Skip to main content

Anti-Viral Potential of Curcumins: Ethnopharmacology, Chemistry, and Clinical Studies Focusing on Mechanism of Action and Future Perspectives

  • Reference work entry
  • First Online:
Anti-Viral Metabolites from Medicinal Plants

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 295 Accesses

Abstract

Viruses have always been a serious public health concern, and scientists have worked diligently to make new anti-viral medicines. Virus infections cause a variety of chronic and acute diseases in humans and animals. Despite substantial advancements in human medicine, a number of viral diseases, including hepatitis, respiratory syndromes, and the acquired immunodeficiency syndrome, continue to be associated with high rates of morbidity and mortality in humans. Natural products, such as anti-virals, are a rich source of structurally unique chemical molecules derived from plants or other organisms. Many pathological illnesses have been treated with plant-derived medications in traditional medicine. The main source of curcumin and an ancient Asian coloring spice known as turmeric has long been used for a number of treatments. In addition to being a spice, food preservative, and coloring agent, turmeric has historically been used in Ayurvedic medicine to treat a variety of illnesses, including arthritis, ulcers, jaundice, wounds, fever, trauma, and skin illnesses like psoriasis. Turmeric’s main active ingredient is curcumin, a hydrophobic polyphenol. Since ancient times, Asia has used curcumin (diferuloylmethane), a low-molecular-weight orange-yellow substance derived from the roots of Curcuma longa L. (family Zingiberaceae), for therapeutic, culinary, and other uses. Recent in vitro and in vivo studies have demonstrated the anticancer, anti-viral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties of curcumin. Curcumin found active against series of viral infections caused by coronavirus, human immunodeficiency virus, influenza A virus, hepatitis virus, etc. This chapter mainly focuses on curcumin derivatives that have anti-viral action against human viruses and how they might be used to treat or prevent viral illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Arachidonic acid

ACE1:

Angiotensin-converting enzyme 1

ACE2:

Angiotensin-converting enzyme 2

ADAM17:

A disintegrin and metalloproteinase 17

AKT:

Protein kinase B

ANG I:

Angiotensin I

Ang II:

Angiotensin II

APE1:

Apurinic/apyrimidinic endonuclease 1

ATII:

Alveolar type II cells

ATR1:

Angiotensin II (AII) receptor 1

Cmn :

Curcumin

CXCL-1:

Chemokine ligand 1

DAMPs:

Damage-associated molecular patterns

EBV:

Epstein bar virus

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

FGT:

Female genital tract

gp130:

Glycoprotein 130

GPIb-IX-V:

Glycoprotein (GP) Ib-IX-V

GPVI:

Glycoprotein VI

HRSV:

Human respiratory syncytial virus

IBD:

Inflammatory bowel disease

IL-1β:

Interleukin 1 beta

IL-6R:

Interleukin 6 receptors

LOX:

Lipoxygenase

M6PRBP1:

Mannose-6-phosphate receptor binding protein 1

Mpro:

Main protease

mTOR:

Mammalian target of rapamycin

NET:

Neutrophil extracellular traps

NF-κB:

Nuclear factor kappa B

PAMPs:

Pathogen-associated molecular pattern

PI3K:

Phosphoinositide 3-kinase

PSGL-1:

P-selectin glycoprotein ligand-1

sIL-6R:

Soluble interleukin 6 receptor

STAT3:

Signal transducers and activators of transcription

Th17:

T helper 17 cells

TMPRSS2:

Transmembrane protease, serine 2

TNF-α:

Tumor necrosis factor alpha

TP:

Thromboxane receptor

Tregs:

Regulatory T cells

TXA2:

Thromboxane A2

vWF:

Von Willebrand factor

References

  1. Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period. J Nat Prod 66:1022e1037

    Article  Google Scholar 

  2. Pandit S, Kim H, Kim J, Jeon J (2011) Separation of an effective fraction from turmeric against Streptococcus mutans biofilms by the comparison of curcuminoid content and anti-acidogenic activity. Food Chem 126:1565e1570

    Article  Google Scholar 

  3. Zhou HS, Beevers C, Huang S (2011) The targets of curcumin. Curr Drug Targets 12(3):332–347. https://doi.org/10.2174/138945011794815356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. In: The molecular targets and therapeutic uses of curcumin in health and disease, vol 595, pp 1–75. https://doi.org/10.1007/978-0-387-46401-5_1

