
Chapter 1
Introduction

1.1 The Statistical Modeling Cycle

We consider statistical modeling of insurance problems. This comprises the process
of data collection, data analysis and statistical model building to forecast insured
events that (may) happen in the future. This problem is at the very heart of statistics
and statistical modeling. Our goal here is to present and provide the statistical tools
that are useful in daily actuarial practice, in particular, we aim at describing the
mathematical foundation behind these statistical concepts and how they can be
applied. Statistical modeling has a wide range of applications, and, depending on
the application, the theoretical aspects may be weighted differently. In insurance
pricing we are mainly interested in optimal predictions, whereas economists often
use statistical tools to explain observations, and in medical fields one is interested
in causal effects that medications have on patients. Therefore, statistical theory is
wide ranging, and one should always keep the corresponding application in mind.
Shmueli [338] nicely discusses the difference between prediction and explanation;
our focus here is mainly on prediction.

Box–Jenkins [49] and McCullagh–Nelder [265] distinguish three processes in
statistical modeling: (i) model identification/selection, (ii) estimation, and (iii)
prediction. In our statistical modeling cycle these three points are slightly modified
and extended:

(1) Data collection, cleaning and pre-processing:
This item takes at least 80% of the total time in statistical modeling. It includes
exploratory data analysis, data visualization and data pre-processing. This part
of the modeling cycle does not seem to be very scientific, however, it is a highly
important step because only extended data analysis allows the modeler to fully
understand the data. Based on this knowledge the modeler can formulate her/his
research question, her/his model, etc.
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2 1 Introduction

(2) Selection of a model class:
Based on the knowledge collected in the first item, the modeler has to select a
suitable model class that is able to answer her/his research question. This model
class can be in the sense of a data model (proper stochastic model), but it can
also be an algorithmic model; we refer to the discussion on the “two modeling
cultures” by Breiman [53].

(3) Choice of an objective function:
Once the modeler has specified a model class, she/he needs to define a decision
rule how a particular member of the model class is selected for the collected
data. Often this is in terms of an objective function, e.g., a scoring rule or a loss
function that quantifies misspecification.

(4) Solving a (non-convex) optimization problem:
Once the first three items are completed, one is left with an optimization
problem that tries to find the best model within the selected model class w.r.t. the
given objective function and the collected data. In simple cases this optimization
problem is a convex minimization problem for which numerical tools are in
place. In more complex cases the optimization problem is neither convex nor
concave, and the ‘best’ solution can often not be found explicitly. In that case,
also the meaning of solution needs to be discussed.

(5) Model validation:
In the final/next step, the selected and fitted model needs to be validated. That
is, does the model fit to the data, does it serve at predicting new data, does
it answer the research question adequately, is there any better model/process
choice, etc.?

(6) Possibly go back to (1):
If the answers in item (5) are not satisfactory, one typically goes back to (1).
For instance, data pre-processing needs to be done differently, etc.

Especially, the two modeling cultures discussion of Breiman [53], after the turn
of the millennium, has shaken up the statistical community. Having predictive
performance as the main criterion, the data modeling culture has gradually shifted
to the algorithmic culture, where the model itself plays a secondary role as long
as the prediction is accurate. The latter is often in the form of a point predictor
which can come from an algorithm. Lifting this discussion to a more scientific
level, providing prediction uncertainty will slowly merge the two modeling cultures.
There is an other interesting discussion by Efron [116] on prediction, estimation
(of model parameters) and attribution (predictor selection), that is very much at
the core of statistical modeling. In these notes we want to especially emphasize
the one modeling culture view of Yu–Barter [397] who expect the two modeling
cultures of Breiman [53] to merge much closer than one would expect. Our goal is
to demonstrate how all these different techniques and views can be seen as a unified
modeling framework.

