for Claim Frequency Modeling

We revisit the FrenchMTPL data example.We compare the LocalGLMnet approach
to the deep FN network considered in Sect. 7.3.2, and we benchmarkwith the results
of Table 7.3; we benchmark with the crudest FN network from above because, at
the current stage, we need one-hot encoding for the LocalGLMnet approach. The
analysis in this section is the same as in Richman–Wüthrich [317].

The French MTPL data has 6 continuous feature components (we treat Area as
a continuous variable), 1 binary component and 2 categorical components. We pre-
process the continuous and binary variables to centering and unit variance using
standardization (7.30). This will allow us to do variable selection as presented
in (11.41). The categorical variables with more than two levels are more difficult.
In a first attempt we use one-hot encoding for the categorical variables. We prefer
one-hot encoding over dummy coding because this ensures that for all levels there
is a component xj with xj �= 0. This is important because the terms βj (x)xj are
equal to zero for the reference level in dummy coding (since xj = 0). This does
not allow us to study interactions with other variables for the term corresponding to
the reference level. Remark that one-hot encoding and dummy coding do not lead
to centering and unit variance.

This feature pre-processing gives us a feature vector x ∈ R
q of dimension

q = 40. For variable selection of the continuous and binary components we extend
the feature x by two additional independent components xq+1 and xq+2. We select
two components to explore whether the particular distributional choice has some
influence on the choice of the acceptance/rejection interval Iα in (11.41). We choose
for policies 1 ≤ i ≤ n

xi,q+1
i.i.d.∼ Uniform

[
−√

3,
√
3
]

and xi,q+2
i.i.d.∼ N (0, 1),

these two sets of variables being mutually independent, and being inde-
pendent from all other variables. We define the extended features x+

i =
(xi,1, . . . , xi,q , xi,q+1, xi,q+2)

� ∈ R
q0 with q0 = q + 2, and we consider the

LocalGLMnet regression function

x+ �→ log
(
μ(x+)

) = β0 +
q0∑

j=1

βj (x
+)xj .

We choose the log-link for Poisson claim frequency modeling. The time exposure
v > 0 can either be integrated as a weight to the EDF or as an offset on the canonical
scale resulting in the same Poisson model, see Sect. 5.2.3.

500 11 Selected Topics in Deep Learning

Listing 11.7 LocalGLMnet architecture

1 Design = layer_input(shape = c(42), dtype = ’float32’, name = ’Design’)
2 Vol = layer_input(shape = c(1), dtype = ’float32’, name = ’Vol’)
3 #
4 Attention = Design %>%
5 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
6 layer_dense(units=15, activation=’tanh’, name=’FNLayer2’) %>%
7 layer_dense(units=10, activation=’tanh’, name=’FNLayer3’) %>%
8 layer_dense(units=42, activation=’linear’, name=’Attention’)
9 #
10 LocalGLM = list(Design, Attention) %>% layer_dot(name=’LocalGLM’, axes=1) %>%
11 layer_dense(units=1, activation=’exponential’, name=’Balance’)
12 #
13 Response = list(LocalGLM, Vol) %>% layer_multiply(name=’Multiply’)
14 #
15 keras_model(inputs = c(Design, Vol), outputs = c(Response))

We are now ready to define the LocalGLMnet architecture. We choose a network
z(d :1) : R

q0 → R
q0 of depth d = 4 with (q1, q2, q3, q4) = (20, 15, 10, 42)

neurons. The R code is given in Listing 11.7. We note that this is not much more
involved than a plain-vanilla FN network. Slightly special in this implementation is
the integration of the intercept β0 on line 11. Naturally, we would like to add this
intercept, however, there is no simple code for doing this. For that reason, we model
the additive decomposition by

x+ �→ log
(
μ(x+)

) = α0 + α1

q0∑
j=1

βj (x
+)xj ,

with real-valued parameters α0 and α1 being estimated on line 11 of Listing 11.7.
Thus, in this implementation the regression attentions are obtained by α1βj (x

+).
Of course, there are also other ways of implementing this. This LocalGLMnet
architecture has 1’799 network weights to be fitted.
We fit this LocalGLMnet using a training to validation data split of 8 : 2 and a batch
size of 5’000. We initialize the gradient descent algorithm such that we exactly start
in the GLM with βj (x

+) ≡ β̂MLE
j . For this we set all weights in the last layer

on line 8 of Listing 11.7 to zero, w
(d)
l,j = 0, and the corresponding intercepts to

the MLEs of the GLM, i.e., w
(d)
0,j = β̂MLE

j . This gives us the GLM initialization∑q0
j=1 β̂MLE

j xj on line 10 of Listing 11.7. Moreover, on line 11 of that listing, we

initialize α1 = 1 and α0 = β̂MLE
0 . This implies that the gradient descent algorithm

starts in the MLE estimated GLM. The SGD fitting turns out to be faster than in
the plain-vanilla FN case, probably, because we start in the GLM having already
the reasonable linear terms xj in the model, and we only need to find the regression
attentions βj (x

+) around these linear terms. The results are presented on the second
last line of Table 11.10. The out-of-sample results are slightly worse than in the
plain-vanilla FN case. There are many reasons for that, for instance, many levels in
one-hot encoding may lead to more potential for over-fitting, and hence to an earlier

11.5 LocalGLMnet: An Interpretable Network Architecture 501

Table 11.10 Run times, number of parameters, in-sample and out-of-sample deviance losses
(units are in 10−2) and in-sample average frequency of the Poisson regressions, see also Table 7.3

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15s 50 24.084 24.102 7.36%

One-hot FN (q1, q2, q3) = (20, 15, 10) 51s 1’306 23.757 23.885 6.96%

LocalGLMnet on x+ 20s 1’799 23.728 23.945 7.46%

LocalGLMnet on x+ bias regularized – – 23.727 23.943 7.36%

stopping, here. The same applies if we add too many purely random components
xq+l , l ≥ 1. Since the balance property will not hold, in general, we apply the bias
regularization step (7.33) to adjust α0 and α1, the results are presented on the last
line of Table 11.10; in Remark 3.1 of Richman–Wüthrich [317] a more sophisticated
balance property correction is presented. Our goal now is to analyze this solution.

Listing 11.8 Extracting the regression attentions from the LocalGLMnet architecture

1 zz <- keras_model(inputs=model$input,
2 outputs=get_layer(model, ’Attention’)$output)
3 beta <- data.frame(zz %>% predict(list(Xlearn, Vlearn)))
4 alpha1 <- as.numeric(get_weights(model)[[9]])
5 beta <- beta * alpha1

We start by analyzing the two additional components xi,q+1 and xi,q+2 being
uniformly and Gaussian distributed, respectively. Listing 11.8 shows how to extract
the estimated regression attentions β̂(x+

i). We calculate the means and standard
deviations of the estimated regression attentions of the two additional components

b̄q+1 = 0.0042 and b̄q+2 = 0.0213,

and

ŝq+1 = 0.0516 and ŝq+2 = 0.0482.

From these numbers we see that the regression attentions β̂q+2(xi) are slightly
biased, whereas β̂q+1(xi) are fairly centered compared to the magnitudes of the
standard deviations. If we select a significance level of α = 0.1%, we receive a
two-sided standard normal quantile of |�−1(α/2)| = 3.29. This provides us for
interval (11.41) with

Iα =
[
�−1(α/2) · ŝq+1, �−1(1 − α/2) · ŝq+1

]
= [−0.17, 0.17].

502 11 Selected Topics in Deep Learning

1 2 3 4 5 6

−
0.

5
0.

0
0.

5
regression attentions: Area Code

Area Code

re
gr

es
si

on
 a

tte
nt

io
ns

beta(x)
zero line
0.1% significance level

60 80 100 120 140

−
0.

5
0.

0
0.

5

regression attentions: Bonus−Malus Level

Bonus−Malus Level

re
gr

es
si

on
 a

tte
nt

io
ns

beta(x)
zero line
0.1% significance level

2 4 6 8 10

−
0.

5
0.

0
0.

5

regression attentions: Density

Density

re
gr

es
si

on
 a

tte
nt

io
ns

beta(x)
zero line
0.1% significance level

20 30 40 50 60 70 80 90

−
0.

5
0.

0
0.

5

regression attentions: Driver's Age

Driver's Age

re
gr

es
si

on
 a

tte
nt

io
ns

beta(x)
zero line
0.1% significance level

0 5 10 15 20

−
0.

5
0.

0
0.

5
regression attentions: Vehicle Age

Vehicle Age

re
gr

es
si

on
 a

tte
nt

io
ns

beta(x)
zero line
0.1% significance level

Diesel Regular

−
0.

5
0.

0
0.

5

regression attentions: Vehicle Gas

Vehicle Gas

re
gr

es
si

on
 a

tte
nt

io
ns

beta(x)
zero line
0.1% significance level

4 6 8 10 12 14

−
0.

5
0.

0
0.

5

regression attentions: Vehicle Power

Vehicle Power

re
gr

es
si

on
 a

tte
nt

io
ns

beta(x)
zero line
0.1% significance level

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5

regression attentions: RandU

RandU

re
gr

es
si

on
 a

tte
nt

io
ns

beta(x)
zero line
0.1% significance level

−3 −2 −1 0 1 2 3

−
0.

5
0.

0
0.

5

regression attentions: RandN

RandN

re
gr

es
si

on
 a

tte
nt

io
ns

beta(x)
zero line
0.1% significance level

Fig. 11.14 Estimated regression attentions β̂j (x
+
i) of the continuous and binary feature compo-

nents Area, BonusMalus, log-Density, DrivAge, VehAge, VehGas, VehPower and the
two random features xi,q+1 and xi,q+2 of 2’000 randomly selected policies x+

i ; the orange area
shows the interval Iα for dropping term βj (x)xj on significance level α = 0.1%

Figure 11.14 shows the estimated regression attentions β̂j (x
+
i) of the continuous

and binary feature components for 2’000 randomly selected policies x+
i , and the

orange area shows the acceptance region Iα on significance level α = 0.1%.
Focusing on the figures of the two additional variables xi,q+1 and xi,q+2, Fig. 11.14
(bottom, middle and right), we observe that the estimated regression attentions are
mostly within the confidence bounds of Iα . This says that we should drop these
two terms (of course, this is clear since we have set the bounds according to these
regression attentions). Focusing on the other variables, we question the inclusion
of the term VehPower as it seems concentrated within Iα , and hence we cannot
reject the null hypothesis H0 : βVehPower(x) = 0. Moreover, the inclusion of the
term Area needs further exploration.

11.5 LocalGLMnet: An Interpretable Network Architecture 503

Table 11.11 Run times, number of parameters, in-sample and out-of-sample deviance losses
(units are in 10−2) and in-sample average frequency of the Poisson regressions, see also Table 7.3

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15s 50 24.084 24.102 7.36%

One-hot FN (q1, q2, q3) = (20, 15, 10) 51s 1’306 23.757 23.885 6.96%

LocalGLMnet on x+ 20s 1’799 23.728 23.945 7.46%

LocalGLMnet on x+ bias regularized – – 23.727 23.943 7.36%

LocalGLMnet on x− 20s 1’675 23.715 23.912 7.30%

LocalGLMnet on x. bias regularized – – 23.714 23.911 7.36%

We remind that dropping a term βj (x)xj does not necessarily imply that we
have to completely drop xj because it may still play an important role in one of the
other regression attentions βj ′(x), j ′ �= j . Therefore, we re-run the whole fitting
procedure, but we drop the purely random feature components xi,q+1 and xi,q+2,
and we also drop VehPower and Area to see whether we receive a model with a
similar predictive power. This then would imply that we can drop these variables, in
the sense of variable selection similar to the LRT and the Wald test of Sect. 5.3. We
denote the feature where we drop these components by x− ∈ R

q−2.
We re-fit the LocalGLMnet on the reduced features x−

i , and the results are presented
in Table 11.11. We observe that the loss figures decrease. Indeed, this supports the
null hypothesis of dropping VehPower and Area. The reason for being able to
drop VehPower is that it does not contribute (sufficiently) to explain the systematic
effects in the responses. The reason for being able to drop Area is slightly different:
we have seen that Area and log-Density are highly correlated, see Fig. 13.12
(rhs), and it turns out that it is sufficient to only keep the Density variable (on the
log-scale) in the model.