    Chapter  Google Scholar 

  5. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65:1631–1652. https://doi.org/10.1007/s00018-008-7452-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hewlings SJ, Kalman DS (2017) Curcumin: a review of its effects on human health. Foods 6(10):92. https://doi.org/10.3390/foods6100092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ali BH, Marrif H, Noureldayem SA, Bakheit AO, Blundene G (2006) Some biological properties of curcumin: a review. Nat Prod Commun 1(6):509–521. https://doi.org/10.1177/1934578x0600100613

    Article  CAS  Google Scholar 

  8. Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN, Aggarwal BB (2008) Biological activities of curcumin and its analogues (congeners) made by man and mother nature. Biochem Pharmacol 76(11):1590–1611. https://doi.org/10.1016/j.bcp.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  9. Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int:1–12. https://doi.org/10.1155/2014/186864

  10. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818. https://doi.org/10.1021/mp700113r

    Article  CAS  PubMed  Google Scholar 

  11. Sharma RA, Steward WP, Gescher AJ (2007) Pharmacokinetics and pharmacodynamics of curcumin. In: The molecular targets and therapeutic uses of curcumin in health and disease, pp 453–470. https://doi.org/10.1007/978-0-387-46401-5_20

    Chapter  Google Scholar 

  12. Shakeri A, Cicero AFG, Panahi Y, Mohajeri M, Sahebkar A (2018) Curcumin: a naturally occurring autophagy modulator. J Cell Physiol:1–12. https://doi.org/10.1002/jcp.27404

  13. Rodrigues FC, Kumar NA, Thakur G (2021) The potency of heterocyclic curcumin analogues: an evidence-based review. Pharmacol Res 166:105489. https://doi.org/10.1016/j.phrs.2021.105489

    Article  CAS  PubMed  Google Scholar 

  14. Pedersen U, Rasmussen PB, Lawesson SO (1985) Synthesis of naturally occurring curcuminoids and related compounds. Liebigs Annalen Der Chemie 8:1557–1569. https://doi.org/10.1002/jlac.198519850805

    Article  Google Scholar 

  15. Amalraj A, Pius A, Gopi S, Gopi S (2016) Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – a review. J Tradit Complement Med:1–29. https://doi.org/10.1016/j.jtCmne.2016.05.005

  16. Gurjar VK, Pal D, Patel AD (2020) Recent advances in chemistry and synthesis of pyrazole derivatives as potential promising antimicrobial agents. In: Pyrazole preparation and uses. Nova Science Publishers, New York

    Google Scholar 

  17. Jennings MR, Parks RJ (2020) Curcumin as an antiviral agent. Viruses 12(11):1242. https://doi.org/10.3390/v12111242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. Bio Med Res Int. https://doi.org/10.1155/2014/186864

  19. Hu S, Maiti P, Ma Q, Zuo X, Jones MR, Cole GM, Frautschy SA (2015) Clinical development of curcumin in neurodegenerative disease. Expert Rev Neurother 15(6):629–637. https://doi.org/10.1586/14737175.2015.1044981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lestari MLAD, Indrayanto G (2014) Curcumin. Profiles Drug Subst Excip Relat Methodol 39:113–204. https://doi.org/10.1016/b978-0-12-800173-8.00003-9

    Article  CAS  PubMed  Google Scholar 

  21. Wongcharoen W, Phrommintikul A (2009) The protective role of curcumin in cardiovascular diseases. Int J Cardiol 133(2):145–151. https://doi.org/10.1016/j.ijcard.2009.01.073

    Article  PubMed  Google Scholar 

  22. Shehzad A, Lee YS (2013) Molecular mechanisms of curcumin action: signal transduction. Bio Factors 39(1):27–36. https://doi.org/10.1002/biof.1065

    Article  CAS  Google Scholar 

  23. Pabon HJJ (1964) A synthesis of curcumin and related compounds. Recueil Des Travaux Chimiques Des Pays-Bas 83(4):379–386. https://doi.org/10.1002/recl.19640830407

