
Chapter 10
Natural Language Processing

Natural language processing (NLP) is a vastly growing field that is studying lan-
guage, communication and text recognition. The purpose of this chapter is to present
an introduction to NLP. Important milestones in the field of NLP are the work of
Bengio et al. [28, 29] who have introduced the idea of word embedding, the work
of Mikolov et al. [275, 276] who have developed word2vec which is an efficient
word embedding tool, and the work of Pennington et al. [300] and Chaubard et
al. [68] who provide the pre-trained word embedding model GloVe1 and detailed
educational material.2 An excellent overview of the NLP working pipeline is
provided by the tutorial of Ferrario–Nägelin [126]. This overview distinguishes
three approaches: (1) the classical approach using bag-of-words and bag-of-part-
of-speech models to classify text documents; (2) the modern approach using word
embeddings to receive a low-dimensional representation of the dictionary, which
is then further processed; (3) the contemporary approach uses a minimal amount
of text pre-processing but directly feeds raw data to a machine learning algorithm.
We discuss these different approaches and show how they can be used to extract
the relevant information from claim descriptions to predict the claim types and the
claim sizes; in the actuarial literature first papers on this topic have been published
by Lee et al. [236] and Manski et al. [264].

10.1 Feature Pre-processing and Bag-of-Words

NLP requires an extensive feature pre-processing and engineering as different texts
can be rather diverse in language, grammar, abbreviations, typos, etc. The current
developments aim at automating this process, nevertheless, many of these steps

1 https://nlp.stanford.edu/projects/glove/.
2 https://nlp.stanford.edu/teaching/.
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426 10 Natural Language Processing

are still (tedious) manual work. Our goal here is to present the whole working
pipeline to process language, perform text recognition and text understanding. As
an example we use the claim data described in Chap. 13.3; this data has been made
available through the book project of Frees [135], and it comprises property claims
of governmental institutions in Wisconsin, US. An excerpt of the data is given in
Listing 10.1; our attention applies to line 11 which provides a (very) short claim
description for every claim.

Listing 10.1 Excerpt of the Wisconsin Local Government Property Insurance Fund (LGPIF) data
set with short claim descriptions on line 11

1 ’data.frame’: 5424 obs. of 10 variables:
2 $ PolicyNum : int 120002 120003 120003 120003 120003 120003 120003 ...
3 $ Year : int 2010 2007 2008 2007 2009 2010 2007 2007 2009 2007 ...
4 $ Claim : num 6839 2085 8775 600 34610 ...
5 $ Deduct : int 1000 5000 5000 5000 5000 5000 5000 5000 5000 5000 ...
6 $ EntityType : Factor w/ 6 levels "City","County",..: 2 2 2 2 2 2 2 2 2 2 ...
7 $ CoverageCode: Factor w/ 13 levels "CE","CF","CS",..: 12 12 11 11 11 12 ...
8 $ Fire5 : int 4 0 0 0 0 0 0 0 0 0 ...
9 $ CountyCode : Factor w/ 72 levels "ADA","ASH","BAR",..: 2 3 3 3 3 3 3 3...
10 $ Hazard : Factor w/ 9 levels "Fire","Hail",..: 3 3 5 5 9 6 3 3 3 3 ...
11 $ Description : chr "lightning damage" "lightning damage at Comm. Center" ...

In a first step we need to pre-process the texts to make them suitable for predictive
modeling. This first step is called tokenization. Essentially, tokenization labels the
words with integers, that is, the used vocabulary is encoded by integers. There are
several issues that one has to deal with in this first step such as upper and lower
case, punctuation, orthographic errors and differences, abbreviations, etc. Different
treatments of these issues will lead to different results, for more on this topic we
refer to Sect. 1 in Ferrario–Nägelin [126]. We simply use the standard routine
offered in R keras [77] called text_tokenizer() with its standard settings.

Listing 10.2 Tokenization within R keras [77]

1 library(keras)
2
3 ## initialize tokenizer and fit
4 tokenizer <- text_tokenizer() %>% fit_text_tokenizer(dat$Description)
5
6 ## number of tokens/words
7 length(tokenizer$word_index)
8
9 ## frequency of word appearances in each text
10 freq.text <- texts_to_matrix(tokenizer, dat$Description, mode = "count")

The R code in Listing 10.2 shows the crucial steps in tokenization. Line 4 extracts
the relevant vocabulary from all available claim descriptions. In total the 5’424 claim
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descriptions of Listing 10.1 use W = 2′237 different words. This double counts
different spellings, e.g., ‘color’ vs. ’colour’.
Figure 10.1 shows the most frequently used words in the claim descriptions of
Listing 10.1. These are (in this order): ‘at’, ‘damage’, ‘damaged’, ‘vandalism’,
‘lightning’, ‘to’, ‘water’, ‘glass’, ‘park’, ‘fire’, ‘hs’, ‘wind’, ‘light’, ‘door’, ‘es’,
‘and’, ‘of’, ‘vehicle’, ‘pole’ and ‘power’. We observe that many of these words
are directly related to insurance claims, such as ‘damage’ and ‘vandalism’, others
are frequent stopwords like ‘at’ and ‘to’, and then there are abbreviations like ‘hs’
and ‘es’ standing for high school and elementary school.

Listing 10.3 Word and text encoding

1 maxlen <- max(rowSums(freq.text))
2
3 ## encode the sentences
4 text.seq <- texts_to_sequences(tokenizer, dat$Description)
5
6 ## pad the sentences
7 text.seq.pad <- pad_sequences(text.seq, maxlen = maxlen, padding = "post")
8
9 ## examples
10 lightning/hail damage to equip at airport
11 5 48 2 6 196 1 40 0 0 0 0
12 ##
13 garage door damaged
14 36 14 3 0 0 0 0 0 0 0 0

The next step is to assign the (integer) labels 1 ≤ w ≤ W from the tokenization
to the words in the texts. The maximal length over all texts/sentences is T = 11
words. This step and padding the sentences with zeros to equal length T is presented
on lines 1–7 of Listing 10.3. Lines 11 and 14 of this listing give two explicit text
examples

text = (w1, . . . , wT )� ∈ WT
0 ,
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where we set for the vocabularyW0 used

W = {1, . . . ,W } ⊂ N and W0 = W ∪ {0}.

The label 0 is used for padding shorter texts to the common length T = 11. The
method of bag-of-words embeds text = (w1, . . . , wT )� into NW

0

ψ : WT
0 → N

W
0 , text 	→ ψ(text) =

(
T∑

t=1

1{wt=w}

)�

w∈W
. (10.1)

The bag-of-wordsψ(text) counts how often each word w ∈ W appears in a given
text = (w1, . . . , wT )�; the corresponding code is given on line 10 of Listing 10.2.
The bag-of-words mapping ψ is not injective as the order of occurrence of the
words gets lost, and, thus, also the semantics of the sentence gets lost. E.g., the
bag-of-words of the following two sentences is the same ‘The claim is expensive.’
and ‘Is the claim expensive?’. This is the reason for calling it a “bag of words”
(which is unordered). This bag-of-words encoding resembles one-hot encoding,
namely, if every text consists of a single word T = 1, then we receive the one-hot
encoding with W describing the number of different levels, see (7.28). The bag-of-
words ψ(text) ∈ N

W
0 can directly be used as an input to a regression model. The

disadvantage of this approach is that the input typically is high-dimensional (and
likely sparse), and it is recommended that only the frequent words are considered.