In a next step, we should analyze the robustness of these results by exploring the
nagging predictor and/or bootstrapping as described in Sect. 11.4. We refrain from
doing so, but we illustrate the LocalGLMnet solution of Table 11.11 in more detail.
Figure 11.15 shows the feature contributions β̂j (x

−
i)xi,j of 2’000 randomly selected

policies on the significant continuous and binary feature components. The magenta
line gives a spline fit, and the more the black dots spread around these splines, the
more interactions we have; for instance, higher bonus-malus levels interact with the
age of driver which explains the scattering of the black dots. On average, frequencies
are increasing in bonus-malus levels and density, decreasing in vehicle age, and for
the driver’s age variable it is important to understand the interactions. We observe
that the spline fit for the log-Density is close to a linear function, this reflects
that the regression attentions β̂Density(xi) in Fig. 11.14 (top-right) are more or less
constant. This is also confirmed by the marginal plot in Fig. 5.4 (bottom-rhs) which
has motivated the choice of a linear term for the log-Density in model Poisson
GLM1 of Table 5.3.

504 11 Selected Topics in Deep Learning

60
80

10
0

12
0

14
0

−1.5−1.0−0.50.00.51.01.5

fe
at

ur
e

co
nt

rib
ut

io
n:

 B
on

us
−M

al
us

 L
ev

el

B
on

us
−

M
al

us
 L

ev
el

feature contribution

be
ta

(x
)

ze
ro

 li
ne

sp
lin

e
fit

2
4

6
8

10

−1.5−1.0−0.50.00.51.01.5

fe
at

ur
e

co
nt

rib
ut

io
n:

 D
en

si
ty

D
en

si
ty

feature contribution

be
ta

(x
)

ze
ro

 li
ne

sp
lin

e
fit

20
30

40
50

60
70

80
90

−1.5−1.0−0.50.00.51.01.5

fe
at

ur
e

co
nt

rib
ut

io
n:

 D
riv

er
's

 A
ge

D
riv

er
's

 A
ge

feature contribution

be
ta

(x
)

ze
ro

 li
ne

sp
lin

e
fit

0
5

10
15

20

−1.5−1.0−0.50.00.51.01.5

fe
at

ur
e

co
nt

rib
ut

io
n:

 V
eh

ic
le

 A
ge

V
eh

ic
le

 A
ge

feature contribution

be
ta

(x
)

ze
ro

 li
ne

sp
lin

e
fit

D
ie

se
l

R
eg

ul
ar

−1.5−1.0−0.50.00.51.01.5

fe
at

ur
e

co
nt

rib
ut

io
n:

 V
eh

ic
le

 G
as

V
eh

ic
le

 G
as

feature contribution

be
ta

(x
)

ze
ro

 li
ne

F
ig
.1

1.
15

E
st
im

at
ed

fe
at
ur
e
co
nt
ri
bu
ti
on
s

β̂
j
(x

− i
)x

i,
j
of

th
e
si
gn
ifi
ca
nt

co
nt
in
uo
us

an
d
bi
na
ry

co
m
po
ne
nt
s
B
o
n
u
s
M
a
l
u
s
,
lo
g-
D
e
n
s
i
t
y
,
D
r
i
v
A
g
e
,

V
e
h
A
g
e
an
d
V
e
h
G
a
s
of

2’
00
0
ra
nd
om

ly
se
le
ct
ed

po
li
ci
es

x
− i
;t
he

m
ag
en
ta
li
ne

gi
ve
s
a
sp
li
ne

fit

11.5 LocalGLMnet: An Interpretable Network Architecture 505

Fig. 11.16 Importance
measure IMj of the
continuous and binary
variables

RandU

RandN

Area Code

Vehicle Power

Vehicle Gas

Vehicle Age

Density

Driver's Age

Bonus−Malus

importance measure

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Using the regression attentions we define an importance measure. We consider
the extended features x+ in the following numerical analysis. We set

IMj = 1

n

n∑
i=1

∣∣β̂j (x
+
i)
∣∣ ,

for 1 ≤ j ≤ q + 2, and where we aggregate over all policies 1 ≤ i ≤ n.
Figure 11.16 shows the importancemeasures IMj of the continuous and binary vari-
ables j . The bars are ordered w.r.t. these importance measures. The graph confirms
our previous conclusion, the least important variables are the two additional purely
random components xi,q+1 and xi,q+2, followed by Area and VehPower. These
are exactly the components that have been dropped going from the full model x+ to
the reduced model x−.
Next, we analyze the interactions by studying the gradients (11.38). Figure 11.17
illustrates spline fits to the components ∂β̂j (x

−
i)/∂xk w.r.t. xj of the continuous

variables BonusMalus, log-Density, DrivAge and VehAge over all policies
i = 1, . . . , n. The components ∂β̂j (x

−
i)/∂xj show the non-linearity in xj . We

conclude that BonusMalus, DrivAge and VehAge should be non-linear, and
log-Density is linear because ∂β̂j (x

−
i)/∂xj ≈ 0. The components ∂β̂j (x

−
i)/∂xk,

k �= j , determine the interactions. We have the strongest interactions between
BonusMalus and DrivAge, and BonusMalus has interactions with all vari-
ables. On the other hand, the log-Density only interacts with BonusMalus.
The reader will have noticed that we have excluded the categorical components
VehBrand and Region from all model discussions. Firstly, these components are
not standardized to zero mean and unit variance, and, secondly, we cannot study one
level in isolation to be able to decide to keep or drop that variable. I.e., similar to
group LASSO we need to study all levels simultaneously of each categorical feature
component. We do this in the next section, and we conclude with the regression

506 11 Selected Topics in Deep Learning

60 80 100 120 140

−
2

−
1

0
1

2
interactions of feature component Bonus−Malus Level

Bonus−Malus Level

in
te

ra
ct

io
n

st
re

ng
th

s

VehAge

DrivAge

BonusMalus

VehGas

Vehicle Age
Driver's Age
Bonus−Malus Level
Vehicle Gas
Density

0 2 4 6 8 10

−
2

−
1

0
1

2

interactions of feature component Density

Density

in
te

ra
ct

io
n

st
re

ng
th

s

BonusMalus

Vehicle Age
Driver's Age
Bonus−Malus Level
Vehicle Gas
Density

20 30 40 50 60 70 80 90

−
2

−
1

0
1

2

interactions of feature component Driver's Age

Driver's Age

in
te

ra
ct

io
n

st
re

ng
th

s DrivAge

BonusMalus

Vehicle Age
Driver's Age
Bonus−Malus Level
Vehicle Gas
Density

0 5 10 15 20

−
2

−
1

0
1

2
interactions of feature component Vehicle Age

Vehicle Age

in
te

ra
ct

io
n

st
re

ng
th

s

VehAge

Vehicle Age
Driver's Age
Bonus−Malus Level
Vehicle Gas
Density

Fig. 11.17 Spline fits to the derivatives ∂β̂j (x
−
i)/∂xk w.r.t. xj of the continuous variables

BonusMalus, log-Density, DrivAge and VehAge over all policies i = 1, . . . , n

attentions β̂j (x) of the categorical feature components in Fig. 11.18, which seem to
be significantly different from zero (VehBrands B10, B11, and Regions R22,
R43, R82, R93), but which do not allow for variable selection as just described.

Remark 11.13 The bias regularization in Table 11.11 has simply been obtained by
applying an additional MLE step to α0 and α1. Alternatively, we can also define
the new features ẑi = (̂α1β̂1(xi)xi,1, . . . , α̂1β̂q0(xi)xi,q0)

� ∈ R
q0 , and then apply

a proper GLM step to these newly (learned) features ẑ1, . . . , ẑn. Working with the
canonical link will give us the balance property. This is discussed in more detail in
Remark 3.1 of Richman–Wüthrich [317].

11.5 LocalGLMnet: An Interpretable Network Architecture 507

B1 B3 B5 B10 B12 B14

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
feature contribution: Vehicle Brand

Vehicle Brand

fe
at

ur
e

co
nt

rib
ut

io
n

R11 R23 R26 R42 R53 R73 R83 R94

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

feature contribution: French Regions

French Regions

fe
at

ur
e

co
nt

rib
ut

io
n

Fig. 11.18 Boxplot of the regression attentions β̂j (x) of the categorical feature components
VehBrand and Region; the y-scale is the same as in Fig. 11.15

11.5.4 Variable Selection Through Regularization of the
LocalGLMnet

A natural next step is to introduce regularization on the regression attentions
β(x); this is the proposal suggested in Richman–Wüthrich [318]. We choose the
LocalGLMnet architecture x �→ μ(x) of Definition 11.12 having an intercept
parameter β0 ∈ R and the network weights w. For fitting, we consider a loss
function L and we add a regularization term to this loss function penalizing large
regression attentions. That is, we aim at minimizing

argmin
β0,w

1

n

n∑
i=1

L (Yi, μ(xi)) − R(β(xi)), (11.42)

with a penalty term (regularizer) R(·) ≥ 0. For the penalty term R we can choose
different forms, e.g., the elastic net regularizer of Zou–Hastie [409] is obtained by,
see Remark 6.3,

argmin
β0,w

1

n

n∑
i=1

L (Yi, μ(xi)) + η
(
(1 − α)‖β(xi)‖22 + α‖β(xi)‖1

)
, (11.43)

for a regularization parameter η ≥ 0 and weight α ∈ [0, 1]. For α = 0 we receive
ridge regularization, and for α = 1 we get LASSO regularization of β(·).

508 11 Selected Topics in Deep Learning

For variable selection of categorical feature components we should rather use the
group LASSO penalization of Yuan–Lin [398], see also (6.5). Assume the features
x have a natural group structure x = (x�

1 , . . . , x�
K)� ∈ R

q . We consider the
optimization

argmin
β0,w

1

n

n∑
i=1

L (Yi, μ(xi)) +
K∑

k=1

ηk‖βk(xi)‖2, (11.44)

for regularization parameters ηk ≥ 0, and where βk(x) collects all components
βj (x) of β(x) that belong to the k-th group xk of x. Yuan–Lin [398] propose to
scale the regularization parameters as ηk = √

qkη ≥ 0, where qk is the size of group
k. Remark that if every group has size one we exactly obtain LASSO regularization.

Solving the optimization problem (11.44) poses some challenges because the
regularizer is not differentiable in zero. In Sect. 6.2.5 we have presented the
generalized projection operator (using the soft-thresholding operator) to solve
the group LASSO regularization within GLMs. However, this proposal will not
work here: the generalized projection operator may help to project the regression
attentions β(xi) back to the constraint set C. However, this does not tell us anything
about how to choose the network parameters w and, therefore, will not work
here. In a different setting, Oelker–Tutz [288] propose to use a differentiable ε-
approximation to the terms in (11.44). Choose ε > 0 and define for βk ∈ R

qk

‖βk‖2,ε =
√

‖βk‖22 + ε =
√

β�
k βk + ε → ‖βk‖2 as ε ↓ 0. (11.45)

This motivates to study the optimization problem for a fixed (small) ε > 0

argmin
β0,w

1

n

n∑
i=1

L (Yi, μ(xi)) +
K∑

k=1

ηk‖βk(xi)‖2,ε. (11.46)

In Fig. 11.19 we plot these ε-approximations for ε ∈ {10−1, 10−2, 10−3, 10−4,

10−5}. The plot on the left-hand side gives β ∈ R �→ ‖β‖2,ε = √β2 + ε → |β| for
ε ↓ 0, and the plot on the right-hand side gives the unit ball

Bε =
{
β = (β1, β2)

� ∈ R
2; ‖β1‖2,ε + ‖β2‖2,ε = 1

}
.