    Article  CAS  Google Scholar 

  24. Giordano A, Tommonaro G (2019) Curcumin and cancer. Nutrients 11(10):2376. https://doi.org/10.3390/nu11102376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Priyadarsini KI (2014) The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19(12):20091–20112. https://doi.org/10.3390/molecules191220091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78(18):2081–2087. https://doi.org/10.1016/j.lfs.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  27. Tønnesen HH, Karlsen J (1985) Studies on curcumin and curcuminoids. Z Lebensm Unters Forch 180:402–404. https://doi.org/10.1007/BF01027775

    Article  Google Scholar 

  28. Noorafshan A, Ashkani-Esfahani S (2013) A review of therapeutic effects of curcumin. Curr Pharm Des 19(11):2032–2046. https://doi.org/10.2174/138161213805289273

    Article  CAS  PubMed  Google Scholar 

  29. Pal D, Mandal M, Senthil Kumar GP, Padhiari A (2006) Antibacterial activity of methanol extract of Cuscuta reflexa Roxb. stem and Corchorus olitorius Linn. seed. Fitoterapia 77(7–8):589–591

    Article  CAS  PubMed  Google Scholar 

  30. Mohanta TK, Patra JK, Rath SK, Pal D, Thatoi HN (2007) Evaluation of antimicrobial activity and phytochemical screening of oils and nuts of Semicarpus anacardium L.f. Sci Res Essays 2(11):486–490

    Google Scholar 

  31. Anderson AM, Mitchell MS, Mohan RS (2000) Isolation of curcumin from turmeric. J Chem Educ 77:359e360

    Article  Google Scholar 

  32. Bagchi A (2012) Extraction of curcumin. IOSR J Environ Sci Toxicol Food Technol 1:1e16

    Article  Google Scholar 

  33. Pal D, Singh V, Pandey DD, Maurya RK (2014) Synthesis, characterization and antimicrobial evaluation of some 1, 2, 4-triazole derivatives. Int J Pharm Pharm Sci 6(8):213–216

    CAS  Google Scholar 

  34. Pal D, Tripathy R, Pandey DD, Mishra P (2014) Synthesis, characterization, antimicrobial and pharmacological evaluation of some 2,5-disubstituted sulphonyl amino 1,3,4- oxadiazole and 2-amino-disubstituted 1,3,4-thiadiazole derivatives. J Adv Pharm Technol Res 5(4):196–201

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rani P, Pal D, Hegde RR, Hashim SR (2016) Acetamides: chemotherapeutic agents for inflammation associated cancers. J Chemother 28(4):255–265

    Article  CAS  PubMed  Google Scholar 

  36. Saha S, Pal D, Kumar S (2017) Antifungal and antibacterial activities of phenyl and ortho hydroxyl phenyl linked imidazolyl triazolo hydroxamic acid derivatives. Inventi Rapid Med Chem 2017(1):1–8

    Google Scholar 

  37. Zhang R, Li S, Zhu Z, He J (2019) Recent advances in valorization of chaenomeles fruit: a review of botanical profile, phytochemistry, advanced extraction technologies and bioactivities. Trends Food Sci Technol 91:467–482. https://doi.org/10.1016/j.tifs.2019.07.012

    Article  CAS  Google Scholar 

  38. Jiang T, Ghosh R, Charcosset C (2021) Extraction, purification and applications of curcumin from plant materials-a comprehensive review. Trends Food Sci Technol 112:419–430

    Article  CAS  Google Scholar 

  39. Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa M (2016) Curcumin and health. Molecules 21(3):264. https://doi.org/10.3390/molecules21030264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zahedipour F, Hosseini SA, Sathyapalan T, Majeed M, Jamialahmadi T, Al-Rasadi K, Banach M, Sahebkar A (2020) Potential effects of curcumin in the treatment of COVID -19 infection. Phytother Res 34(11):2911–2920. https://doi.org/10.1002/ptr.6738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Musarra-pizzo M, Pennisi R, Ben-amor I, Mandalari G, Sciortino MT (2021) Antiviral activity exerted by natural products against human viruses. Viruses 13:828. https://doi.org/10.3390/v13050828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kocaadam B, Şanlier N (2017) Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 57(13):2889–2895

    Article  CAS  PubMed  Google Scholar 

  43. Akram M, Afzal A, Mohiuddin E, Asif M (2010) Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol 55(2):65–70

    Google Scholar 

  44. Paulucci VP, Couto RO, Teixeira CCC, Freitas LAP (2013) Optimization of the extraction of curcumin from Curcuma longa rhizomes. Rev Bras 23(1):94–100. https://doi.org/10.1590/s0102-695x2012005000117