Listing 10.4 Removal of stopwords and lemmatization

1 library(textstem)
2 library(tm)
3
4 text.clean <- removeWords(dat$Description, stopwords("english"))
5 text.clean <- lemmatize_strings(text.clean, dictionary = lexicon::hash_lemmas)

Additionally, stopwords can be removed. We perform this removal below because
frequent stopwords like ‘and’ or ‘to’ may not essentially contribute to the under-
standing of the (short) claim descriptions; the code for the stopword removal is
provided on line 4 of Listing 10.4. Moreover, stemming can be performed which
means that inflectional forms are reduced to their stem by just truncating pre- and
suffixes, conjugations, declensions, etc. Lemmatization is a more sophisticated form
of reducing inflectional forms by using vocabularies and morphological analyses;
an example is provided on line 5 of Listing 10.4. If we perform these two steps
of removing stopwords and lemmatization to our example, the number of different
words is reduced from 2’237 to 1’982.

Another step that can be performed is tagging words with part-of-speech (POS)
attributes. These POS attributes indicate whether the corresponding words are used



10.2 Word Embeddings 429

as nouns, adjectives, adverbs, etc., in the corresponding sentences. We then call the
resulting encoding bag-of-POS. We refrain from doing this because we will present
more sophisticated methods in the next sections.

10.2 Word Embeddings

The bag-of-words (10.1) can be interpreted as representing each word w ∈ W =
{1, . . . ,W } by a one-hot encoding in {0, 1}W , and then aggregating these one-hot
encodings over all words that appear in the given text = (w1, . . . , wT )�. Bengio
et al. [28, 29] have introduced the technique of word embedding that maps words
to a lower dimensional Euclidean space R

b, b 
 W , such that proximity in R
b

is associated with similarity in the meaning of the word, e.g., ‘rain’, ‘water’ and
‘flood’ should be more close to each other inRb than to ‘vandalism’ (in an insurance
context). This is exactly the idea promoted in the embedding mapping (7.31) using
the embedding layers. Thus, we are looking for an embedding mapping

e : W → R
b, w 	→ e(w), (10.2)

that maps each word w (or rather its tokenization) to a b-dimensional vector e(w),
for a given embedding dimension b 
 W . The general idea now is that similarity in
the meaning of words can be learned from the context in which the words are used
in. That is, when we consider a text

text = (w1, . . . , wt−1, wt ,wt+1, . . . , wT )� ,

then it might be possible to infer wt from its neighbors wt−j and wt+j , j ≥ 1. This
explains the context of a word wt , and using suitable learning tools it should also be
possible to learn synonyms for wt as these synonyms will stand in similar contexts.

More mathematically speaking, we assume that there exists a probability distri-
bution p over the set of all texts of length T (using padding with zeros to common
length)

T =
{
text = (w1, . . . , wT )�

}
⊆ WT

0 ,

such that a randomly chosen text ∈ T appears with probability p(w1, . . . , wT ) ∈
[0, 1). Inference of a word wt from its context can then be obtained by studying the
conditional probablity of wt , given its context, that is

p (wt | w1, . . . , wt−1, wt+1, . . . , wT ) = p(w1, . . . , wT )

p(w1, . . . , wt−1, wt+1, . . . , wT )
.

(10.3)
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Since, typically, the probability distribution p is not known we aim at learning it
from the available data. This idea has been taken up by Mikolov et al. [275, 276]
who designed the word to vector (word2vec) algorithm. Pennington et al. [300]
designed an alternative algorithm called global vectors (GloVe); we also refer to
Chaubard et al. [68]. We describe these algorithms in the following sections.

10.2.1 Word to Vector Algorithms

There are two ways of estimating the probability p in (10.3). Either we can try to
predict the center word wt from its context as in (10.3) or we can try to predict the
context from the center word wt , which applies Bayes’s rule to (10.3). The latter
variant is called skip-gram and the former variant is called continuous bag-of-words
(CBOW), if we neglect the order of the words in the context. These two approaches
have been developed by Mikolov et al. [275, 276].

Skip-gram Approach

Typically, inferring a general probability distribution p over T is too complex.
Therefore, we make a simplifying assumption. This simplifying assumption is not
reasonable from a practical linguistic point of view, but it is sufficient to receive a
reasonable word embedding map e : W → R

b. We assume conditional i.i.d. of the
context words, given the center word wt . Choosing a fixed context (window) size
c ∈ N, we try to maximize the log-likelihood over all probabilities p satisfying this
conditional i.i.d. assumption

�W =
n∑

i=1

logp
(
wi,t−c, . . . , wi,t−1, wi,t+1, . . . , wi,t+c

∣∣ wi,t

)

=
n∑

i=1

∑
−c≤j≤c,j =0

logp
(
wi,t+j

∣∣wi,t

)
, (10.4)

having n independent rows in the observed data matrix W = (wi,t−c, . . . ,

wi,t+c)1≤i≤n ∈ Wn×(2c+1). Thus, under the conditional i.i.d. of the context words,
given the center word, the probabilities (10.4) infer the occurrence of (individual)
context words of a given center word wi,t within a symmetric window of fixed size
c. In the sequel we directly work with the log-likelihood (10.4), supposed that a
context word wi,t+j exists for index j , otherwise the corresponding term is just
dropped from the sum in (10.4).

The remaining step is to estimate the conditional probabilities p(wt+j |wt) from
the data matrix W . This step will provide us with the embeddings (10.2). This
estimation step is received by considering an approach similar to a GLM for
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categorical responses, see Sect. 5.7. We make the following ansatz for the context
word ws and the center word wt (for all j )

p (ws |wt) = exp 〈̃e(ws), e(wt )〉∑W
w=1 exp 〈̃e(w), e(wt )〉

∈ (0, 1), (10.5)

where e and ẽ are two (different) embedding maps (10.2) that have the same
embedding dimension b ∈ N. Thus, we construct two different embeddings e and ẽ

for the center words and for the context words, respectively, and these embeddings
(embedding weights) are chosen such that the log-likelihood (10.4) is maximized
for the given observations W . These assumptions give us a minimization problem
for the negative log-likelihood in the embedding mappings, i.e., we minimize over
the embeddings e and ẽ

− �W = −
n∑

i=1

∑
−c≤j≤c,j =0

log

(
exp

〈̃
e(wi,t+j ), e(wi,t )

〉
∑W

w=1 exp
〈̃
e(w), e(wi,t )

〉
)

(10.6)

= −
n∑

i=1

⎛
⎝ ∑

−c≤j≤c,j =0

〈̃
e(wi,t+j ), e(wi,t )

〉 − 2c log

(
W∑

w=1

exp
〈̃
e(w), e(wi,t )

〉)⎞
⎠ .

These optimal embeddings are learned using a variant of the gradient descent
algorithm. This often results in a very high-dimensional optimization problem as
we have 2bW parameters to learn, and the calculation of the last (normalization)
term in (10.6) can be very expensive in gradient descent algorithms. For this reason
we present the method of negative sampling below.