For the last two ε choices there is no visible difference to the 	1-norm.

11.5 LocalGLMnet: An Interpretable Network Architecture 509

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

penalization from regularization

beta

co
nt

rib
ut

io
n

re
gu

la
riz

at
io

n
be

ta

epsilon=0.1
epsilon=0.01
epsilon=0.001
epsilon=1e−04
epsilon=1e−05

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

regularization domain/rejection region (2d)

component beta1
co

m
po

ne
nt

 b
et

a2

epsilon=0.1
epsilon=0.01
epsilon=0.001
epsilon=1e−04
epsilon=1e−05

Fig. 11.19 (lhs) Comparison of |β| and ‖β‖2,ε = √
β2 + ε for β ∈ R, and (rhs) unit balls Bε for

ε ∈ {10−1, 10−2, 10−3, 10−4, 10−5} compared to the Manhattan unit ball

The main disadvantage of the ε-approximation is that it does not shrink unimportant
components βj (x) exactly to zero. But it allows us to identify unimportant (small)
components, which can then be removedmanually. As mentioned in Lee et al. [237],
LASSO regularization needs a second model calibration step only fitting the model
on the selected components (and without regularization) to receive an optimal
predictive power and a minimal bias. Thus, we need a second calibration step after
the removal of the unimportant components anyway.

11.5.5 Lab: LASSO Regularization of LocalGLMnet

We revisit the LocalGLMnet architecture applied to the French MTPL claim fre-
quency data, see Sect. 11.5.3. The goal is to perform a group LASSO regularization
so that we can also study the importance of the terms coming from the categorical
feature components VehBrand and Region. We first pre-process all feature
components as follows. We apply dummy coding to the categorical variables, and
then we standardize all components to centering and unit variance, this includes the
dummy coded components.
In a next step we need to define the natural groups x = (x�

1 , . . . , x�
K)� ∈ R

q . We
have 7 continuous and binary components which give us dimensions qk = 1 for
1 ≤ k ≤ 7. VehBrand provides us with a group of size q8 = 10, and Region
gives us a group of size q9 = 21. We set K = 9 and q = ∑9

k=1 qk = 38. We code

510 11 Selected Topics in Deep Learning

Listing 11.9 Group LASSO regularization design

1 group.lasso.grouping <- function(xx){
2 pp <- array(0, dim=c(length(xx),sum(xx)))
3 for (k in 1:length(xx)){
4 if (k==1){pp[k,1:xx[k]] <- 1
5 }else{
6 pp[k,(sum(xx[1:(k-1)])+1):sum(xx[1:k])] <- 1
7 }}
8 t(pp)
9 }
10 #
11 ww <- group.lasso.grouping(c(rep(1,7),10,21)) 12 etaK <- eta
12 etaK <- eta * sqrt(c(rep(1,7),10,21))

a (sort of) regularization design matrix to encode the K groups and weights
√

qk

for the q components of x. This is done in Listing 11.9 providing us with a matrix
of size 38 × 9 and the weights

√
qk . This regularization design matrix enters the

penalty term on lines 13 and 16 of Listing 11.10 which weights the penalizations
‖ · ‖2,ε .

Listing 11.10 LocalGLMnet with group LASSO regularization

1 Design = layer_input(shape = c(38), dtype = ’float32’)
2 LogVol = layer_input(shape = c(1), dtype = ’float32’)
3 Bias1 = layer_input(shape = c(1), dtype = ’float32’)
4 #
5 Attention = Design %>%
6 layer_dense(units=15, activation=’tanh’) %>%
7 layer_dense(units=10, activation=’tanh’) %>%
8 layer_dense(units=38, activation=’linear’, name=’Attention’)
9 #
10 Penalty = Attention %>%
11 layer_lambda(function(x) k_square(x)) %>%
12 layer_dense(units=9, activation=’linear’,
13 weights=list(ww), use_bias=FALSE, trainable=FALSE) %>%
14 layer_lambda(function(x) k_sqrt(x+epsilon)) %>%
15 layer_dense(units=1, activation=’linear’,
16 weights=list(array(etaK, dim=c(9,1))), use_bias=FALSE, trainable=FALSE)
17 #
18 LocalGLM = list(Design, Attention) %>% layer_dot(axes=1)
19 #
20 Bias = Bias1 %>%
21 layer_dense(units=1, activation=’linear’, use_bias=FALSE)
22 #
23 Response = list(LocalGLM, Bias, LogVol) %>% layer_add() %>%
24 layer_lambda(function(x) k_exp(x))
25 #
26 Output = list(Response, Penalty) %>% layer_concatenate()
27 #
28 keras_model(inputs = c(Design, LogVol, Bias1), outputs = c(Output))

11.5 LocalGLMnet: An Interpretable Network Architecture 511

The entire group LASSO regularized LocalGLMnet is depicted in Listing 11.10,
showing the regression attentions on lines 5–8, the regularization on lines 10–16,
and the output on line 26 returns the expected response viμ(xi) and the regularizer∑K

k=1 ηk‖βk(xi)‖2,ε , we choose ε = 10−5 for our example.

Listing 11.11 Group LASSO regularized Poisson deviance loss

1 Poisson.reg <- function(y_true, y_pred){k_mean(
2 y_pred[,1]-y_true[,1] + y_true[,1]*k_log((y_true[,1]/y_pred[,1]+.00000001))
3 + y_pred[,2])}

Finally, we need to code the loss function (11.42). This is done in Listing 11.11. We
combine the Poisson deviance loss functionwith the group LASSO ε-approximation∑K

k=1 ηk‖βk(xi)‖2,ε , the latter being outputted by Listing 11.10. We fit this
network to the French MTPL data (as above) for regularization parameters η ∈
{0, 0.0025, 0.005}. Firstly, we note that the resulting networks are not fully compet-
itive, this is probably due to the fact that the high-dimensional dummy coding leads
to too much over-fitting potential which leads to a very early stopping in gradient
descent fitting. Thus, this approach may not be useful to directly receive a good
predictive model, but it may be helpful to select the right feature components to
design a good predictive model.
Figure 11.20 gives the importance measures of the estimated regression attentions

IMj = 1

n

n∑
i=1

∣∣β̂j (xi)
∣∣ ,

of all components 1 ≤ j ≤ q = 38. The red color corresponds to regularization
parameter η = 0.005, red + yellow colors to η = 0.0025, and red + yellow + green
colors to η = 0 (no regularization). Figure 11.20 (lhs) shows the results on the
original (standardized) features x. By far the smallest red + yellow column among
the continuous features is observed for VehPower which confirms the variable
selection of Sect. 11.5.3. Among the categorical variables Region seems more
important (on average) than VehBrand because the red and yellow columns are
generally bigger for Region. All these red and yellow columns of VehBrand and
Region are bigger than the ones of VehPower which supports the inclusion of
the two categorical variables.

Figure 11.20 (rhs) verifies this decision of keeping the categorical variables. For
this latter graph we randomly permute Region across the entire portfolio, and we
run the same group LASSO regularized fitting procedure again on this modified
data. The vertical black line shows the average importance of the permuted Region
variable for η = 0.0025. We see that only VehPower has a smaller importance
measure, and all other variables dominate the permuted Region variable. This
confirms our conclusions above.

512 11 Selected Topics in Deep Learning

R94
R93
R91
R83
R82
R74
R73
R72
R54
R53
R52
R43
R42
R41
R31
R26
R25
R24
R23
R22
R21
B14
B13
B12
B11
B10

B6

B5

B4

B3

B2

Density
VehGas
BonusM
DrivAge
VehAge
VehPow

Area

importance measure (group Lasso)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

eta=0
eta=0.0025
eta=0.005

R94
R93
R91
R83
R82
R74
R73
R72
R54
R53
R52
R43
R42
R41
R31
R26
R25
R24
R23
R22
R21
B14
B13
B12
B11
B10
B6
B5
B4
B3
B2

Density
VehGas
BonusM
DrivAge
VehAge
VehPow

Area

importance measure (group Lasso)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

eta=0
eta=0.0025
eta=0.005

Fig. 11.20 Importance measures IMj of the group LASSO regularized LocalGLMnet for variable
selection with different regularization parameters η ∈ {0, 0.0025, 0.005}: (lhs) original data, and
(rhs) randomly permuted Region labels; the x-scale is the same in both plots

We conclude that the LocalGLMnet architecture with a group LASSO regular-
ization is helpful for variable selection, and, more generally, the LocalGLMnet
architecture is useful for model interpretation, finding interactions and functional
forms of the features entering the regression function. In examples that have
categorical variables with many levels, the LocalGLMnet approach may not lead
to a regression model that is fully competitive. In this case, the LocalGLMnet can
be used for variable selection, and an other network architecture should then be fitted
on the selected variables. Alternatively, we can embed the categorical variables in a
preparatory network step, and then work with these embeddings of the categorical
variables (kept fixed within the LocalGLMnet).

11.6 Selected Applications 513

11.6 Selected Applications

11.6.1 Mixture Density Networks

In Sect. 6.3 we have introduced mixture distributions and we have presented the EM
algorithm for fitting these mixture distributions. The EM algorithm considers two
steps, an expectation step (E-step) and a maximization step (M-step). The E-step is
motivated by (6.34). In this step the posterior distribution of the latent variable Z

is determined, given the observation Y and the parameter estimates for the model
parameters θ and p. The M-step (6.35) determines the optimal model parameters
θ and p, based on the observation Y and the posterior distribution of Z. Typically,
we explore MLE in the M-step. However, for the EM algorithm to function it is not
important that we really work with the maximum in the M-step, but monotonicity
in (6.38) is sufficient. Thus, if at algorithmic time t − 1 we have a parameter

estimate (̂θ
(t−1)

, p̂(t−1)), it suffices that the next estimate (̂θ
(t)

, p̂(t)) increases the
log-likelihood, without necessarily being the MLE; this latter approach is called
generalized EM (GEM) algorithm. Exactly this point makes it feasible to also use
the EM algorithm in cases where we model the parameters through networks which
are fit using gradient descent (ascent) algorithms. These methods go under the name
of mixture density networks (MDNs).

MDNs have been introduced by Bishop [35], who explores MDNs on Gaussian
mixtures, and using SGD and quasi-Newton methods for model fitting. MDNs have
also started to gain more popularity within the actuarial community, recent papers
include Delong et al. [95], Kuo [230] and Al-Mudafer et al. [6], the latter two
considering MDNs for claims reserving.