Concluding, the purpose of these notes is to discuss and illustrate how the
different statistical techniques from the data modeling culture and the algorithmic
modeling culture can be combined to solve actuarial questions in the best possible
way. The main emphasis in this discussion lies on the statistical modeling tools,
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and we present these tools along with actuarial examples. In actuarial practice one
often distinguishes between life and general insurance. This distinction is done for
good reasons. There are legislative reasons that require to legally separate life from
general insurance business, but there are also modeling reasons, because insurance
products in life and general insurance can have rather different features. In this book,
we do not make this distinction because the statistical methods presented here can be
useful in both branches of insurance, and we are going to consider life and general
insurance examples, e.g., the former considering mortality forecasting and the latter
aiming at insurance claims prediction for pricing.

1.2 Preliminaries on Probability Theory

The modern axiomatic foundation of probability theory was introduced in 1933 by
the famous mathematician Kolmogoroff [221] in his book called “Grundbegriffe der
Wahrscheinlichkeitsrechnung”. We give a brief introduction to probability theory
and random variables; this introduction follows the lecture notes [387]. Throughout
we assume to work on a sufficiently rich probability space (�,A,P), meaning that
this probability space should be able to carry all objects that we study. We denote
(real-valued) random variables on this probability space by capital letters Y,Z, . . .,
and random vectors use boldface capital letters, e.g., we have a random vector Y =
(Y1, . . . , Yq)� of dimension q ∈ N, where each component Yk , 1 ≤ k ≤ q , is a
random variable. Random variables Y are characterized by (cumulative) distribution
functions1 F : R → [0, 1], for y ∈ R

F(y) = P [Y ≤ y] ,

being the probability of the event that Y has a realization of less or equal to y. We
write Y ∼ F for Y having distribution function F . Similarly random vectors Y ∼ F

are characterized by (cumulative) distribution functions F : Rq → [0, 1] with

F(y) = P
[
Y1 ≤ y1, . . . , Yq ≤ yq

]
for y = (y1, . . . , yq)� ∈ R

q .

In insurance modeling, there are two important types of random variables,
namely, discrete random variables and absolutely continuous random variables:

• The distribution function F of a discrete random variable Y is a step function
with countably many steps in discrete points k ∈ N ⊂ R. A discrete random
variable has probability weights in these discrete points

f (k) = P [Y = k] > 0 for k ∈ N,

1 Cumulative distribution functions F are right-continuous, non-decreasing with limx→−∞ F(x) =
0 and limx→∞ F(x) = 1.
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satisfying
∑

k∈N f (k) = 1. If N ⊆ N0, the integer-valued random variable Y

is called count random variable. Count random variables are used to model the
number of claims in insurance. A similar situation occurs if Y models nominal
outcomes, for instance, if Y models gender with female being encoded by 0 and
male being encoded by 1, then f (0) is the probability weight of having a female
and f (1) = 1 − f (0) the probability weight of having a male; in this case we
identify the finite set N = {0, 1} = {female,male}.

• A random variable Y ∼ F is said to be absolutely continuous2 if there exists a
non-negative (measurable) function f , called density of Y , such that

F(y) =
∫ y

−∞
f (x) dx for all y ∈ R.

In that case we equivalently write Y ∼ f and Y ∼ F . Absolutely continuous
random variables are often used to model claim sizes in insurance.

More generally speaking, discrete and absolutely continuous random variables
have densities f (·) w.r.t. a σ -finite measure ν on R. In the former case, this σ -
finite measure ν is the counting measure on N ⊂ R, and in the latter case it is
the Lebesgue measure on R. In actuarial science we also consider mixed cases, for
instance, Tweedie’s compound Poisson random variable is absolutely continuous on
(0,∞) having an additional point mass in 0; this model will be studied in Sect. 2.2.3,
below.

Choose a random variable Y ∼ F and a measurable function h : R → R. The
expected value of h(Y ) is defined by (upon existence)

E [h(Y )] =
∫

R

h(y) dF (y).