Continuous Bag-of-Words

For the CBOWmethod we start from the log-likelihood for a context size c ∈ N and
given the observations W

n∑
i=1

logp
(
wi,t

∣∣ wi,t−c, . . . , wi,t−1, wi,t+1, . . . , wi,t+c

)
.

Again we need to reduce the complexity which requires an approximation to the
above. Assume that the embedding map of the context words is given by ẽ : W →
R

b. We then average over the embeddings of the context words in order to predict
the center word. Define the average embedding of the context words of wi,t (with a
fixed window size c) by

ẽi,t = 1

2c

∑
−c≤j≤c,j =0

ẽ(wi,t+j ).
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Making an ansatz similar to (10.5), the full log-likelihood is approximated by

n∑
i=1

logp
(
wi,t

∣∣ ẽi,t

) =
n∑

i=1

log

(
exp

〈̃
ei,t , e(wi,t )

〉
∑W

w=1 exp
〈̃
ei,t , e(w)

〉
)

(10.7)

=
n∑

i=1

〈̃
ei,t , e(wi,t )

〉 − log

(
W∑

w=1

exp
〈̃
ei,t , e(w)

〉)
.

Again the gradient descent method is applied to the negative log-likelihood to learn
the optimal embedding maps e and ẽ.

Remark 10.1 In both cases, skip-gram and CBOW, we estimate two separate
embeddings e and ẽ for the center word and the context words. Typically, CBOW is
faster but skip-gram is better on words that are less frequent.

Negative Sampling

There is a computational issue in (10.6) and (10.7) because the probability normal-
izations in (10.6) and (10.7) aggregate over all available words w ∈ W . This can
be computationally demanding because we need to perform this calculation in each
gradient descent step. For this reason, Mikolov et al. [276] turn the log-likelihood
optimization problem (10.6) into a binary classification problem. Consider a pair
(w, w̃) ∈ W × W of center word w and context word w̃. We introduce a binary
response variable Y ∈ {1, 0} that indicates whether an observation (W, W̃ ) =
(w, w̃) is coming from a true center-context pair (from our texts) or whether
we have a fake center-context pair (that has been generated randomly). Choosing
the canonical link of the Bernoulli EF (logistic/sigmoid function) we make the
following ansatz (in the skip-gram approach) to test for the authenticity of a center-
context pair (w, w̃)

P [Y = 1|w, w̃] = 1

1 + exp {−〈̃e(w̃), e(w)〉} . (10.8)

The recipe now is as follows: (1) Consider for a given window size c all center-
context pairs (wi, w̃i ) ∈ W×W of our texts, and equip themwith a response Yi = 1.
Assume we have N such observations. (2) Simulate N i.i.d. pairs (WN+k, W̃N+k),
1 ≤ k ≤ N , by randomly choosing WN+k and W̃N+k , independent from each
other (by performing independent re-sampling with or without replacements from
the data (wi)1≤i≤N and (w̃i )1≤i≤N , respectively). Equip these (false) pairs with the
response YN+k = 0. (3) Maximize the following log-likelihood as a function of the
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embedding maps e and ẽ

�Y =
2N∑
i=1

logP [Y = Yi | wi, w̃i ] (10.9)

=
N∑

i=1

log

(
1

1 + exp〈−̃e(w̃i), e(wi)〉
)

+
2N∑

k=N+1

log

(
1

1 + exp〈̃e(w̃k), e(wk)〉
)

.

This approach is called negative sampling because we sample false or negative
pairs (WN+k, W̃N+k) that should not appear in our texts (as WN+k and W̃N+k have
been generated independently from each other). The binary classification (10.9)
aims at detecting the negative pairs be letting the scalar products 〈̃e(w̃i), e(wi)〉
be large for the true pairs and letting the scalar products 〈̃e(w̃k), e(wk)〉 be small
for the false pairs. The former means that ẽ(w̃i) and e(wi) should point into the
same direction in the embedding space Rb. The same should apply for a synonym
ofwi and, thus, we receive the desired behavior that synonyms or words with similar
meanings tend to cluster.

Example 10.2 (word2vec with Negative Sampling) We provide an example by
constructing a word2vec embedding based on negative sampling. For this we aim
at maximizing the log-likelihood (10.9) by finding optimal embedding maps e and
ẽ : W → R

b. To construct these embedding maps we use the Wisconsin LGPIF
data described in Sect. 13.3. The first decision (hyper-parameter) is the choice of the
embedding dimension b. English language has millions of different words, and these
words should be (in some sense) densely embedded into a b-dimensional Euclidean
space. Typical choices of b vary between 50 and 300. Our LGPIF data vocabulary is
much smaller, and for this example we choose b = 2 because this allows us to nicely
illustrate the learned embeddings. However, apart from illustration, we should not
choose such a small dimension as it does not allow for a sufficient flexibility in
discriminating the words, as we will see.

We consider all available claim texts described in Sect. 13.3. These are 6’031
texts coming from the training and validation data sets (we include the validation
data here to have more texts for learning the embeddings; this is different from
Sect. 10.1). We extract the claim descriptions from these two data sets and we apply
some pre-processing to the texts. This involves transforming all letters to lower case,
removing the special characters like !”/&, and removing the stopwords. Moreover,
we remove the words ‘damage’ and ‘damaged’ as these two words are very common
in our insurance claim descriptions, see Fig. 10.1, but they do not further specify
the claim type. Then we apply lemmatization, see Listing 10.4, and we adjust the
vocabulary with the GloVe database,3 see also Example 10.4. The latter step is

3 https://nlp.stanford.edu/projects/glove/.
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(tedious) manual work, and we do this step to be able to compare our results to
pre-trained word2vec versions.

After this pre-processing we apply the tokenizer, see line 4 of Listing 10.2. This
gives us 1′829 different words. To construct our (illustrative) embedding we only
consider the words that appear at least 20 times over all texts, these are W = 142
words. Thus, the following analysis is only based on the W = 142 most frequent
words. Of course, we could increase our vocabulary by considering any text that can
be downloaded from the internet. Since we would like to perform an insurance claim
analysis, these texts should be related to an insurance context so that the learned
embeddings reflect an insurance experience; we come back to this in Remark 10.4,
below. We refrain here from doing so and embed these W = 142 words into the
Euclidean plane (b = 2).