We recall the mixture density for a selected member of the EDF. The incomplete
log-likelihood of the data (Yi , xi , vi)1≤i≤n is given by, see (6.24),

(θ ,ϕ,p) �→ 	Y (θ,ϕ,p) =
n∑

i=1

	Yi (θ(xi),ϕ(xi),p(xi))

=
n∑

i=1

log

(
K∑

k=1

pk(xi)fk

(
Yi; θk(xi),

vi

ϕk(xi)

))
,

for canonical parameter θ = (θ1, . . . , θK)� ∈ � = �1 × · · · × �K , dispersion
parameter ϕ = (ϕ1, . . . , ϕK)� ∈ R

K+ , mixture probability p ∈ �K , and K denotes
the number of mixture components. MDNs model these parameters with networks.
Choose a FN network z(d :1) : Rq+1 → {1}×R

qd of depth d , with input dimension q

being equal to the dimension of the features x ∈ X ⊆ {1}×R
q and output dimension

qd + 1. This gives us the learned representations zi = z(d :1)(xi). These learned

514 11 Selected Topics in Deep Learning

representations are used to model the parameters. For the mixture probability p we
build a logistic categorical GLM, based on zi . For the (canonical) link h, we set
linear predictor, see (5.72),

h(p(zi)) = h
(
p
(
z(d :1)(xi)

))
= (〈βp

1 , zi〉, . . . , 〈βp
K, zi〉

)� ∈ R
K, (11.47)

with regression parameter βp = ((β
p
1)�, . . . , (β

p
K)�)� ∈ R

K(qd+1). For the
canonical parameter θ , the mean parameter μ, respectively, and the dispersion
parameter ϕ we proceed analogously. Choose strictly monotone and smooth link
functions gμ and gϕ , and consider the double GLMs, for 1 ≤ k ≤ K , on the learned
representations zi

gμ(μk(zi)) = 〈βμ
k , zi〉 and gϕ(ϕk(zi)) = 〈βϕ

k , zi〉, (11.48)

with regression parameters βμ = ((β
μ
1)�, . . . , (β

μ
K)�)� ∈ R

K(qd+1) for the
mean parameters and βϕ = ((β

ϕ
1)�, . . . , (β

ϕ
K)�)� ∈ R

K(qd+1) for the dispersion
parameters. Thus, altogether this gives us a network parameter of dimension, set
q0 = q ,

r =
d∑

m=1

qm(qm−1 + 1) + 3K(qd + 1).

Remarks 11.14

• The regression functions (11.47)–(11.48) use a slight abuse of notation, because,
strictly speaking, these should be functions w.r.t. the features xi ∈ X , i.e.,
we should understand the learned representations zi as a short form for xi �→
z(d :1)(xi).

• It is not fully correct to say that (11.47) is the logistic categorical GLM
of formula (5.72), because (11.47) does not lead to identifiable regression
parameters. In fact, we should reduce the dimension of the categorical GLM to
K − 1, by setting β

p
K = 0, see (5.70), because the probability of the last label

K is fully determined if we know the probabilities of all other labels; this would
also justify to say that h is the canonical link. Since in FN network modeling we
do not have identifiability anyway, we neglect this normalization (redundancy),
see line 16 of Listing 11.12, below.

• The above proposal (11.47)–(11.48) suggests to use the same network z(d :1)
for all mixture parameters involved. This requires that the chosen network is

11.6 Selected Applications 515

sufficiently large, so that it can comply simultaneously with these different tasks.
Alternatively, we could choose three separate (parallel) networks for p, μ and
ϕ, respectively. This second proposal does not (easily) allow for (non-trivial)
interactions between the parameters, and it may also suffer from less robustness
in fitting.

• Proposal (11.48) defines double GLMs for the mixture components fk , 1 ≤ k ≤
K . If we decide to not model the dispersion parameters feature dependent, i.e., if
we set ϕk(z) ≡ ϕk ∈ R+, then the mixture components are modeled with GLMs
on the learned representations zi = z(d :1)(xi). Nevertheless, this latter approach
still requires that the dispersion parameters ϕk are set to reasonable values, as
they enter the score equations, this can be seen from (6.29) adapted to MDNs.
Thus, in MDNs, the dispersion parameters do not cancel in the score equations,
which is different from the single distribution case. The dispersion parameter can
either be estimated (updated) during the M-step of the EM algorithm (supposed
we use the EM algorithm), or it can be pre-specified as a given hyper-parameter.

• As mentioned in Sect. 6.3, mixture density fitting can be challenging because,
in general, mixture density log-likelihoods are unbounded. Therefore, a suitable
initialization of the EM algorithm is important for a successful model fitting.
This problem is less pronounced in MDNs as we use early stopping in SGD
fitting that prevents the fitted parameters to depend on a small set of observations.
For instance, Example 6.13 cannot occur because an individual observation Y1
enters at most one (mini-)batch of SGD, and the SGD algorithm will provide
a good balance across all batches. Moreover, early stopping will imply that the
selected parameters must also be good on the validation data being disjoint (and
independent) from the training data.

• Delong et al. [95] present two different ways of fitting such MDNs. The crucial
property in EM fitting is to preserve the monotonicity in the M-step. For MDNs
this can either be achieved by using the parameters as offsets for the next EM
iteration (this is called ‘EM network boosting’ in Delong et al. [95]) or to forward
the network weights from one to the next loop (called ‘EM forward network’
in Delong et al. [95]). We are going to present the second option in the next
example.

Example 11.15 (Gamma Claim Size Modeling and MDNs) We revisit Exam-
ple 6.14 which models the claim sizes of the French MTPL data. For the modeling
of these claim sizes we choose the mixture distribution (6.39) which has four
gamma components f1, . . . , f4 and one Lomax component f5. In a first step we
again model these five mixture components independent of the feature information
x, and the feature information only enters the mixture probabilities p(x) ∈ �5.
This modeling approach has been motivated by Fig. 13.17 which suggests that
the features mainly result in systematic effects on the mixture probabilities. We
choose the same model and feature information as in Example 6.14. We only
replace the logistic categorical GLM part (6.40) for modeling p(x) by a depth
d = 2 FN network with (q1, q2) = (20, 10) neurons. Area, VehAge, DrivAge

516 11 Selected Topics in Deep Learning

and BonusMalus are modeled as continuous variables, and for the categorical
variables VehBrand and Region we choose two-dimensional embedding layers.

Listing 11.12 R code of the MDN for modeling the mixture probability p(x)

1 Design = layer_input(shape = c(4), dtype = ’float32’)
2 VehBrand = layer_input(shape = c(1), dtype = ’int32’)
3 Region = layer_input(shape = c(1), dtype = ’int32’)
4 Bias = layer_input(shape = c(1), dtype = ’float32’)
5 #
6 BrandEmb = VehBrand %>%
7 layer_embedding(input_dim = 11, output_dim = 2, input_length = 1) %>%
8 layer_flatten()
9 RegionEmb = Region %>%
10 layer_embedding(input_dim = 22, output_dim = 2, input_length = 1) %>%
11 layer_flatten()
12 #
13 pp = list(Design, BrandEmb, RegionEmb) %>% layer_concatenate() %>%
14 layer_dense(units=20, activation=’tanh’) %>%
15 layer_dense(units=10, activation=’tanh’) %>%
16 layer_dense(units=5, activation=’softmax’)
17 #
18 mu = Bias %>% layer_dense(units=4, activation=’exponential’,
19 use_bias=FALSE)
20 #
21 tail = Bias %>% layer_dense(units=1, activation=’sigmoid’,
22 use_bias=FALSE)
23 #
24 shape = Bias %>% layer_dense(units=4, activation=’exponential’,
25 use_bias=FALSE)
26 #
27 Response = list(pp, mu, tail, shape) %>% layer_concatenate()
28 #
29 keras_model(inputs = c(Design, VehBrand, Region, Bias), outputs = c(Response))

Listing 11.12 shows the chosen network. Lines 13–16model the mixture probability
p(x). We also integrate the modeling of the (homogeneous) parameters of the
mixture densities f1, . . . , f5. Lines 18 and 24 of Listing 11.12 consider the mean
and shape parameter of the gamma components, and line 21 the tail parameter 1/β5
of the Lomax component. Note that we use the sigmoid activation for this Lomax
parameter. This implies 1/β5 ∈ (0, 1) and, thus, β5 > 1, which enforces a finite
mean model. The exponential activations on lines 18 and 24 ensure positivity of
these parameters. The input Bias to these variables is simply the constant 1, which
is the homogeneous case not differentiating w.r.t. the features.
Observe that in most of the networks so far, the output of the network was
equal to an expected response of a random variable that we try to predict. In
this MDN we output the parameters of a distribution function, see line 27 of
Listing 11.12. In our case this output has dimension 14, which then enters the score
in Listing 11.13. In a first attempt we fit this MDN brute-force by just implementing
the incomplete log-likelihood received from (6.39). Since the gamma function
�(·) is not easily available in keras [77], we replace the gamma density by its
saddlepoint approximation, see Sect. 5.5.2. Listing 11.13 shows the negative log-
likelihood of the mixture density that is used to perform the brute-force SGD fitting.

11.6 Selected Applications 517

Listing 11.13 Mixture density negative incomplete log-likelihood

1 mixture_LogLikeli <- function(true, pred){ - k_mean(k_log(
2 pred[,1]*k_exp(-k_log(2*pi*true[,1]^2/pred[,11])/2 -
3 pred[,11]*(true[,1]/pred[,6]-1+k_log(pred[,6]/true[,1]))) +
4 pred[,2]*k_exp(-k_log(2*pi*true[,1]^2/pred[,12])/2 -
5 pred[,12]*(true[,1]/pred[,7]-1+k_log(pred[,7]/true[,1]))) +
6 pred[,3]*k_exp(-k_log(2*pi*true[,1]^2/pred[,13])/2 -
7 pred[,13]*(true[,1]/pred[,8]-1+k_log(pred[,8]/true[,1]))) +
8 pred[,4]*k_exp(-k_log(2*pi*true[,1]^2/pred[,14])/2 -
9 pred[,14]*(true[,1]/pred[,9]-1+k_log(pred[,9]/true[,1]))) +
10 pred[,5]*k_exp(k_log(1/(pred[,10]*M))-(1/pred[,10]+1)
11 *k_log(true[,1]/M+1))))
12 }

Lines 2–9 give the saddlepoint approximations to the four gamma components, and
line 10 the Lomax component for the scale parameter M . Note that this brute-force
approach is based only on the incomplete observation Y encoded in true[,1],
see Listing 11.13.
We fit this logistic categorical FN network of Listing 11.12 under the score function
of Listing 11.13 using the nadam version of SGD. Moreover, we use a stratified
training-validation split, otherwise we did not obtain a competitive model. The
results are presented in Table 11.12 on line ‘logistic FN network: brute-force fitting’.
We observe a slightly worse performance (in-sample) than in the logistic GLM. This
does not justify the use of the more complex network architecture. Or in other words,
feature pre-processing seems to been done suitably in Example 6.14.

In a next step, we fit this MDN with the (generalized) EM algorithm. The E-
step is exactly the same as in Example 6.14. For the M-step, having knowledge of
the (latent mixture component) variables Ẑi , 1 ≤ i ≤ n, implies that the mixture
probability estimation and the mixture density estimation completely decouples. As
a consequence, the parameters of the density components f1, . . . , f5 can directly
be estimated using univariate MLEs, this is the same as in Example 6.14. The
only part that needs further explanation is the estimation of the logistic categorical
FN network for p(x). In each loop of the EM iteration we would like to find the
optimal network parameter for p(x), and at the same time we have to ensure the
monotonicity (6.38). Following the ‘EM forward network’ approach of Delong et

Table 11.12 Mixture models for French MTPL claim size modeling; we set M = 2′000

# Param. 	Y (̂θ, p̂) μ̂ = Eθ̂ ,p̂[Y]
Empirical 2’266

Null model 13 −199’306 2’381

Logistic GLM, Example 6.14 193 −198’404 2’176

Logistic FN network: brute-force fitting 520 −198’623 2’003

Logistic FN network: EM fitting 520 −198’449 2’119

MDN: brute-force fitting 825 −198’178 2’144

MDN: EM fitting 825 −198’085 2’240

518 11 Selected Topics in Deep Learning

al. [95], this is most easily achieved by just initializing the FN network in loop t of
the algorithm with the optimal network parameter of the previous loop t − 1. Thus,
the starting parameter of SGD reflects the optimal parameter from the previous
step, and since SGD generally decreases losses, the monotonicity (6.38) holds. The
latter statement is not strictly true, SGD introduces additional randomness through
the building of (mini-)batches, therefore, monotonicity should be traced explicitly
(which also ensures that the early stopping rule is chosen suitably). We have
implemented such an EM-SGD algorithm, essentially, we just have to drop lines
17–28 of Listing 11.12 and lines 13–16 provide the entire response. As loss function
we choose the categorical (multi-class) cross-entropy loss, see (4.19). The results in
Table 11.12 on line ‘logistic FN network: EM fitting’ indicate a superior fitting
behavior compared to the brute-force fitting. Nevertheless, this network approach
is still not outperforming the GLM approach, saying that we should stay with the
simpler GLM.