    Article  CAS  Google Scholar 

  45. Shenge JA, Obi RK, Salawu KM (2021) Assessment of antiviral activity of Curcuma longa on two RNA viruses. NJPAS 34(1):3915–3928. https://doi.org/10.48198/njpas/20.b21

    Article  Google Scholar 

  46. Hsu CH, Cheng AL (2007) Clinical studies with curcumin. In: The molecular targets and therapeutic uses of curcumin in health and disease, pp 471–480. https://doi.org/10.1007/978-0-387-46401-5_21

    Chapter  Google Scholar 

  47. Ahn KS, Sethi G, Jain AK, Jaiswal AK, Aggarwal BB (2006) Genetic deletion of NAD(P)H:quinone oxidoreductase 1 abrogates activation of nuclear factor-kappaB, IkappaBalpha kinase, c-Jun N-terminal kinase, Akt, p38, and p44/42 mitogen-activated protein kinases and potentiates apoptosis. J Biol Chem 281(29):19798–19808. https://doi.org/10.1074/jbc.M601162200

    Article  CAS  PubMed  Google Scholar 

  48. Mathew D, Hsu WL (2018) Antiviral potential of curcumin. J Funct Foods 40:692–699

    Article  CAS  Google Scholar 

  49. Puar YR, Shanmugam MK, Fan L, Arfuso F, Sethi G, Tergaonkar V (2018) Evidence for the involvement of the master transcription factor NF-κB in cancer initiation and progression. Biomedicines 6(3). https://doi.org/10.3390/biomedicines6030082

  50. Avasarala S, Zhang F, Liu G, Wang R, London SD, London L (2013) Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome. PLoS One 8(2):e57285. https://doi.org/10.1371/journal.pone.0057285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM (2003) A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348(20):1986–1994

    Article  PubMed  Google Scholar 

  52. De Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L (2013) Commentary: Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol 87(14):7790–7792

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science 367(6485):1444–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suravajhala R, Parashar A, Choudhir G, Kumar A, Malik B, Nagaraj VA et al (2021) Molecular docking and dynamics studies of curcumin with COVID-19 proteins. Netw Model Anal Health Inform Bioinform 10(1). https://doi.org/10.1007/s13721-021-00312-8

  55. Saeedi-Boroujeni A, Mahmoudian-Sani M, Bahadoram M, Alghasi A (2020) COVID-19: a case for inhibiting NLRP3 inflammasome, suppression of inflammation with curcumin? Basic Clin Pharmacol Toxicol. https://doi.org/10.1111/bcpt.13503

  56. Rattis BAC, Ramos SG, Celes MRN (2021) Curcumin as a potential treatment for COVID-19. Front Pharmacol 7:1–14

    Google Scholar 

  57. Utomo RY, Ikawati M, Meiyanto E (2020) Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection. Preprints, 2020030214. https://doi.org/10.20944/preprints202003.0214.v1

  58. Chen TY, Chen DY, Wen HW, Ou JL, Chiou SS, Chen JM et al (2013) Inhibition of enveloped viruses infectivity by curcumin. PLoS One 8(5):e62482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nishimura H, Tsuji H, Masuda H, Nakagawa K, Nakahara Y, Kitamur H (1997) Angiotensin II increases plasminogen activator inhibitor-1 and tissue factor mRNA expression without changing that of tissue type plasminogen activator or tissue factor pathway inhibitor in cultured rat aortic endothelial cells. Thromb Haemost 77:1189–1195. https://doi.org/10.1055/s-0038-1656136

    Article  CAS  PubMed  Google Scholar 

  60. Eslamifar Z, Behzadifard M, Soleimani M, Behzadifard S (2020) Coagulation abnormalities in SARS-CoV-2 infection: overexpression tissue factor. Thromb J 18(1). https://doi.org/10.1186/s12959-020-00250-x

  61. Chai YS, Chen YQ, Lin SH, Xie K, Wang C, Yang YZ (2020) Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomed Pharmacother 125:109946. https://doi.org/10.1016/j.biopha.2020.109946