Listing 10.5 Tokenization of the most frequent words

1 ## applying the tokenizer to the cleaned texts
2 tokenizer <- text_tokenizer(num_words=142+1) %>% fit_text_tokenizer(dat$clean)
3
4 seqs <- texts_to_sequences(tokenizer, dat$clean)
5
6 ## skip-gram of text 1 using a window of size 2
7 skipgrams(sequence=unlist(seqs[[1]]),
8 vocabulary_size=142, window_size=2, negative_samples=0)

Listing 10.5 shows the tokenization of the most frequent words, and on line 4 we
build the (shortened) texts w1, w2, . . . , only considering these most frequent words
w ∈ W = {1, . . . ,W }. In total we receive 4’746 texts that contain at least two words
from W and, hence, can be used for the skip-gram building of center-context pairs
(w, w̃) ∈ W ×W . Lines 7–8 give the code for building these pairs for a window of
size c = 2. In total we receive N = 23′952 center-context pairs (wi, w̃i ) from our
texts. We equip these pairs with a response Yi = 1. For the false pairs, we randomly
permute the second component of the true pairs (WN+i , W̃N+i ) = (wi, w̃τ(i)),
where τ is a random permutation of {1, . . . , N}. These false pairs are equipped
with a response YN+i = 0. Thus, altogether we have 2N = 47′904 observations
(Yi, wi, w̃i ), 1 ≤ j ≤ 2N , that can be used to learn the embeddings e and ẽ.
Listing 10.6 shows theR code to perform the embedding learning using the negative
sampling (10.9). This network has 2bW = 568 embedding weights that need to
be learned from the data. There are two more parameters involved on line 10 of
Listing 10.6. These two parameters shift the scalar products by an intercept β0 and
scale them by a constant β1. We could set (β0, β1) = (0, 1), however, keeping
these two parameters trainable has led to results that are better centered around the
origin. Of course, these two parameters do not harm the arguments as they only
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Listing 10.6 R code for negative sampling

1 center = layer_input(shape = c(1), dtype = ’int32’)
2 context = layer_input(shape = c(1), dtype = ’int32’)
3 #
4 centerEmb = center %>%
5 layer_embedding(input_dim=142,output_dim=2,input_length=1) %>% layer_flatten()
6 contextEmb = context %>%
7 layer_embedding(input_dim=142,output_dim=2,input_length=1) %>% layer_flatten()
8 #
9 response = list(centerEmb, contextEmb) %>% layer_dot(axes = 1) %>%
10 layer_dense(units=1, activation=’sigmoid’, name=’response’)
11 #
12 model = keras_model(inputs = c(center, context), outputs = c(response))

replace (10.8) by a slightly different model

P [Y = 1|w, w̃] = 1

1 + exp {−β0 − β1〈̃e(w̃), e(w)〉} = eβ0

eβ0 + e−β1 〈̃e(w̃),e(w)〉 ,

and

P [Y = 0|w, w̃] = 1 − eβ0

eβ0 + e−β1 〈̃e(w̃),e(w)〉 = e−β0

e−β0 + eβ1〈̃e(w̃),e(w)〉 .

We fit this model using the nadam version of the gradient descent algorithm, and
the fitted embedding weights can be extracted with get_weights(model).
Figure 10.2 shows the learned embedding weights e(w) ∈ R

2 of all words w ∈ W .
We highlight the words that coincide with the insured hazards in red color, see line
10 of Listing 10.1. The word ‘vehicle’ is in the first quadrant and it is surrounded
by ‘pole’, ‘truck’, ‘garage’, ‘car’, ‘traffic’. The word ‘vandalism’ is in the third
quadrant surrounded by ‘graffito’, ‘window’, ‘pavilion’, names of cites and parks,
‘ms’ for middle school. Finally, the words ‘fire’, ‘wind’, ‘lightning’ and ‘hail’ are
in the first and fourth quadrant, close to ‘water’; these words are surrounded by
‘bldg’ (building), ‘smoke’, ‘equipment’, ‘alarm’, ‘safety’, ‘power’, ‘library’, etc. We
conclude that these embeddings make perfect sense in an insurance claim context.
Note that we have applied some pre-processing, and embeddings could even be
improved by further pre-processing, e.g., ‘vandalism’ and ‘vandalize’ or ‘hs’ and
‘high school’ are used.

Another nice observation is that the embeddings tend to build a circle around the
origin, see Fig. 10.2. This is enforced by embedding W = 142 different words into
a b = 2 dimensional space so that dissimilar words optimally repulse each other. �
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Fig. 10.2 Two-dimensional skip-gram embedding using negative sampling; in red color are the
insured hazards ‘vehicle’, ‘fire’, ‘lightning’, ‘wind’, ‘hail’, ‘water’ and ‘vandalism’

10.2.2 Global Vectors Algorithm

A second popular word embedding approach is global vectors (GloVe) developed
by Pennington et al. [300], we also refer to Chaubard et al. [68]. GloVe is an
unsupervised learning method that performs a word-word clustering (center-context
pairs) over all available texts. Assume that the tokenization of all texts provides us
with the words w ∈ W . Choose a fixed context window size c ∈ N and define the
matrix

C = (
C(w, w̃)

)
w,w̃∈W ∈ N

W×W
0 ,

with C(w, w̃) counting the number of co-occurrences of w and w̃ over all available
texts where the word w̃ appears as a context word of the center word w (for the
given window size c). We note that C is a symmetric matrix that is typically sparse
as many words do not appear in the context of other words (on finitely many
texts). Figure 10.3 shows the center-context pairs (w, w̃) co-occurrence matrix C
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Fig. 10.3 Center-context
pairs (w, w̃) co-occurrence
matrix C of Example 10.2;
the color scale gives the
observed frequencies
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of Example 10.2 which is based on W = 142 words and 23’952 center-context
pairs. The color pixels indicate the pairs that occur in the data, C(w, w̃) > 0, and
the white space corresponds to the pairs that have not been observed in the texts,
C(w, w̃) = 0. This plot confirms the sparsity of the center-context pairs; the words
are ordered w.r.t. their frequencies in the texts.
In an empirical analysis Pennington et al. [300] have observed that the crucial
quantities to be considered are the ratios for fixed context words. That is, for a
context word w̃ study a function of the center words w and v (subject to existence
of the right-hand side)

(w, v, w̃) 	→ F(w, v, w̃) = C(w, w̃)/
∑

ũ∈W C(w, ũ)

C(v, w̃)/
∑

ũ∈W C(v, ũ)
= p̂(w̃|w)

p̂(w̃|v)
,

p̂ denoting the empirical probabilities. An empirical analysis suggests that such an
approach seems to lead to a good discrimination of the meanings of the words, see
Sect. 3 in Pennington et al. [300]. Further simplifications and assumptions provide
the following ansatz, for details we refer to Pennington et al. [300],

logC(w, w̃) ≈ 〈̃e(w̃), e(w)〉 + β̃w̃ + βw,

with intercepts β̃w̃, βw ∈ R. There is still one issue, namely, that logC(w, w̃) may
not be well-defined as certain pairs (w, w̃) are not observed. Therefore, Pennington
et al. [300] propose to solve a weighted squared error loss function problem to find
the embedding mappings e, ẽ and intercepts β̃w̃, βw ∈ R. Their objective function
is given by

∑
w,w̃∈W

χ(C(w, w̃))
(
logC(w, w̃) − 〈̃e(w̃), e(w)〉 − β̃w̃ − βw

)2
, (10.10)
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with weighting function

x ≥ 0 	→ χ(x) =
(

x ∧ xmax

xmax

)α

,

for xmax > 0 and α > 0. Pennington et al. [300] state that the model depends
weakly on the cutoff point xmax, they propose xmax = 100, and a sub-linear
behavior seems to outperform a linear one, suggesting, e.g., a choice of α = 3/4.
Under these choices the embeddings e and ẽ are found by minimizing the objective
function (10.10) for the given data. Note that limx↓0 χ(x)(log x)2 = 0.

Example 10.3 (GloVe Word Embedding) We provide an example using the GloVe
embedding model, and we revisit the data of Example 10.2; we also use exactly the
same pre-processing as in that example. We start from N = 23′952 center-context
pairs.