In a final step, we also model the mean parameters μk(x), 1 ≤ k ≤ 4, of the
gamma components feature dependent, to see whether we can gain predictive power
from this additional flexibility or whether our initial model choice is sufficient. For
robustness reasons we neither model the shape parameters βk , 1 ≤ k ≤ 4, of
the gamma components feature dependent nor the tail parameter β5 of the Lomax
component. The implementation only requires small changes to Listing 11.12, see
Listing 11.14.
A brute-force fitting of the MDN architecture of Listing 11.14 can directly be based
on the score function (negative incomplete log-likelihood) of Listing 11.13. In the
case of the EM algorithm we need to change the score function to the complete
log-likelihood accounting for the variables Ẑi ∈ �5. This is done in Listing 11.15
where Ẑi is encoded in the variables true[,2] to true[,6].
We fit this MDN using the two different fitting approaches, and the results are given
on the last two lines of Table 11.12. Again the performance of the EM fitting is
slightly better than the brute-force fitting, and the bigger log-likelihoods indicate
that we can gain predictive power by also modeling the means of the gamma
components feature dependent.
Figure 11.21 compares the QQ plot of the resulting MDN with EM fitting to the
one received from the logistic categorical GLM of Example 6.14. These graphs are
very similar. We conclude that in this particular example it seems that the simpler
proposal of Example 6.14 is sufficient. �

In a next step, we try to understand which feature components influence the mix-
ture probabilities p(x) = (p1(x), . . . , pK(x))� most. Similarly to Examples 6.14
and 11.15, we therefore use a MDN where we only fit the mixture probability
p(x) with a network and the mixture components f1, . . . , fK are assumed to be
homogeneous.

Example 11.16 (MDN with LocalGLMnet) We revisit Example 11.15. We choose
the mixture distribution (6.39) which has four gamma components f1, . . . , f4 and
a Lomax component f5. We select their parameters independent of the features.
The feature information x should only enter the mixture probability p(x) ∈ �5,
similarly to the first part of Example 11.15. We replace the logistic FN network of

11.6 Selected Applications 519

Listing 11.14 R code of the MDN for modeling the mixture probability p(x) and the gamma
means μk(x)

1 Design = layer_input(shape = c(4), dtype = ’float32’)
2 VehBrand = layer_input(shape = c(1), dtype = ’int32’)
3 Region = layer_input(shape = c(1), dtype = ’int32’)
4 Bias = layer_input(shape = c(1), dtype = ’float32’)
5 #
6 BrandEmb = VehBrand %>%
7 layer_embedding(input_dim = 11, output_dim = 2, input_length = 1) %>%
8 layer_flatten()
9 RegionEmb = Region %>%
10 layer_embedding(input_dim = 22, output_dim = 2, input_length = 1) %>%
11 layer_flatten()
12 #
13 Network = list(Design, BrandEmb, RegionEmb) %>% layer_concatenate() %>%
14 layer_dense(units=20, activation=’tanh’) %>%
15 layer_dense(units=15, activation=’tanh’) %>%
16 layer_dense(units=10, activation=’tanh’)
17 #
18 pp = Network %>% layer_dense(units=5, activation=’softmax’)
19 #
20 mu = Network %>% layer_dense(units=4, activation=’exponential’,
21 use_bias=FALSE)
22 #
23 tail = Bias %>% layer_dense(units=1, activation=’sigmoid’,
24 use_bias=FALSE)
25 #
26 shape = Bias %>% layer_dense(units=4, activation=’exponential’,
27 use_bias=FALSE)
28 #
29 Response = list(pp, mu, tail, shape) %>% layer_concatenate()
30 #
31 keras_model(inputs = c(Design, VehBrand, Region, Bias), outputs = c(Response))

Listing 11.15 Mixture density negative complete log-likelihood

1 mixture_LogLikeli_Complete <- function(true, pred){ - k_mean(
2 true[,2]*(k_log(pred[,1])-k_log(2*pi*true[,1]^2/pred[,11])/2 -
3 pred[,11]*(true[,1]/pred[,6]-1+k_log(pred[,6]/true[,1]))) +
4 true[,3]*(k_log(pred[,2])-k_log(2*pi*true[,1]^2/pred[,12])/2 -
5 pred[,12]*(true[,1]/pred[,7]-1+k_log(pred[,7]/true[,1]))) +
6 true[,4]*(k_log(pred[,3])-k_log(2*pi*true[,1]^2/pred[,13])/2 -
7 pred[,13]*(true[,1]/pred[,8]-1+k_log(pred[,8]/true[,1]))) +
8 true[,5]*(k_log(pred[,4])-k_log(2*pi*true[,1]^2/pred[,14])/2 -
9 pred[,14]*(true[,1]/pred[,9]-1+k_log(pred[,9]/true[,1]))) +
10 true[,6]*(k_log(pred[,5])+k_log(1/(pred[,10]*M))-
11 (1/pred[,10]+1)*k_log(true[,1]/M+1)))
12 }

Example 11.15 for modeling p(x) by a LocalGLMnet such that we can analyze the
importance of the variables, see Sect. 11.5.

For the feature information we choose the continuous variables Area,
VehPower, VehAge, DrivAge and BonusMalus, the binary variable VehGas
and the categorical variables VehBrand and Region, thus, we extend by
VehPower and VehGas compared to Example 11.15. These latter two variables
have not been included previously, because they did not seem to be important

520 11 Selected Topics in Deep Learning

–4 –2 0 2 4

–2
0

2
4

o
b

se
rv

ed
 v

al
u

es
theoretical values

QQ plot

–4 –2 0 2 4

–2
0

2
4

o
b

se
rv

ed
 v

al
u

es

theoretical values

QQ plot

Fig. 11.21 QQ plots of mixture models: (lhs) logistic categorical GLM for mixture probabilities
and (rhs) for MDN with EM fitting

w.r.t. Fig. 13.17. The continuous and binary variables are centered and normalized
to unit variance. For the categorical variables we use two-dimensional embedding
layers, and afterwards they are concatenated with the continuous variables with
a subsequent normalization layer (to ensure that all components live on the same
scale). This provides us with a 10-dimensional feature vector. This feature vector
is complemented with an i.i.d. standard Gaussian component, called Random,
to perform an empirical Wald type test. We call this pre-processed feature (after
embedding and normalization of the categorical variables) x ∈ R

q0 with q0 = 11.
We design a LocalGLMnet that acts on this feature x ∈ R

q0 for modeling
a categorical multi-class output with K = 5 levels. Therefore, we choose the
regression attentions

z(d :1) : Rq0 → R
q0×K, x �→ β(x) = (β1(x), . . . ,βK(x)

) = z(d :1)(x),

where z(d :1) is a network of depth d having a matrix-valued output of dimension
q0 × K . For the (canonical) link h, this gives us the predictor, see (5.72),

h(p(x)) = (β1,0 + 〈β1(x), x〉, . . . , βK,0 + 〈βK(x), x〉)� ∈ R
K, (11.49)

with intercepts βk,0 ∈ R, and where βk(x) ∈ R
q0 is the k-th column of regression

attention β(x) = z(d :1)(x) ∈ R
q0×K . We also refer to the second item of

Remarks 11.14 concerning a possible dimension reduction in (11.49), i.e., in fact we
apply the softmax activation function to the right-hand side of (11.49), neglecting
the identifiability issue. Moreover, as in the introduction of the LocalGLMnet, we
separate the intercept components from the remaining features in (11.49).

We fit this LocalGLMnet-MDN with the EM version presented in Exam-
ple 11.15. We apply early stopping based on the same stratified training-validation

11.6 Selected Applications 521

split as in the aforementioned example, and this provides us with a log-likelihood
of -198’290, thus, slightly bigger than the corresponding numbers in Table 11.12.
More interestingly, our goal is to understand the regression attentions given by
β(xi) = (β1(xi), . . . ,β5(xi)) ∈ R

11×5 over all claims 1 ≤ i ≤ n. Figure 11.22
shows the resulting boxplots, where each of the five graphs corresponds to one
mixture component 1 ≤ k ≤ 5, and the different colors illustrate the 11 feature
components providing the attention weights βk,j (xi), 1 ≤ j ≤ 11. The red boxplots
show the purely random component Random for 1 ≤ k ≤ 5, which provides
the acceptance region of an empirical Wald test for the null hypothesis that the
corresponding term should be dropped. This is highlighted by the orange shaded
area (at a significance level of 0.1%). Thus, whenever a boxplot lies within this
orange shaded area we may consider dropping this term, e.g., for k = 2 (top-right),
this is the case for Area, VehPower and Region2 (being the second component
of the two-dimensional region embedding). Note that this interpretation needs some
care because we do not have identifiability in the class probabilities.

The first observation is that, indeed, VehPower is mostly in the orange
confidence area and, thus, may be dropped. This does not apply to the other feature
components, and, thus, we should keep them in themodel. The three gammamixture
components f1, f2 and f3 correspond to the three modes at 75, 600 and 1’175
in Fig. 13.17. Component f4 is a gamma component covering the whole range
of claims, and f5 is the Lomax component modeling the regular variation in the
tail. Interestingly, DrivAge and BonusMalus seem very important for mixture
components k = 1, k = 3 and k = 4 (with different signs), this is supported
by Fig. 13.17. The Lomax component seems mostly impacted by DrivAge,
VehBrand and Region. Only mixture component k = 2 is more difficult to
interpret. This component seems influenced by most the feature components, in
particular, the combination of VehAge, VehGas and VehBrand seems important.
This could mean that mixture component k = 2 belongs to a certain type of vehicle.

In a next step we could study interactions and their impact on the mixture
components, and LASSO regularization would provide us with another method of
variable selection, see Sect. 11.5.4.We refrain from doing so and close the example.