We mainly focus on the following important examples of function h:

• expected value, mean or first moment of Y ∼ F : for h(y) = y

μ = E [Y ] =
∫

R

y dF(y);

• k-th moment of Y ∼ F for k ∈ N: for h(y) = yk

E

[
Y k

]
=

∫

R

yk dF (y);

2 Absolutely continuous is a stronger property than continuous.
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• moment generating function of Y ∼ F in r ∈ R: for h(y) = ery

MY (r) = E

[
erY

]
=

∫

R

ery dF (y);

always subject to existence.
The moment generating function MY (·) is sufficient for identifying distribution

functions of random variables Y . The following statements are elementary and their
proofs are based on Section 30 of Billingsley [34], for more details we also refer to
Chapter 1 in the lecture notes [387]. Assume that the moment generating function
of Y ∼ F has a strictly positive radius of convergence ρ0 > 0 around the origin
implying that MY (r) < ∞ for all r ∈ (−ρ0, ρ0). In this case we can write MY (r)

as a power series expansion

MY (r) =
∞∑

k=0

rk

k! E
[
Y k

]
for all r ∈ (−ρ0, ρ0).

As a consequence we can differentiate MY (·) in the open interval (−ρ0, ρ0)

arbitrarily often, term by term under the sum. The derivatives in r = 0 provide
the k-th moments (which all exist and are finite)

dk

drk
MY (r)|r=0 = E

[
Y k

]
for all k ∈ N0. (1.1)

In particular, in this case we immediately know that all moments of Y exist, and
these moments completely determine the moment generating function MY of Y .
Another consequence is that for a random variable Y , whose moment generating
function MY has a strictly positive radius of convergence around the origin, the
distribution function F is fully determined by this moment generating function.
That is, if we have two such random variables Y1 and Y2 with MY1(r) = MY2(r)

for all r ∈ (−r0, r0), for some r0 > 0, then Y1
(d)= Y2.3 Thus, these two

random variables have the same distribution function. This statement carries over
to the limit, i.e., if we have a sequence of random variables (Yn)n whose moment
generating functions converge on a common interval (−r0, r0), for some r0 > 0,
to the moment generating function of Y , also being finite on (−r0, r0), then (Yn)n
converges in distribution to Y ; such an argument is used to prove the central limit
theorem (CLT).

3 The notation Y1
(d)= Y2 is generally used for equality in distribution meaning that Y1 and Y2 have

the same distribution function.
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In insurance, we often deal with so-called positive random variables Y , meaning
that Y ≥ 0, almost surely (a.s.). In that case, the statements about moment
generating functions and distributions hold true without the assumption of having a
positive radius of convergence around the origin, see Theorem 22.2 in Billingsley
[34]. Note that for positive random variables the moment generating functionMY (r)

exists for all r ≤ 0.
Existence of the moment generating function MY (r) for some positive r > 0

can also be interpreted as having a light-tailed distribution function. Observe that
if MY (r) exists for some positive r > 0, then we can choose s ∈ (0, r) and
Chebychev’s inequality gives us (we assume Y ≥ 0, a.s., here)

P [Y > y] = P
[
exp{sY } > exp{sy}] ≤ exp{−sy}MY(s). (1.2)

The latter tells us that the survival function 1 − F(y) = P[Y > y] decays
exponentially for y → ∞. Heavy-tailed distribution functions do not have this
property, but the survival function decays slower than exponentially as y → ∞.
This slower decay of the survival function is the case for so-called subexponential
distribution functions (an example is the log-normal distribution, we refer to Rolski
et al. [320]) and for regularly varying survival functions (an example is the Pareto
distribution). Regularly varying survival functions 1 − F have the property

lim
y→∞

1 − F(ty)

1 − F(y)
= t−β for all t > 0 and some β > 0. (1.3)

These distribution functions have a polynomial tail (power tail) with tail index β >

0. In particular, if a positively supported distribution function F has a regularly
varying survival function with tail index β > 0, then this distribution function is
also subexponential, see Theorem 2.5.5 in Rolski et al. [320].

We are not going to specifically focus on heavy-tailed distribution functions,
here, but we will explain how light-tailed random variables can be transformed to
enjoy heavy-tailed properties. In these notes, we are mainly interested in studying
different aspects of regression modeling. Regression modeling requires numerous
observations to be able to successfully fit these models to the data. By definition,
large claims are scarce, as they live in the tail of the distribution function and, thus,
correspond to rare events. Therefore, it is often not possible to employ a regression
model for scarce tail events. For this reason, extreme value analysis only plays
a marginal role in these notes, though, it has a significant impact on insurance
prices. For more on extreme value theory we refer to the relevant literature, see,
e.g., Embrechts et al. [121], Rolski et al. [320], Mikosch [277] and Albrecher et
al. [7].
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1.3 Lab: Exploratory Data Analysis

Our theory is going to be supported by several data examples. These examples are
mostly based on publicly available data. The different data sets are described in
detail in Chap. 13. We highly recommend the reader to use these data sets to gain
her/his own modeling experience.