In a first step we count the number of co-occurrences C(w, w̃). There are only
4’972 pairs that occur, C(w, w̃) > 0, this corresponds to the colors in Fig. 10.3.
With these 4’972 pairs we have to fit 568 embedding weights (for the embedding
dimension b = 2) and 284 intercepts β̃w̃, βw , thus, 852 parameters in total. The
results of this fitting are shown in Fig. 10.4.
The general picture in Fig. 10.4 is similar to Fig. 10.2, e.g., ‘vandalism’ is
surrounded by ‘graffito’, ‘window’, ‘pavilion’, names of cites and parks, ‘ms’
and ‘es’; or ‘vehicle’ is surrounded by ‘pole’, ‘traffic’, ‘street’, ‘signal’. However,
the clustering of the words around the origin shows a crucial difference between
GloVe and the negative sampling of word2vec. The problem here is that we do
not have sufficiently many observations. We have 4’972 center-context pairs that
occur, C(w, w̃) > 0. 2’396 of these pairs occur exactly once, C(w, w̃) = 1, this is
almost half of the observations with C(w, w̃) > 0. GloVe (10.10) considers these
observations on the log-scale which provides logC(w, w̃) = 0 for the pairs that
occur exactly once. The weighted square loss for these pairs is minimized by either
setting ẽ(w̃) = 0 or e(w) = 0, supposed that the intercepts are also set to 0. This
is exactly what we observe in Fig. 10.4 and, thus, successfully fitting GloVe would
require much more (frequent) observations. �

Remark 10.4 (Pre-trained Word Embeddings) In practical applications we rely on
pre-trained word embeddings. For GloVe there are pre-trained versions that can be
downloaded.4 These pre-trained versions comprise a vocabulary of 400K words,
and they exist for the embedding dimensions b = 50, 100, 200, 300. These GloVe’s
have been trained on Wikipedia 2014 and Gigaword 5 which provided roughly 6B
tokens. Another pre-trained open-source model that can be downloaded is spaCy.5

4 https://nlp.stanford.edu/projects/glove/.
5 https://spacy.io/models/en#en_core_web_md.
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Fig. 10.4 Two-dimensional GloVe embedding; in red color are the insured hazards ‘vehicle’,
‘fire’, ‘lightning’, ‘wind’, ‘hail’, ‘water’ and ‘vandalism’

Pre-trained embeddings can be problematic if we work in very specific settings.
For instance, the Wisconsin LGPIF data contains the word ‘Lincoln’ in the claim
descriptions. Now, Lincoln is a county in Wisconsin, it is town in Kewaunee County
in Wisconsin, it is a former US president, there are Lincoln memorials, it is a
common street name, it is a car brand and there are restaurants with this name.
In our context, Lincoln is most commonly used w.r.t. the Lincoln Elementary and
Middle Schools. On the other hand, it is likely that in pre-trained embeddings a
different meaning of Lincoln is predominant, and therefore the embedding may not
be reasonable for our insurance problem.
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10.3 Lab: Predictive Modeling Using Word Embeddings

This section gives an example of applying the word embedding technique to a
predictive modeling setting. This example is based on the Wisconsin LGPIF data
set illustrated in Listing 10.1. Our goal is to predict the hazard types on line 10
of Listing 10.1 from the claim descriptions on line 11. We perform the same data
cleaning process as in Example 10.2. This provides us with W = 1′829 different
words, and the resulting (short) claim descriptions have a maximal length of T = 9.
After padding with zeros we receive n = 6′031 claim descriptions given by texts
(w1, . . . , wT )� ∈ WT

0 ; we apply the padding to the left end of the sentences.

Word2vec Using Negative Sampling We start by the word2vec embedding tech-
nique using the negative sampling. We follow Example 10.2, and to successfully
embed the available words w ∈ W we restrict the vocabulary to the words that are
used at least 20 times. This reduces the vocabulary from 1’892 different words to
142 different words. The number of claim descriptions are reduced to 5’883 because
148 claim descriptions do not contain any of these 142 different words and, thus,
cannot be classified as one of the hazard types (based on this reduced vocabulary).

In a first analysis we choose the embedding dimension b = 2, and this provides
us with the word2vec embedding map that is illustrated in Fig. 10.2. Based on these
embeddings we aim at predicting the hazard types from the claim descriptions. We
have 9 different hazard types: Fire, Lightning, Hail, Wind, WaterW, WaterNW,
Vehicle, Vandalism and Misc.6 Therefore, we design a categorical classification
model that has 9 different labels, we refer to Sect. 2.1.4.

Listing 10.7 R code for the hazard type prediction based on a word2vec embedding

1 input = layer_input(shape = list(T), name = "input")
2 #
3 word2vec = input %>%
4 layer_embedding(input_dim = W+1, output_dim = b, input_length = T,
5 weights=list(wordEmb), trainable=FALSE) %>%
6 layer_flatten()
7 # response = word2vec %>%
8 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
9 layer_dense(units=15, activation=’tanh’, name=’FNLayer2’) %>%
10 layer_dense(units=9, activation=’softmax’, name=’output’)
11 #
12 model = keras_model(inputs = c(input), outputs = c(response))

The R code for the hazard type prediction is presented in Listing 10.7. The crucial
part is shown on line 5. Namely, the embedding map e(w) ∈ R

b, w ∈ W is
initialized with the embedding weights wordEmb received from Example 10.2, and

6 WaterW relates to weather related water claims, and WaterNW relates to non-weather related
water claims.
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confusion matrix word2vec with b=10

F
ire

Li
gh

tn
in

g

H
ai

l

W
in

d

W
at

er
W

W
at

er
N

W

V
eh

ic
le

V
an

da
lis

m

M
is

c

Misc

Vand.

Vehicle

Wat.NW

Wat.W

Wind

Hail

Light.

Fire

5

9

10

1

2

0

2

11

171

13

2

9

0

6

3

0

917

4

2

2

1

0

5

10

72

1

1

10

5

18

0

9

338

12

3

1

7

12

7

33

378

6

8

7

2

13

9

3

55

182

0

2

1

2

26

33

966

0

4

4

2

6

12

22

1957

31

1

5

2

2

5

19

222

70

47

3

22

11

5

17

7

Fig. 10.5 Confusion matrices of the hazard type prediction using a word2vec embedding based on
negative sampling (lhs) b = 2 dimensional embedding and (rhs) b = 10 dimensional embedding;
columns show the observations and rows show the predictions

these embedding weights are declared to be non-trainable.7 These features are then
inputted into a FN network with two FN layers having (q1, q2) = (20, 15) neurons,
and as output activation we choose the softmax function. This model has 286 non-
trainable embedding weights, and r = (9 ·2+1)20+ (20+1)15+ (15+1)9= 839
trainable parameters.
We fit this network using the nadam version of the gradient descent method, and
we exercise an early stopping on a 20% validation data set (of the entire data). This
network is fitted in a few seconds, and the results are presented in Fig. 10.5 (lhs).
This figure shows the confusion matrix of prediction vs. observed (row vs. column).
The general results look rather good, there are only difficulties to distinguishWaterN
from WaterNW claims.