�

11.6.2 Estimation of Conditional Expectations

FN networks have also found their way into solving risk management problems.
We briefly introduce a valuation problem and then describe a way of solving
this problem. Assume we have a liability cash flow Y1:T = (Y1, . . . , YT) with
(random) payments Yt at time points t = 1, . . . , T . We assume that this liability
cash flow Y1:T is adapted to a filtration (At)1≤t≤T on the underlying probability
space (�,A,P). Moreover, we assume to have a pricing kernel (state price deflator)
ψ1:T = (ψ1, . . . , ψT) on that probability space which is an (At)1≤t≤T -adapted

522 11 Selected Topics in Deep Learning

R
an

do
m

A
re

a

V
eh

P
ow

er

V
eh

A
ge

D
riv

A
ge

B
on

us
M

V
eh

G
as

V
eh

ic
le

1

V
eh

ic
le

2

R
eg

io
n1

R
eg

io
n2

−0.6

−0.4

−0.2

0.0

0.2

0.4

importance measure for mixture component 1

R
an

do
m

A
re

a

V
eh

P
ow

er

V
eh

A
ge

D
riv

A
ge

B
on

us
M

V
eh

G
as

V
eh

ic
le

1

V
eh

ic
le

2

R
eg

io
n1

R
eg

io
n2

−0.4

−0.2

0.0

0.2

0.4

importance measure for mixture component 2

R
an

do
m

A
re

a

V
eh

P
ow

er

V
eh

A
ge

D
riv

A
ge

B
on

us
M

V
eh

G
as

V
eh

ic
le

1

V
eh

ic
le

2

R
eg

io
n1

R
eg

io
n2

−0.2

−0.1

0.0

0.1

0.2

0.3

importance measure for mixture component 3

R
an

do
m

A
re

a

V
eh

P
ow

er

V
eh

A
ge

D
riv

A
ge

B
on

us
M

V
eh

G
as

V
eh

ic
le

1

V
eh

ic
le

2

R
eg

io
n1

R
eg

io
n2

−0.2

−0.1

0.0

0.1

0.2

importance measure for mixture component 4

R
an

do
m

A
re

a

V
eh

P
ow

er

V
eh

A
ge

D
riv

A
ge

B
on

us
M

V
eh

G
as

V
eh

ic
le

1

V
eh

ic
le

2

R
eg

io
n1

R
eg

io
n2

−0.2

−0.1

0.0

0.1

0.2

importance measure for mixture component 5

Fig. 11.22 Boxplot of regression attentions β(xi) = (β1(xi), . . . ,β5(xi)) ∈ R
11×5 over all

claims 1 ≤ i ≤ n for the different mixture components f1, . . . , f5

11.6 Selected Applications 523

random vector with strictly positive components ψt > 0, a.s., for all 1 ≤ t ≤ T . A
no-arbitrage value of the outstanding liability cash flow at time 1 ≤ τ < T can be
defined by (we assume existence of all second moments)

Rτ =
T∑

s=τ+1

1

ψτ

E [ψsYs |Aτ] . (11.50)

For the mathematical background on no-arbitrage pricing using state price deflators
we refer to Wüthrich–Merz [393]. The Aτ -measurable quantity Rτ is called
reserves of the outstanding liabilities at time τ . From a risk management and
solvency point of view we would like to understand the volatility in the reserves
Rτ seen from time 0, i.e., we try to model the random variable Rτ seen from time
0 (based on the trivial σ -algebra A0 = {∅,�}). In applied problems, the difficulty
often is that the conditional expectations under the summation in (11.50) cannot be
computed in closed form. Therefore the law ofRτ cannot be determined explicitly.

We provide a numerical solution to the calculation of the conditional expectations
in (11.50). Assume that the information setAτ can be described by a random vector
Xτ , i.e., Aτ = σ(Xτ). In that case we rewrite (11.50) as follows

Rτ =
T∑

s=τ+1

1

ψτ
E [ψsYs |Xτ] . (11.51)

The latter now indicates that we can determine the conditional expectations
in (11.51) as regression functions in featuresXτ , and we try to understand for s > τ

xτ �→ E

[
ψs

ψτ

Ys

∣∣∣∣Xτ = xτ

]
. (11.52)

The random variable Rτ can then be determined empirically by simulation. This
requires two steps: (1) We have to be able to simulate ψsYs/ψτ , conditionally given
Xτ = xτ . This allows us to estimate the conditional expectation (11.52) with a
regression function. (2) We need to be able to simulate Xτ . This provides us with
the empirical occurrence probabilities of specific choicesXτ = xτ in (11.52) which
then gives an empirical version ofRτ .

In theory, this problem can be approached by nested simulations which is
a two-stage procedure that first performs step (2), and then calculates step (1)
empirically with Monte Carlo simulations for every realization of step (2), see,
e.g., Lee [242] and Glynn–Lee [161]. The disadvantage of this two-stage nested
simulation procedure is that it is computationally demanding. Building upon the
work on valuation of American options by Carriere [65], Tsitsiklis–Van Roy [356]
and Longstaff–Schwartz [257], the papers of Broadie et al. [55] and Ha–Bauer [177]
propose to regress future cash flows on finitely many basis functions depending on
the state variable Xτ . More recently, machine learning tools such as FN networks

524 11 Selected Topics in Deep Learning

have been proposed to determine these basis and regression functions, see, e.g.,
Cheridito et al. [74] or Krah et al. [224].

In the following, we assume that all random variables considered are square-
integrable and, thus, we can work in a Hilbert space with the scalar product
〈X,Z〉 = E[XZ] for X,Z ∈ L2(�,A,P). Moreover, for simplicity, we drop the
time indices and we also drop the stochastic discounting in (11.52) by assuming
ψs/ψτ ≡ 1. These simplifications are not essential technically and simplify our
outline. The conditional expectation μ(X) = E[Y |X] can then be found by the
orthogonal projection of Y onto the sub-space σ(X), generated by X, in the Hilbert
space L2(�,A,P). That is, the conditional expectation is the measurable function
μ : Rq → R, X �→ μ(X), that minimizes the mean squared error

E

[
(Y − μ(X))2

] != min, (11.53)

among all measurable functions on X. In Example 3.7, we have seen that μ(·) is the
minimizer of this problem if and only if

μ(x) = argmin
m∈R

∫
R

(y − m)2 dFY |x(y), (11.54)

for px-a.e. x ∈ R
q , where px is the distribution of X, and where FY |x is the

conditional distribution of Y , given feature X = x; we also refer to (3.6).
Under the assumption that we can simulate observations (Y,X) under P, we can

solve (11.53)–(11.54) approximately by restricting to a sufficiently rich family of
regression functions. Choose a FN network z(d :1) : Rq → R

qd of depth d and the
identity link g(x) = x. An optimal network parameter ϑ̂ is found by minimizing

ϑ̂ = argmin
ϑ∈Rr

1

n

n∑
i=1

(
Yi −

〈
β, z(d :1)(Xi)

〉)2
, (11.55)

where (Yi ,Xi), 1 ≤ i ≤ n, are i.i.d. copies of (Y,X). This provides us with the
fitted FN network ẑ(d :1)(·) and the fitted output parameter β̂. These can be used to
receive an approximation to the conditional expectation, solution of (11.54),

x �→ μ̂(x) =
〈
β̂, ẑ(d :1)(x)

〉
≈ μ(x) = E [Y |X = x] . (11.56)

This then allows us to approximate the random variable in (11.51) empirically by
simulating features X and inserting them into left-hand side of (11.56).

Remarks 11.17

• There are different types of errors involved. First, there is an irreducible
approximation error if the chosen family of FN networks is not sufficiently
rich to approximate the conditional expectation well. For example, if we choose
the hyperbolic tangent activation function, then, naturally, z(d :1)(·) is uniformly

11.6 Selected Applications 525

bounded for a fixed network parameter ϑ . This does not necessarily apply to
the conditional expectation E[Y |X = ·] and, thus, the approximation in the tail
may be poor. Second, we consider an approximation based on a finite sample
in (11.55). However, this error can be made arbitrarily small by letting n → ∞.
In-sample over-fitting should not be an issue as we may generate samples of
arbitrary large sample sizes. Third, having the approximation (11.56), we still
need to simulate i.i.d. samples Xk , k ≥ 1, having the same distribution as X to
empirically approximate the distribution of the random variable Rτ in (11.51).
Also in this step we benefit from the fact that we can simulate infinitely many
samples to mitigate this approximation error.

• To fit the network parameter ϑ in (11.55) we use i.i.d. copies (Yi ,Xi), 1 ≤ i ≤ n,
that have the same distribution as (Y,X) under P. However, to receive a good
approximation to regression function x �→ μ(x) we only need to simulate
Yi |{Xi=xi} from FY |xi (·) = P[·|Xi = xi], and Xi can be simulated from an
arbitrary equivalent distribution to px , and we still get the right conditional
expectation in (11.54). This is worth mentioning because if we need a higher
precision in some part of the feature space of X, we can apply a sort of
importance sampling by choosing a distribution for X that generates more
samples in the corresponding part of the feature space compared to the original
(true) distribution px of X; this proposal has been emphasized in Cheridito et
al. [74].

We study the example presented in Ha–Bauer [177] and Cheridito et al. [74].
This example considers a variable annuity (VA) with a guaranteed minimum income
benefit (GMIB), and we revisit the network approach of Cheridito et al. [74].

Example 11.18 (Approximation of Conditional Expectations) We consider the VA
example with a GMIB introduced and studied in Ha–Bauer [177]. This example
involves a 3-dimensional stochastic process, for t ≥ 0,

Xt = (qt , rt ,mx+t),

with qt being the log-value of the VA account at time t , rt is the short rate at time t ,
and mx+t is the force of mortality at time t of a person aged x at time 0. The payoff
at fixed maturity date T > 1 of this insurance contract is given by

S = S(XT) = max
{
eqT , b ax+T (rT ,mx+T)

}
,

where eqT is the VA account value at time T , and b ax+T (rT ,mx+T) is the GMIB at
time T consisting of a face value b > 0 and with ax+T (rT ,mx+T) being the value
of an immediate annuity at time T of a person aged x + T . Our goal is to model the
conditional expectation

μ(Xτ) = D(τ, T ; Xτ) E [S(XT)|Xτ] (11.57)

= D(τ, T ; Xτ) E
[
max

{
eqT , b ax+T (rT ,mx+T)

}∣∣Xτ

]
,

526 11 Selected Topics in Deep Learning

for a fixed valuation time point 0 < τ < T , and where D(τ, T) = D(τ, T ; Xτ)

is a σ(Xτ)-measurable discount factor. This requires the explicit specification of
the GMIB term as a function of (rT ,mx+T), the modeling of the stochastic process
(Xt)0≤t≤T , and the specification of the discount factor D(τ, T ; Xτ). In financial
and actuarial valuation the regression function μ(·) in (11.57) should reflect a no-
arbitrage price. Therefore, P in (11.57) should be an equivalent martingale measure
w.r.t. the selected numéraire. In our case, we choose a force of mortality (mx+t)t -
adjusted zero-coupon bond price as numéraire. This implies that P is a mortality-
adjusted forward measure; for details and its explicit derivation we refer to Sect. 5.1
of Ha–Bauer [177]. In particular, Ha–Bauer [177] introduce a three-dimensional
Brownian motion based model for (Xt)t from which they deduce all relevant terms
explicitly. We skip these calculations here, because, once the GMIB term and the
discount factor are determined, everything boils down to knowing the distribution
of the random vector (Xτ ,XT) under the corresponding probability measure P. We
choose initial age x = 55, maturity T = 15 and (solvency) time horizon τ = 1.
Under the model and parametrization of Ha–Bauer [177] we receive a multivariate
Gaussian distribution under P given by

(Xτ ,XT)� = (qτ , rτ ,mx+τ , qT , rT ,mx+T)� (11.58)

∼ N

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝

4.64
0.02
0.01
4.71
0.02
0.03

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

3.2 · 10−2 −4.8 · 10−4 1.3 · 10−5 3.1 · 10−2 −1.4 · 10−5 3.6 · 10−5

−4.8 · 10−4 7.9 · 10−5 −4.4 · 10−7 −1.7 · 10−4 2.4 · 10−6 −1.2 · 10−6

1.3 · 10−5 −4.4 · 10−7 1.5 · 10−6 1.2 · 10−5 −1.3 · 10−8 4.1 · 10−6

3.1 · 10−2 −1.7 · 10−4 1.2 · 10−5 4.5 · 10−1 −1.3 · 10−3 3.0 · 10−4

−1.4 · 10−5 2.4 · 10−6 −1.3 · 10−8 −1.3 · 10−3 2.0 · 10−4 −2.5 · 10−6

3.6 · 10−5 −1.2 · 10−6 4.1 · 10−6 3.0 · 10−4 −2.5 · 10−6 7.4 · 10−5

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ .

Under the model specification of Ha–Bauer [177], one can furthermorework out the
discount factor and the annuity. Define for t ≥ 0 and k > 0 the affine term structure

F(t, k; rt ,mx+t) = exp {A(t, t + k) − B(t, t + k; α)rt − B(t, t + k; −κ)mx+t} ,

with deterministic functions

B(t, t + k;α) = 1 − e−αk

α
,

A(t, t + k) = γ̄ (B(t, t + k;α) − k) + σ 2
r

2α2 (k − 2B(t, t + k;α) + B(t, t + k; 2α))

+ ψ2

2κ2 (k − 2B(t, t + k;−κ) + B(t, t + k;−2κ))

+ �2,3σrψ

ακ
(B(t, t + k;−κ) − k + B(t, t + k;α) − B(t, t + k; α − κ)) ,

with parameters for the short rate process α = 25%, σr = 1%, for the force of
mortality κ = 7%, ψ = 0.12%, the correlation between the short rate and the force
of mortality �2,3 = −4%, and with market-price of the risk-adjusted mean reversion

11.6 Selected Applications 527

Fig. 11.23 Marginal
densities of the VA account
value eqT and the GMIB
value b ax+T (rT ,mx+T)

2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

marginal densities of VA account and GMIB

log scale

de
ns

ity

VA account value
GMIB value

level γ̄ = 1.92% of the short rate process. These formulas can be retrieved because
we work under an affine Gaussian structure. The discount factor is then given by

D(τ, T ; Xτ) = F(τ, T − τ ; rτ ,mx+τ),

and the annuity is determined by (we cap at age 55 + 50 = 105)

ax+T (rT ,mx+T) =
50∑

k=1

F(T , k; rT ,mx+T).

Moreover, we set for the face value b = 10.79205. This parametrization implies that
the VA account value eqT exceeds the GMIB b ax+T (rT ,mx+T) with a probability
of roughly 40%, i.e., in roughly 60% of the cases we exercise the GMIB option.
Figure 11.23 shows the marginal densities of these two variables, moreover, their
correlation is close to 0.
The model is now fully specified so that we can estimate the conditional expectation
in (11.57) as a function of Xτ . We therefore simulate n = 3′000′000 i.i.d. Gaussian
observations (X

(i)
τ ,X

(i)
T), 1 ≤ i ≤ n, from (11.58). This provides us with the

observations

Yi = D(τ, T ; X(i)
τ) S(X

(i)
T)

= F(τ, T − τ ; r(i)
τ ,m

(i)
x+τ) max

{
eq

(i)
T , b

50∑
k=1

F(T , k; r
(i)
T ,m

(i)
x+T)

}
.

The resulting data (Yi ,X
(i)
τ)1≤i≤n is used for determining the regression function

μ(·) in (11.57). We choose n = 3′000′000 samples in line with the least squares
Monte Carlo approximation of Ha–Bauer [177].

528 11 Selected Topics in Deep Learning

We choose a FN network of depth d = 3 for approximatingμ(·). For the three FN
layers we choose (q1, q2, q3) = (20, 15, 10) neurons with the hyperbolic tangent
activation function, and as output activation we choose the identity function; we
choose a more complex network compared to Cheridito et al. [74] because it seems
that this gives us more accurate results. We fit this FN network using the square loss
function. The square loss is motivated by (11.55). Furthermore, we average over 20
runs with different seeds. Thus, we receive 20 fitted FN networks μ̂k(·) for the 20
different seeds 1 ≤ k ≤ 20 and the nagging predictor is obtained by averaging

μ̂(·) = 1

20

20∑
k=1

μ̂k(·).

We then generate new i.i.d. samplesX
(l)
τ , 1 ≤ l ≤ L, from the multivariate Gaussian

distribution (11.58), where this time we only need the first 3 components. This gives
us the empirical samples

μ̂(X(l)
τ) for 1 ≤ l ≤ L, (11.59)

providing an empirical distribution F̂μ(Xτ) that approximates the distribution of
μ(Xτ), given in (11.57). In risk management and solvency analysis, this empirical
distribution can be used to estimate the Value-at-Risk (VaR) and the (upper)
conditional tail expectation (CTE) in valuation μ(Xτ), seen from time 0, on
different safety levels p ∈ (0, 1)

V̂aRp = F̂−1
μ(Xτ)(p) = inf

{
y ∈ R; F̂μ(Xτ)(y) ≥ p

}
,

and

ĈTEp = EF̂μ(Xτ)

[
μ̂(Xτ)

∣∣ μ̂(Xτ) > V̂aRp

]
.

We also refer to Sect. 11.3. The VaR and the CTE are two commonly used risk
measures in insurance practice that determine the necessary risk bearing capital to
run the corresponding insurance business. Typically, the VaR is evaluated on p =
99.5%, i.e., we allow for a default probability of 0.5% of not being able to cover
the changes in valuation over a τ = 1 year time horizon. Alternatively, the CTE is
considered on p = 99% which means that we need sufficient capital to cover on
average the 1% worst changes in valuation over a 1 year time horizon.
Figure 11.24 shows our FN network approximations. The boxplots shows the
individual results of the estimates μ̂k(·) with 20 different seeds, and the horizontal
lines show the results of the nagging predictor (11.59). The red line at 140.97
gives the estimated VaR for p = 99.5%, this value is slightly bigger than the best
estimate of 139.47 (orange line) in Ha–Bauer [177] which is based on a functional
approximation involving 37 monomials and 40’000’000 simulated samples. CTEs
on p = 99.5% and p = 99% are given by 145.09 and 141.49. We conclude that in
the present example V̂aR99.5% (used in Europe) and ĈTE99% (used in Switzerland)
are approximately of the same size for this VA with a GMIB.

11.6 Selected Applications 529

Fig. 11.24 Resulting
V̂aR99.5% (red), ĈTE99.5%
(green) and ĈTE99% (blue);
the orange line gives the
result of Ha–Bauer [177] for
the 99.5% VaR

VaR99.5% CTE99.5% CTE99%

14
0

14
2

14
4

14
6

139.47

140.97

141.49

145.09

This example shows how problems can be solved that require the computation
of a conditional expectation. Alternatively, we could explore the LocalGLMnet
architecture, which would allow us to explain the conditional expectation more
explicitly in terms of the information Xτ available at time τ . This may also be
relevant in practice because it allows to determine the main risk drivers of the
underlying insurance business.
Figure 11.25 shows the marginal densities of the components of Xτ =
(qτ , rτ ,mx+τ) in blue color. In red color we show the corresponding conditional
densities of Xτ , conditioned on μ̂(Xτ) > V̂aR99.5%, thus, these are the feature
values Xτ that lead to a shortfall beyond the 99.5% VaR of μ̂(Xτ). From this
figure we conclude that the main driver of VaR is the VA account variable qτ ,
whereas the short rate rτ and the force of mortality mx+τ are slightly lower beyond
the VaR compared to their unconditioned counterparts. The explanation for these
smaller values is that they lead to less discounting and, henceforth, to bigger GMIB
values. This is useful information for exploring importance sampling as mentioned
in Remarks 11.17. This closes the example. �

4.0 4.5 5.0 5.5

0
1

2
3

4

component X1 triggering VaR99.5%

de
ns

ity

above VaR99.5%
full density X1

−0.02 0.00 0.02 0.04 0.06

0
10

20
30

40
50

component X2 triggering VaR99.5%

de
ns

ity

above VaR99.5%
full density X2

0.004 0.006 0.008 0.010 0.012 0.014 0.016

0
50

10
0

15
0

20
0

25
0

30
0

component X3 triggering VaR99.5%

de
ns

ity

above VaR99.5%
full density X3

Fig. 11.25 Feature values Xτ triggering VaR on the 99.5% level: (lhs) VA account log-value qτ ,
(middle) short rate rτ , and (rhs) force of mortality mx+τ , blue color shows the full density and red
color shows the conditional density conditioned on being above the 99.5% VaR of μ̂(Xτ)

530 11 Selected Topics in Deep Learning

11.6.3 Bayesian Networks: An Outlook

This section provides a short introduction to Bayesian networks and to variational
inference. We see this section as a motivation for doing more research in that
direction. In Sect. 11.4 we have assessed model uncertainty through bootstrapping.
Alternatively, we could take a Bayesian viewpoint. We start from a fixed network
architecture that involves a network parameter ϑ . The Bayesian approach consid-
ered in Section 6.1 selects a prior density π(ϑ) on the space of network parameters
(w.r.t. a measure ν). For given data (Y, x)we can then calculate the posterior density
of ϑ by

π (ϑ| Y, x) ∝ f (Y,ϑ |x) = f (Y | ϑ, x) π(ϑ). (11.60)

A new data point Y † with feature x† has conditional density, given observation
(Y, x),

f
(
y†
∣∣∣x†; Y, x

)
=
∫

ϑ

f
(
y†
∣∣∣ϑ, x†

)
π (ϑ| Y, x) dν(ϑ),

supposed that (Y, x) and (Y †, x†) are conditionally independent, given ϑ . Thus,
there only remains to determine the posterior density (11.60) of the network
parameter ϑ . Unfortunately, this is a rather challenging problem because of the
curse of dimensionality, and even advanced MCMC methods, such as HMC, often
do not lead to satisfactory results (convergence), for MCMCwe refer to Section 6.1.
For this reason one often explores approximate inference methods, see, e.g.,
Chapter 10 of Bishop [36] or the tutorial of Jospin et al. [205]. A scalable version
is to approximate the posterior density using the so-called method of variational
inference. This is presented in the following.

Choose a family F = {q(·; θ); θ ∈ �} of (more tractable) densities that have
the same support as the prior π(·), and being parametrized by θ ∈ � ⊂ R

K . This
family F is called the set of variational distributions, and the goal is to find the
variational density q(·; θ) ∈ F that is closest to the posterior density (11.60).

To evaluate the similarity between two densities, we use the KL divergencewhich
analyzes the divergence from π (·|Y, x) to q(·; θ) given by

DKL

(
q(·; θ)

∣∣∣∣∣∣π (·|Y, x)

)
=
∫

ϑ

q(ϑ; θ)log

(
q(ϑ; θ)

π (ϑ| Y, x)

)
dν(ϑ).

The optimal approximation within F , for given data (Y, x), is found by solving

θ̂ = θ̂ (Y, x) = argmin
θ∈�

DKL

(
q(·; θ)

∣∣∣∣∣∣π (·|Y, x)
)

;

for the moment we neglect existence and uniqueness questions. A main difficulty is
the computation of this KL divergence because it involves the intractable posterior

11.6 Selected Applications 531

density of ϑ , given (Y, x). We modify the optimization problem such that we can
circumvent the explicit calculation of this KL divergence.

Lemma 11.19 We have the following identity

logf (Y |x) = E(θ |Y, x) + DKL

(
q(·; θ)

∣∣∣∣∣∣π (·| Y, x)
)

,

for the (unconditional) density f (y|x) = ∫
ϑ f (y|ϑ, x)π(ϑ)dν(ϑ) and the so-

called evidence lower bound (ELBO)

E(θ |Y, x) =
∫

ϑ

q(ϑ; θ)log

(
f (Y,ϑ |x)

q(ϑ; θ)

)
dν(ϑ).

Observe that the left-hand side in the statement of Lemma 11.19 is independent of
θ ∈ �. Therefore, minimizing the KL divergence in θ is equivalent to maximizing
the ELBO in θ . This follows exactly the same philosophy as the EM algorithm,
see (6.32), in fact, the ELBO E plays the role of functionalQ defined in (6.33).
Proof of Lemma 11.19 We start from the left-hand side of the statement

logf (Y |x) =
∫

ϑ

q(ϑ; θ)logf (Y |x) dν(ϑ) =
∫

ϑ

q(ϑ; θ)log

(
f (Y,ϑ |x)

π(ϑ |Y, x)

)
dν(ϑ)

=
∫

ϑ

q(ϑ; θ)log

(
f (Y,ϑ |x)/q(ϑ; θ)

π(ϑ |Y, x)/q(ϑ; θ)

)
dν(ϑ)

= E(θ |Y, x) + DKL

(
q(·; θ)

∣∣∣∣∣∣π (·|Y, x)

)
.