We describe some tools here that allow for a descriptive and exploratory analysis
of the available data; exploratory data analysis has been introduced and promoted by
Tukey [357]. We consider the observed claim sizes of the Swedish motorcycle data
set described in Sect. 13.2. This data set consists of 656 (positive) claim amounts yi ,
1 ≤ i ≤ n = 656. These claim amounts are illustrated in the boxplots of Fig. 1.1.

Typically in insurance, there are large claims that dominate the picture, see
Fig. 1.1 (lhs). This results in right-skewed distribution functions, and such data is
better illustrated on the log scale, see Fig. 1.1 (rhs). The latter, of course, assumes
that all claims are strictly positive.

Figure 1.2 (lhs) shows the empirical distribution function of the observations yi ,
1 ≤ i ≤ n, which is obtained by

F̂n(y) = 1

n

n∑

i=1

1{yi≤y} for y ∈ R.

If this data set has been generated by i.i.d. random variables, then the Glivenko–
Cantelli theorem [64, 159] tells us that this empirical distribution function F̂n

converges uniformly to the (true) data generating distribution function, a.s., as the
number n of observations converges to infinity, see Theorem 20.6 in Billingsley
[34].

Figure 1.2 (rhs) shows the empirical density of the observations yi , 1 ≤ i ≤
n. This empirical density is obtained by considering a kernel smoother of a given
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Fig. 1.1 Boxplot of the claim amounts of the Swedish motorcycle data set: (lhs) on the original
scale and (rhs) on the log scale
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Fig. 1.2 (lhs) Empirical distribution and (rhs) empirical density of the observed claim amounts yi ,
1 ≤ i ≤ n

bandwidth around each observation yi . The standard choice is the Gaussian kernel,
with the bandwidth determining the variance parameter σ 2 > 0 of the Gaussian
density,

y �→ f̂n(y) = 1

n

n∑

i=1

1√
2πσ 2

exp

{
−1

2

(y − yi)
2

σ 2

}
.

From the graph in Fig. 1.2 (rhs) we observe that the main body of the claim sizes
is below an amount of 50’000, but the biggest claim exceeds 200’000. The latter
motivates to study heavy-tailedness of the claim size data. Therefore, one usually
benchmarks with a distribution function F that has a regularly varying survival
function with a tail index β > 0, see (1.3). Asymptotically a regularly varying
survival function behaves as y−β ; for this reason the log-log plot is a popular tool
to identify regularly varying tails. The log-log plot of a distribution function F is
obtained by considering

y > 0 �→ (logy, log(1 − F(y))) ∈ R
2.

Figure 1.3 gives the log-log plot of the empirical distribution function F̂n. If this
plot looks asymptotically (for y → ∞) like a straight line with a negative slope
−β, then the data shows heavy-tailedness in the sense of regular variation. Such
data cannot be modeled by a distribution function for which the moment generating
functionMY (r) exists for some positive r > 0, see (1.2). Figure 1.3 does not suggest
a regularly varying tail as we do not see an obvious asymptotic straight line for
increasing claim sizes.

These graphs give us a first indication what the claim size data is about. Later
on we are going to introduce explanatory variables that describe the insurance
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Fig. 1.3 Log-log plot of the
empirical distribution
function F̂n
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policyholders behind these claims. These explanatory variables characterize the
policyholder and the general goal is to get a better description of the claim sizes
as a function of these explanatory variables, e.g., older policyholders may cause
larger claims than younger ones, etc. Such patterns are called systematic effects that
can be explained by explanatory variables.

1.4 Outline of This Book

This book has eleven chapters (including the present one), and it has two appendices.
We briefly describe the contents of these chapters and appendices.