In a second analysis, we increase the embedding dimension to b = 10 and
we perform exactly the same procedure as above. A higher embedding dimension
allows the embedding map to better discriminate the words in their meanings.
However, we should not go for a too high b because we have only 142 different
words and 47’904 center-context pairs (w, w̃) to learn these embeddings e(w) ∈ R

b.
A higher embedding dimension also increases the number of network weights in
the first FN layer on line 9 of Listing 10.7. This time, we need to train r =
(9 · 10 + 1)20 + (20 + 1)15 + (15 + 1)9 = 2′279 parameters. The results are
presented in Fig. 10.5 (rhs). We observe an overall improvement compared to the
2-dimensional embeddings. This is also confirmed by Table 10.1 which gives the
deviance losses and the misclassification rates.

7 The zeros from padding are mapped to the origin.
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Table 10.1 Hazard prediction results summarized in deviance losses and misclassification rates

Number of parameters Deviance Misclassification

Embedding Network loss rate

word2vec negative sampling, b = 2 286 839 0.1442 19.9%

word2vec negative sampling, b = 10 1’430 2’279 0.0912 13.7%

FN GloVe using all words, b = 50 91’500 9’479 0.0802 11.7%

LSTM GloVe using all words, b = 50 91’500 3’369 0.0802 12.1%

Word similarity embedding, b = 7 12’810 1’739 0.1396 21.1%

Pre-trained GloVe Embedding In a next analysis we use the pre-trained GloVe
embeddings, see Remark 10.4. This allows us to use all W = 1′892 words that
appear in the n = 6′031 claim descriptions, and we can also classify all these
claims. I.e., we can classify more claims, here, compared to the 5’883 claims we
have classified based on the self-trained word2vec embeddings. Apart from that, all
modeling steps are chosen as above. Only the higher embedding dimension b = 50
from the pre-trained glove.6B.50d increases the size of the network parameter
to r = (9 · 50 + 1)20 + (20 + 1)15 + (15 + 1)9 = 9′479 parameters; remark that
the 91’500 embedding weights are not trained as they come from the pre-trained
GloVe embeddings. Using the nadam optimizer with an early stopping provides us
with the results in Fig. 10.6 (lhs). Using this pre-trained GloVe embedding leads to a
further improvement, this is also verified by Table 10.1. Using the pre-trainedGloVe
is two-fold. On the one hand, it allows us to use all words of the claim descriptions,
which improves the prediction accuracy. On the other hand, the embeddings are
not adapted to insurance problems, as these have been trained on Wikipedia and
Gigaword texts. The former advantage overrules the latter shortcoming in our
example.

All the results above have been using the FN network of Listing 10.7. We made
this choice because our texts have a maximal length of T = 9, which is very
short. In general, texts should be understood as time-series, and RN networks are
a canonical choice to analyze these time-series. Therefore, we study again the pre-
trained GloVe embeddings, but we process the texts with a LSTM architecture, we
refer to Sect. 8.3.1 for LSTM layers.
Listing 10.8 shows the LSTM architecture used. On line 9 we set the variable
return_sequences to true which implies that all intermediate steps z

[1]
t , 1 ≤

t ≤ T , are outputted to a time-distributed FN layer on line 10, see Sect. 8.2.4 for
time-distributed layers. This LSTM network has r = 4(50 + 1 + 10)10 + (10 +
1)10 + (90 + 1)9 = 3′369 parameters. The flatten layer on line 11 of Listing 10.8
turns the T = 9 outputs z

[2]
t ∈ R

q2 , 1 ≤ t ≤ T , of dimension q2 = 10 into a vector
of size T q2 = 90. This vector is then fed into the output layer on line 12. At this
stage, one could reduce the dimension of the parameter by setting a max-pooling
layer in between the flatten and the output layer.
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confusion matrix GloVe with LSTM and b=50
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Fig. 10.6 Confusion matrices of the hazard type prediction using the pre-trained GloVe with b =
50 (lhs) FN network and (rhs) LSTM network; columns show the observations and rows show the
predictions

Listing 10.8 R code for the hazard type prediction using a LSTM architecture

1 input = layer_input(shape = list(T), name = "input")
2 #
3 word2vec = input %>%
4 layer_embedding(input_dim = W+1, output_dim = b, input_length = T,
5 weights=list(wordEmb), trainable=FALSE) %>%
6 layer_flatten()
7 #
8 response = word2vec %>%
9 layer_lstm(units=10, activation=’tanh’, return_sequences=TRUE,
10 name=’LSTM’) %>%
11 time_distributed(layer_dense(units=10, activation=’tanh’, name=’FNLayer’)) %>%
12 layer_flatten() %>%
13 layer_dense(units=9, activation=’softmax’, name=’output’)
14 #
15 model = keras_model(inputs = c(input), outputs = c(response))

We fit this LSTM architecture to the data using the pre-trained GloVe embed-
dings. The results are presented in Fig. 10.6 (rhs) and Table 10.1. We receive the
same deviance loss, and the misclassification rate is slightly worse than in the
FN network case (with the same pre-trained GloVe embeddings). Note that the
deviance loss is calculated on the estimated classification probabilities p̂(x) =
(p̂1(x), . . . , p̂9(x))�, and the labels are received by

Ŷ = Ŷ (x) = argmax
k=1,...,9

p̂k(x).

Thus, it may happen that the improvements on the estimated probabilities are not
fully reflected on the predicted labels.
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Word (Cosine) Similarity In our final analysis we workwith the pre-trainedGloVe
embeddings e(w) ∈ R

50 but we first try to reduce the embedding dimension b. For
this we follow Lee et al. [236], and we consider a word similarity. We can define
the similarity of the words w and w′ ∈ W by considering the scalar product of their
embeddings

sim(u)(w,w′) = 〈
e(w), e(w′)

〉
or sim(n)(w,w′) =

〈
e(w), e(w′)

〉
‖e(w)‖2‖e(w′)‖2 .

(10.11)

The first one is an unweighted version and the second one is a nor-
malized version scaling with the corresponding Euclidean norms so that
the similarity measure is within [−1, 1]. In fact, the latter is also called
cosine similarity. To reduce the embedding dimension and because we
have a classification problem with hazard names, we can evaluate the
(cosine) similarity of all used words w ∈ W to the hazards h ∈ H =
{fire,lightning,hail,wind,water,vehicle,vandalism}. Observe
that water is further separated into weather related and non-weather related claims,
and there is a further hazard type called misc, which collects all the rest. We could
choose more words inH to more precisely describe these water and other claims. If
we just use H we obtain a b = |H| = 7 dimensional embedding mapping

w ∈ W0 	→ e(a)(w) =
(
sim(a)(w,fire), . . . , sim(a)(w,vandalism)

)� ∈ R
b=7,

(10.12)

for a ∈ {u, n}. This gives us for every text = (w1, . . . , wT )� ∈ WT
0 the pre-

processed features

text 	→
(
e(a)(w1), . . . , e

(a)(wT )
)� ∈ R

T ×b. (10.13)

Lee et al. [236] apply a max-pooling layer to these embeddings which are then
inputted into GAM classification model. We use a different approach here, and
directly use the unweighted (a = u) text representations (10.13) as an input to a
network, either of FN network type of Listing 10.7 or of LSTM type of Listing 10.8.
If we use the FN network type we receive the results on the last line of Table 10.1
and Fig. 10.7.