This proves the claim. 	

The ELBO provides the lower bound (also called variational lower bound)

logf (Y |x) ≥ sup
θ∈�

E(θ |Y, x).

Interestingly, the ELBO does not include the posterior density, but only the joint
density of Y and ϑ , given x, which is assumed to be known (available). It can be
rewritten as

E(θ |Y, x) =
∫

ϑ

q(ϑ; θ)logf (Y,ϑ |x) dν(ϑ) −
∫

ϑ

q(ϑ; θ)logq(ϑ; θ) dν(ϑ)

= Eq(·;θ)

[
logf (Y,ϑ |x)

∣∣∣Y, x
]

− Eq(·;θ)

[
logq(ϑ; θ)

]
,

the first term being the expected joint log-likelihood of (Y,ϑ) under the variational
density ϑ ∼ q(·; θ), and the second term being the entropy of the variational density.

532 11 Selected Topics in Deep Learning

The optimal approximation within F for given data (Y, x) is then found by
solving

θ̂ = θ̂ (Y, x) = argmax
θ∈�

E(θ |Y, x).

That is we try to simultaneously maximize the expected joint log-likelihood of
(Y,ϑ) and the entropy over all variational densities q(·; θ) in F .

If we have multiple observations D = {(Yi , xi); 1 ≤ i ≤ n}, that are
conditionally i.i.d., given ϑ , we have to solve (we use conditional independence)

θ̂ = argmax
θ∈�

E(θ |D)

= argmax
θ∈�

Eq(·;θ)

[
log

(
π(ϑ)

n∏
i=1

f (Yi |ϑ, xi)

)∣∣∣∣∣D
]

− Eq(·;θ)

[
logq(ϑ; θ)

]

= argmax
θ∈�

(
n∑

i=1

Eq(·;θ)

[
logf (Yi | ϑ, x i)

∣∣∣Yi, x i

])
− Eq(·;θ)

[
log

(
q(ϑ; θ)

π(ϑ)

)]

= argmax
θ∈�

(
n∑

i=1

Eq(·;θ)

[
logf (Yi | ϑ, x i)

∣∣∣Yi, x i

])
− DKL (q(·; θ)‖π) .

Typically, one solves this problem with gradient ascent methods which requires
calculation of the gradient ∇θ of the objective function on the right-hand side. This
is more difficult than plain vanilla gradient descent in network fitting because θ

enters the expectation operator Eq(·;θ).
Kingma–Welling [217] propose to use the following reparametrization trick.

Assume that we can receive the random variable ϑ ∼ q(·; θ) by a reparametrization

ϑ
(d)= t (ε, θ) for some smooth function t and where ε ∼ p does not depend on θ .

E.g., if ϑ is multivariate Gaussian with mean μ and covariance matrix AA�, then
ϑ

(d)= μ+ Aε for ε being standard multivariate Gaussian. Under the assumption that
the reparametrization trick works for the family F = {q(·; θ); θ ∈ �} we arrive at,
for ε ∼ p,

θ̂ = argmax
θ∈�

E(θ |D) (11.61)

= argmax
θ∈�

n∑
i=1

(
Ep

[
logf (Yi | t (ε, θ), xi)

∣∣∣Yi, xi

]
− 1

n
Ep

[
log

(
q(t (ε, θ); θ)

π(t (ε, θ))

)])

= argmax
θ∈�

n∑
i=1

Ep

[
log

(
f (Yi |t (ε, θ), xi) π (t (ε, θ))1/n

q (t (ε, θ); θ)1/n

)∣∣∣∣∣ Yi, xi

]
.

11.6 Selected Applications 533

The gradient of the ELBO is then given by (supposed we can exchange Ep and ∇θ)

∇θ E(θ |D) =
n∑

i=1

Ep

[
∇θ log

(
f (Yi |t (ε, θ), x i) π (t (ε, θ))1/n

q (t (ε, θ); θ)1/n

)∣∣∣∣∣ Yi, x i

]
.

These expected gradients are calculated empirically using Monte Carlo methods.
Sample i.i.d. observations ε(i,j) ∼ p, 1 ≤ i ≤ n and 1 ≤ j ≤ m, and consider the
empirical approximation

∇θE(θ |D) ≈
n∑

i=1

1

m

m∑
j=1

∇θ log

(
f
(
Yi

∣∣t (ε(i,j), θ), xi

)
π
(
t (ε(i,j), θ)

)1/n

q
(
t (ε(i,j), θ); θ

)1/n

)
.

(11.62)

Using this empirical approximation we can use gradient ascent methods to estimate
θ , known as stochastic gradient variational Bayes (SGVB) estimator, see Sect. 2.4.3
of Kingma–Welling [217], or as Bayes by Backprop, see Blundell et al. [41] and
Jospin et al. [205].

Example 11.20 We consider the gradient (11.62) for an example from the EDF.
First, if n is sufficiently large, it often suffices to set m = 1, and we still receive
an accurate estimate. In that case we drop index j giving ε(i). Assume that the
(conditionally independent) observations Yi belong to the same member of the EDF
having cumulant function κ . Moreover, assume that the (conditional) mean of Yi ,
given xi , can be described by a FN network and a link function g such that, see (7.8),

μi = μ(xi) = μϑ (xi) = g−1
〈
β, z(d :1)

w (xi)
〉
,

for network parameter ϑ = (β,w) ∈ R
r . In a Bayesian FN network this network

parameter is not fixed but rather acts as a latent variable. In (11.62) this latent
variable is for realization i given by (and using the reparametrization trick) ϑ =
t (ε(i); θ) ∈ R

r ; θ is not the canonical parameter, here. Thus, we receive conditional
mean of Yi , given ε(i) and xi ,

μi = μt(ε(i);θ)(xi) = g−1
〈
β(ε(i); θ), z

(d :1)
w(ε(i);θ)

(xi)
〉
,

with network parameter ϑ(ε(i); θ) = (β(ε(i); θ),w(ε(i); θ)) = t (ε(i), θ) ∈ R
r .

Maximizing the ELBO implies that we need to calculate the gradients w.r.t. θ . First,
we calculate the gradient w.r.t. the network parameter ϑ of the data log-likelihood

∇ϑ logf (Yi |ϑ, xi) = ∇ϑ	Yi (ϑ) ∈ R
r .

This gradient is calculated with back-propagation, we refer to (7.16) and Proposi-
tion 7.5. There remains the chain rule for evaluating the inner derivative coming

534 11 Selected Topics in Deep Learning

from the reparametrization trick θ ∈ � ⊂ R
K �→ ϑ = t (ε(i); θ) ∈ R

r . Consider
the Jacobian matrix

J (θ; ε(i)) =
(

∂

∂θk
tj (ε

(i); θ)

)
1≤j≤r,1≤k≤K

∈ R
r×K.

This gives us the gradient w.r.t. θ

∇θ logf
(
Yi

∣∣∣t (ε(i), θ), xi

)
= J (θ; ε(i))�

(
∇ϑ	Yi (ϑ)

∣∣∣
ϑ=t (ε(i),θ)

)
∈ R

K.

(11.63)

The prior distribution is often taken to be the multivariate Gaussian with prior mean
τ ∈ R

r and (symmetric and positive definite) prior covariance matrix T ∈ R
r×r ,

thus,

π(ϑ) = ((2π)r/2|T |1/2)−1 exp

{
−1

2
(ϑ − τ)�T −1(ϑ − τ)

}
.

This implies for the gradient w.r.t. θ for the prior

∇θ logπ(t (ε(i), θ)) = −J (θ; ε(i))�T −1
(
t (ε(i), θ) − τ

)
∈ R

K.

There remains the choice of the familyF = {q(·; θ); θ ∈ �} of variational densities
such that the reparametrization trick works. This is discussed in the remainder. �

We briefly discuss the most popular and simplest family chosen for the varia-
tional distributions F . This family is the so-called mean field Gaussian variational
family, meaning that all components of ϑ ∈ R

r are assumed to be independent
Gaussian, that is,

q(ϑ; θ) =
r∏

j=1

1√
2πσj

exp

{
− 1

2σ 2
j

(ϑj − μj)
2

}
,

for θ = (μ1, σ1, . . . , μr , σr)
� ∈ R

K with K = 2r and with σj > 0 for all 1 ≤ j ≤
r . This allows us to apply the reparametrization trick

ϑ
(d)= t (ε, θ) = μ + diag(σ1, . . . , σr)ε =

⎛
⎜⎝

μ1 + σ1ε1
...

μr + σrεr

⎞
⎟⎠ ,

11.6 Selected Applications 535

with r-dimensional standard Gaussian variable ε ∼ N (0,1). The Jacobian matrix
is

J (θ; ε) =

⎛
⎜⎜⎜⎝
1 ε1 0 0 · · · 0 0
0 0 1 ε2 · · · 0 0
...

. . .
...

0 0 0 0 · · · 1 εr

⎞
⎟⎟⎟⎠ ∈ R

r×K.

The mean field Gaussian case provides the entropy of the variational distribution

−Eq(·;θ)

[
logq(ϑ; θ)

]
=

r∑
j=1

1

2
log(2πσ 2

j) + 1

2
=

r∑
j=1

log(
√
2πeσj).

This mean field Gaussian variational inference can be implemented with the R
package tfprobability of Keydana et al. [212] and an explicit example is
given in Kuo [230].

Example 11.20, Revisited Working under the assumptions of Example 11.20 and
additionally assuming that the family of variational distributions F is multivariate

Gaussian q(·; θ)
(d)= N (μ,�) leads us after some calculation to (the well-known

formula)

DKL

(
q(·; θ)

∣∣∣∣∣∣π) = 1

2

[
log

(|T |
|�|
)

− r + trace
(
T −1�

)
+ (τ − μ)�T −1(τ − μ)

]
.

This further simplifies if T and � are diagonal, the latter being the mean field
Gaussian case. The remaining terms of the ELBO are treated empirically as
in (11.63). �

This section has provided a short introduction to uncertainty estimation in
networks using Bayesian methods. We believe that this gives a promising outlook
that certainly needs more theoretical and practical work to become useful in
practical applications.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

 506 3474 a 506 3474 a

http://creativecommons.org/licenses/by/4.0/

	11 Selected Topics in Deep Learning
	11.1 Deep Learning Under Model Uncertainty
	11.1.1 Recap: Tweedie's Family
	11.1.2 Lab: Claim Size Modeling Under Model Uncertainty
	Generalized Linear Models
	Deep FN Networks
	Robustified Representation Learning
	Using Forecast Dominance to Deal with Model Uncertainty
	Nagging Predictor

	11.1.3 Lab: Deep Dispersion Modeling
	11.1.4 Pseudo Maximum Likelihood Estimator

	11.2 Deep Quantile Regression
	11.2.1 Deep Quantile Regression: Single Quantile
	11.2.2 Deep Quantile Regression: Multiple Quantiles
	11.2.3 Lab: Deep Quantile Regression

	11.3 Deep Composite Model Regression
	11.3.1 Joint Elicitability of Quantiles and Expected Shortfalls
	11.3.2 Lab: Deep Composite Model Regression

	11.4 Model Uncertainty: A Bootstrap Approach
	11.5 LocalGLMnet: An Interpretable Network Architecture
	11.5.1 Definition of the LocalGLMnet
	11.5.2 Variable Selection in LocalGLMnets
	11.5.3 Lab: LocalGLMnet for Claim Frequency Modeling
	11.5.4 Variable Selection Through Regularization of the LocalGLMnet
	11.5.5 Lab: LASSO Regularization of LocalGLMnet

	11.6 Selected Applications
	11.6.1 Mixture Density Networks
	11.6.2 Estimation of Conditional Expectations
	11.6.3 Bayesian Networks: An Outlook