In Chap. 2 we introduce and discuss the exponential family (EF) and the
exponential dispersion family (EDF). The EF and the EDF are by far the most
important classes of distribution functions for regression modeling. They include,
among others, the Gaussian, the binomial, the Poisson, the gamma, the inverse
Gaussian and Tweedie’s models. We introduce these families of distribution func-
tions, discuss their properties and provide several examples.Moreover, we introduce
the Kullback–Leibler (KL) divergence and the Bregman divergence, which are
important tools in model evaluation.

Chapter 3 is on classical statistical decision theory. This chapter is important for
historical reasons, but it also provides the right mathematical grounding and intu-
ition for more modern tools from data science and machine learning. In particular,
we discuss maximum likelihood estimation (MLE), unbiasedness, consistency and
asymptotic normality of MLEs in this chapter.

Chapter 4 is the core theoretical chapter on predictive modeling and forecast
evaluation. The main problem in actuarial modeling is to forecast and price future
claims. For this, we build predictive models, and this chapter deals with assessing
and ranking these predictive models. We therefore introduce the mean squared
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error of prediction (MSEP) and, more generally, the generalization loss (GL)
to assess predictive models. This chapter is complemented by a more decision-
theoretic approach to forecast evaluation, it discusses deviance losses, proper
scoring, elicitability, forecast dominance, cross-validation, Akaike’s information
criterion (AIC) and we give an introduction to the bootstrap simulation method.

Chapter 5 discusses state-of-the-art statistical modeling in insurance which is the
generalized linear model (GLM). We discuss GLMs in the light of claim count and
claim size modeling, we present feature engineering, model fitting, model selection,
over-dispersion, zero-inflated claim counts problems, double GLMs, and insurance-
specific issues such as the balance property for having unbiasedness.

Chapter 6 summarizes some techniques that use Bayes’ theorem. These are
classical Bayesian statistical models, e.g., using the Markov chain Monte Carlo
(MCMC) method for model fitting. This chapter discusses regularization of regres-
sion models such as ridge and LASSO regularization, which has a Bayesian
interpretation, and it concerns the Expectation-Maximization (EM) algorithm. The
EM algorithm is a general purpose tool that can handle incomplete data settings. We
illustrate this for different examples coming from mixture distributions, censored
and truncated claims data.

The core of this book are deep learning methods and neural networks. Chapter 7
considers deep feed-forward neural (FN) networks. We introduce the generic
architecture of deep FN networks, and we discuss universality theorems of FN
networks. We present network fitting, back-propagation, embedding layers for
categorical variables and insurance-specific issues such as the balance property in
network fitting and network ensembling to reduce model uncertainty. This chapter
is complemented by many examples on non-life insurance pricing, but also on
mortality modeling, as well as tools that help to explain deep FN network regression
results.

Chapters 8 and 9 consider recurrent neural (RN) networks and convolutional
neural (CN) networks. These are special network architectures that are useful for
time-series and spatial data modeling, e.g., applied to image recognition problems.
Time-series and images have a natural topology, and RN and CN networks try to
benefit from this additional structure (over tabular data).We introduce these network
architectures and provide insurance-relevant examples.

Chapter 10 discusses natural language processing (NLP) which deals with
regression modeling of non-tabular or unstructured text data. We explain how
words can be embedded into low-dimension spaces that serve as numerical word
encodings. These can then be used for text recognition, either using RN networks or
attention layers. We give an example where we aim at predicting claim perils from
claim descriptions.

Chapter 11 is a selection of different topics. We mention forecasting under
model uncertainty, deep quantile regression, deep composite regression or the
LocalGLMnet which is an interpretable FN network architecture. Moreover, we
provide a bootstrap example to assess prediction uncertainty, and we discuss mixture
density networks.
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Chapter 12 (Appendix A) is a technical chapter that discusses universality the-
orems for networks and sieve estimators, which are useful for studying asymptotic
normality within a network framework. Chapter 13 (Appendix B) illustrates the data
used in this book.

Finally, we remark that the book is written in a typical mathematical style
using the structure of Lemmas, Theorems, etc. Results and statements which are
particularly important for applications are highlighted with gray boxes.
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