Comparing the results of the word similarity through the embeddings (10.12)
and (10.13) to the other prediction results, we conclude that this word similarity
approach is not fully competitive compared to working directly with the word2vec
or GloVe embeddings. It seems that the projection (10.12) does not discriminate
sufficiently for our classification task.
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Fig. 10.7 Confusion matrix
of the hazard type prediction
using the word
similarity (10.12)–(10.13) for
a = u; columns show the
observations and rows show
the predictions

confusion matrix word similarity with b=7
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10.4 Lab: Deep Word Representation Learning

All examples above have been relying on embedding the words w ∈ W into
a Euclidean space e(w) ∈ R

b by performing a sort of unsupervised learning
that provided word similarity clusters. The advantage of this approach is that
the embedding is decoupled from the regression or classification task, this is
computationally attractive. Moreover, once a suitable embedding has been learned,
it can be used for several different tasks (in the spirit of transfer learning). The
disadvantage of the pre-trained embeddings is that the embedding is not targeted to
the regression task at hand. This has already been discussed in Remark 10.4 where
we have highlighted that the meaning of some words (such as Lincoln) depends very
much on its context.

Recent NLP aims at pre-processing a text as little as necessary, but tries
to directly feed the raw sentences into RN networks such as LSTM or GRU
architectures. Computationally this is much more demanding because we have
to learn the embeddings and the network weights simultaneously, we refer to
Table 10.1 to indicate the number of parameters involved. The purpose of this short
section is to give an example, though our NLP database is rather small; this latter
approach usually requires a huge database and the corresponding computational
power. Ferrario–Nägelin [126] provide a more comprehensive example on the
classification of movie reviews. For their analysis they evaluated approximately
50’000 movie reviews each using between 235 and 2’498 words. Their analysis
was implemented on the ETH High Performance Computing (HPC) infrastructure
Euler8, and their run times have been between 20 and 30 minutes, see Table 8 of
Ferrario–Nägelin [126].

8 https://scicomp.ethz.ch/wiki/Euler
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Since we neither have the computational power nor the big data to fit such
a NLP application, we start the gradient descent fitting in the initial embedding
weights e(w) ∈ R

b that either come from the word2vec or the GloVe embeddings.
During the gradient descent fitting, we allow these weights to change w.r.t. the
regression task at hand. In comparison to Sect. 10.3, this only requires minor
changes to the R code, namely, the only modification needed is to change from
FALSE to TRUE on lines 5 in Listings 10.7 and 10.8. This change allows us to
learn adapted weights during the gradient descent fitting. The resulting classification
models are now very high-dimensional, and we need to carefully assess the
early stopping rule, otherwise the model will (in-sample) over-fit to the learning
data.
In Fig. 10.8 we provide the results that correspond to the self-trained word2vec
embeddings given in Fig. 10.5, and the corresponding numerical results are given
in Table 10.2. We observe an improvement in the prediction accuracy in both cases
by letting the embedding weights being learned during the network fitting, and we
receive a misclassification rate of 11.6% and 11.0% for the embedding dimensions
b = 2 and b = 10, respectively, see Table 10.2.
Figure 10.8 (rhs) illustrates how the embeddings have changed from the initial (pre-
trained) embeddings e(0)(w) (coming from the word2vec negative sampling) to the
learned embeddings ê(w). We measure these changes in terms of the unweighted
similarity measure defined in (10.11), and given by

〈
e(0)(w), ê(w)

〉
. (10.14)

The upper horizontal line is a manually set threshold to identify the words w that
experience a major change in their embeddings. These are the words ‘vandalism’,
‘lightning’, ‘grafito’, ‘fence’, ‘hail’, ‘freeze’, ‘blow’ and ‘breakage’. Thus, these
words receive a different embedding location/meaning which is more favorable for
our classification task.

A similar analysis can be performed for the pre-trainedGloVe embeddings. There
we expected bigger changes to the embeddings since the GloVe embeddings have
not been learned in an insurance context, and the embeddings will be adapted to
the insurance prediction problem. We refrain from giving an explicit analysis, here,
because to perform a thorough analysis we would need (much) more data.

We conclude this example with some remarks. We emphasize once more that
our available data is minimal, and we expect (even much) better results for longer
claim descriptions. In particular, our data is not sufficient to discriminate the weather
related from the non-weather related water claims, as the claim descriptions seem
to focus on the water claim itself and not on its cause. In a next step, one should use
claim descriptions in order to predict the claim sizes, or to improve their predictions
if they are based on classical tabular features, only. Here, we see some potential, in
particular, w.r.t. medical claims, as medical reports may clearly indicate the severity
of the claim as well as these reports may give some insight into the recovery process.
Thus, our small example may only give some intuition of what is possible with
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Fig. 10.8 Confusion matrices and the changes in the embeddings compared to the pre-trained
word2vec embeddings of Fig. 10.5 for the dimensions b = 2 and b = 10

Table 10.2 Hazard prediction results summarized in deviance losses and misclassification rates:
pre-trained embeddings vs. network learned embeddings

Number of parameters Deviance Misclass.

Non-trainable Trainable loss rate

word2vec negative sampling, b = 2 286 839 0.1442 19.9%

word2vec improved embedding, b = 2 1’125 0.0814 11.7%

word2vec negative sampling, b = 10 1’430 2’279 0.0912 13.7%

word2vec improved embedding, b = 10 3’709 0.0714 10.5%
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(unstructured) text data. Unfortunately, the LGPIF data of Listing 10.1 did not give
us any satisfactory results for the claim size prediction, this for several reasons.
Firstly, the data is rather heterogeneous ranging from small to very large claims
and any member of the EDF struggles to model this data; we come back to a
different modeling proposal of heterogeneous data in Sect. 11.3.2. Secondly, the
claim descriptions are not very explanatory as they are too short for a more detailed
information. Thirdly, the data has only 5’424 claims which seems small compared
to the complexity of the problem that we try to solve.

10.5 Outlook: Creating Attention

In text recognition problems, obviously, not all the words in a sentence have the
same importance. In the examples above, we have removed the stopwords as they
may disturb the key understanding of our texts. Removing the stopwords means that
we pay more attention to the remaining words. RN networks often face difficulty
in giving the right recognition to the different parts of a sentence. For this reason,
attention layers have gained more popularity recently. Attention layers are special
modules in network architectures that allow the network to impose more weight
on certain parts of the information in the features to emphasize their importance.
The attention mechanism has been introduced in Bahdanau et al. [21]. There are
different ways of modeling attention, the most popular one is the so-called dot-
product attention, we refer to Vaswani et al. [366], and in the actuarial literature we
mention Kuo–Richman [231] and Troxler–Schelldorfer [354].

We start by describing a simple attention mechanism. Consider a sentence
text = (w1, . . . , wT ) ∈ WT

0 that provides, under an embedding map e : W0 →
R

b, the embedded sentence (e(w1), . . . , e(wT ))� ∈ R
T ×b. We choose a weight

matrix UQ ∈ R
b×b and an intercept vector uQ ∈ R

b. Based on these choices we
consider for each word wt of our sentence the score, called query,

q t = tanh
(
uQ + UQe(wt )

) ∈ (−1, 1)b. (10.15)

Matrix Q = (q1, . . . , qT )� ∈ R
T ×b collects all queries. It is obtained by

applying a time-distributed FN layer with b neurons to the embedded sentence
(e(w1), . . . , e(wT ))�.

These queries q t are evaluated with a so-called key k ∈ R
b giving us the attention

weights

αt = exp
〈
k, q t

〉
∑T

s=1 exp
〈
k, qs

〉 ∈ (0, 1) for 1 ≤ t ≤ T . (10.16)
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Using these attention weights α = (α1, . . . , αT )� ∈ (0, 1)T we encode the sentence
text as

text = (w1, . . . , wT ) 	→ w∗ =
T∑

t=1

αte(wt ) (10.17)

= (e(w1), . . . , e(wT )) α ∈ R
b.

Thus, to every sentence text we assign a categorical probability vector α =
α(text) ∈ �T , see Sect. 2.1.4, (6.22) and (5.69), which is encoding this sentence
text to a b-dimensional vector w∗ ∈ R

b. This vector is then further processed
by the network. Such a construction is called a self-attention mechanism because
the text (w1, . . . , wT ) ∈ WT

0 is used to formulate the queries in (10.15), but, of
course, these queries could also be coming from a completely different source.
In the above set-up we have to learn the following parameters UQ ∈ R

b×b and
uQ, k ∈ R

b, assuming that the embedding map e : W0 → R
b has already been

specified.
There are several generalizations and modifications to this self-attention mech-

anism. The most common one is to expand the vector w∗ ∈ R
b in (10.17) to a

matrix W∗ = (w∗
1, . . . ,w

∗
q) ∈ R

b×q . This matrix W∗ can be interpreted as having

q neurons w∗
j ∈ R

b, 1 ≤ j ≤ q . For this, one replaces the key k ∈ R
b by a matrix-

valued key K = (k1, . . . , kq) ∈ R
b×q . This allows one to calculate the attention

weight matrix

A = (
αt,j

)
1≤t≤T ,1≤j≤q

=
(

exp
〈
kj , q t

〉
∑T

s=1 exp
〈
kj , qs

〉
)
1≤t≤T ,1≤j≤q

= softmax (QK) ∈ (0, 1)T ×q ,

where the softmax function is applied column-wise. I.e., the attention weight matrix
A ∈ (0, 1)T ×q has columns αj = (α1,j , . . . , αT ,j )

� ∈ �T , 1 ≤ j ≤ q , which are
normalized to total weight 1, this is equivalent to (10.16). This is used to encode the
sentence text

(e(w1), . . . , e(wT )) ∈ R
b×T 	→ W∗ = (e(w1), . . . , e(wT )) A (10.18)

=
(

T∑
t=1

αt,je(wt )

)
1≤j≤q

∈ R
b×q .

Mapping (10.18) is called an attention layer. Let us give some remarks.

Remarks 10.5

• Encoding (10.18) gives a natural multi-dimensional extension of (10.17). The
crucial parts are the attention weights αj ∈ �T which weigh the different words
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(wt )1≤t≤T . In the multi-dimensional case, we perform this weighting mechanism
multiple times (in different directions), allowing us to extract different features
from the sentences. In contrast, in (10.17) we only do this once. This is similar
as going form one neuron to a layer of q neurons.

• The above structure uses a self-attention mechanism because the queries involve
the words themselves, and the weight matrixUQ ∈ R

b×b and the intercept vector
uQ ∈ R

b are learned with gradient descent. Concerning the key K ∈ R
b×q

one often chooses another self-attention mechanism by choosing a (non-linear)
function K = K(w1, . . . , wT ) to infer optimal keys.

• These attention layers are also the building blocks of transformer models.
Transformer models use attention layers (10.18) of dimension W∗ ∈ R

b×T and
skip connections to transform the input

W = (e(w1), . . . , e(wT )) ∈ R
b×T 	→ W + W∗

2
∈ R

b×T . (10.19)

Stacking multiple of these layers (10.19) transforms the original input W by
weighing the important information in feature W for the prediction task at hand.
Compared to LSTM layers this no longer sequentially screens the text but it
directly acts on the part of the text that seems important.

• The attention mechanism is applied to a matrix (e(w1), . . . , e(wT ))� ∈ R
T ×b

which presents a numerical encoding of the sentence (w1, . . . , wT )� ∈ WT
0 .

Kuo–Richman [231] propose to apply this attention mechanism more generally
to categorical feature components. Assume that we have T categorical feature
components x1, . . . , xT , after embedding them into b-dimensional Euclidean
spaces we receive a representation (e(x1), . . . , e(xT ))� ∈ R

T ×b , see (7.31).
Naturally, this can now be further processed by putting different attention on
the components of this embedding exactly using an attention layer (10.18),
alternatively we can use transformer layers (10.19).

Example 10.6 We revisit the hazard type prediction example of Sect. 10.3. We
select the b = 10 word2vec embedding (using negative sampling) and the
pre-trained GloVe embedding of Table 10.1. These embeddings are then further
processed by applying the attention mechanism (10.15)–(10.17) on the embeddings
using one single attention neuron. Listing 10.9 gives the corresponding implemen-
tation. On line 9 we have the query (10.15), on lines 10–13 the key and the attention
weights (10.16), and on line 15 the encodings (10.17). We then process these
encodings through a FN network of depth d = 2, and we use the softmax output
activation to receive the categorical probabilities. Note that we keep the learned
word embeddings e(w) as non-trainable on line 5 of Listing 10.9.
Table 10.3 gives the results, and Fig. 10.9 shows the confusion matrix. We conclude
that the results are rather similar, this attention mechanism seems to work quite well,
and with less parameters, here. �
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Listing 10.9 R code for the hazard type prediction using an attention layer with q = 1

1 input = layer_input(shape = list(T), name = "input")
2 #
3 word2vec = input %>%
4 layer_embedding(input_dim = W+1, output_dim = b, input_length = T,
5 weights=list(wordEmb), trainable=FALSE) %>%
6 layer_flatten()
7 #
8 attention = word2vec %>%
9 time_distributed(layer_dense(units=b, activation=’tanh’)) %>%
10 time_distributed(layer_dense(units=1, activation=’linear’,
11 use_bias=FALSE)) %>%
12 layer_flatten() %>%
13 layer_dense(unit=T, activation=’softmax’, weights=list(diag(T)),
14 use_bias=FALSE, trainable=FALSE)
15 #
16 response = list(attention, word2vec) %>% layer_dot(axes=1) %>%
17 layer_dense(units=20, activation=’tanh’) %>%
18 layer_dense(units=15, activation=’tanh’) %>%
19 layer_dense(units=9, activation=’softmax’)
20 #
21 model = keras_model(inputs = c(input), outputs = c(response))

Table 10.3 Hazard prediction results summarized in deviance losses and misclassification
rates

Number of parameters Deviance Misclassification

Embedding Network loss rate

word2vec negative sampling, b = 10 1’430 2’279 0.0912 13.7%

word2vec attention, b = 10 1’430 799 0.0784 12.0%

FN GloVe using all words, b = 50 91’500 9’479 0.0802 11.7%

GloVe attention, b = 50 91’500 4’079 0.0824 12.6%
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Fig. 10.9 Confusion matrices of the hazard type prediction (lhs) using an attention layer on the
word2vec embeddings with b = 10, and (rhs) using an attention layer on the pre-trained GloVe
embeddings with b = 50; columns show the observations and rows show the predictions
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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