    Article  CAS  PubMed  Google Scholar 

  62. Turner AJ, Hiscox J, Hooper NM (2004) ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol Sci 25(6):291–294. https://doi.org/10.1016/j.tips.2004.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zheng YY, Ma YT, Zhang JY, Xie X (2020) COVID-19 and the cardiovascular system. Nat Rev Cardiol. https://doi.org/10.1038/s41569-020-0360-5

  64. Yamamoto K, Ohishi M, Katsuya T, Ito N, Ikushima M, Kaibe M (2006) Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II. Hypertension 47(4):718–726. https://doi.org/10.1161/01.HYP.0000205833.89478.5b

    Article  CAS  PubMed  Google Scholar 

  65. Pang XF, Zhang LH, Bai F, Wang NP, Garner RE, McKallip RJ, Zhao ZQ (2015) Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats. Drug Des Devel Ther 9:6043–6054. https://doi.org/10.2147/dddt.S95333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506. https://doi.org/10.1016/s0140-6736(20)30183-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sahebkar A, Henrotin Y (2016) Analgesic efficacy and safety of curcuminoids in clinical practice: a systematic review and meta-analysis of randomized controlled trials. Pain Med 17(6):1192–1202. https://doi.org/10.1093/pm/pnv024

    Article  PubMed  Google Scholar 

  68. Li X, Fang Q, Tian X, Wang X, Ao Q, Hou W, Bai S (2017) Curcumin attenuates the development of thoracic aortic aneurysm by inhibiting VEGF expression and inflammation. Mol Med Rep 16(4):4455–4462. https://doi.org/10.3892/mmr.2017.7169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L (2020) Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 97(5):829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ye M, Wysocki J, William J, Soler MJ, Cokic I, Batlle D (2006) Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol 17(11):3067–3075. https://doi.org/10.1681/asn.2006050423

    Article  CAS  PubMed  Google Scholar 

  71. Ye M, Wysocki J, Naaz P, Salabat MR, LaPointe MS, Batlle D (2004) Increased ACE 2 and decreased ACE protein in renal tubules from diabetic mice: a renoprotective combination? Hypertension 43(5):1120–1125. https://doi.org/10.1161/01.Hyp.0000126192.27644.76

    Article  CAS  PubMed  Google Scholar 

  72. Ahmad J, Siddiqui MA, Ahmad H (1997) Effective postponement of diabetic nephropathy with enalapril in normotensive type 2 diabetic patients with microalbuminuria. Diabetes Care 20(10):1576–1581. https://doi.org/10.2337/diacare.20.10.1576

    Article  CAS  PubMed  Google Scholar 

  73. Xu X, Cai Y, Yu Y (2018) Effects of a novel curcumin derivative on the functions of kidney in streptozotocin-induced type 2 diabetic rats. Inflammo Pharmacol 26(5):1257–1264. https://doi.org/10.1007/s10787-018-0449-1

    Article  CAS  Google Scholar 

  74. Sun X, Liu Y, Li C, Wang X, Zhu R, Liu C (2017) Recent advances of curcumin in the prevention and treatment of renal fibrosis. Biomed Res Int:2418671. https://doi.org/10.1155/2017/2418671

  75. Vajragupta O, Boonchoong P, Morris GM, Olson AJ (2005) Active site binding modes of curcumin in HIV-1 protease and integrase. Bioorg Med Chem Lett 15:3364–3368. https://doi.org/10.1016/j.bmcl.2005.05.032

    Article  CAS  PubMed  Google Scholar 

  76. Mazumder A, Neamati N, Sunder S, Schulz J, Pertz H, Eich E, Pommier Y (1997) Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action. J Med Chem 40(19):3057–3063. https://doi.org/10.1021/jm970190x

    Article  CAS  PubMed  Google Scholar 

  77. Sui Z, Salto R, Li J, Craik C, Ortiz de Montellano PR (1993) Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes. Bioorgan Med Chem 1(6):415–422. https://doi.org/10.1016/s0968-0896(00)82152-5

    Article  CAS  Google Scholar 

  78. Gandapu U, Chaitanya RK, Kishore G, Reddy RC, Kondapi AK (2011) Curcumin -loaded apotransferrin nanoparticles provide efficient cellular uptake and effectively inhibit HIV-1 replication in vitro. PLoS One 6(8):e23388. https://doi.org/10.1371/journal.pone.0023388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F (1990) Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 345:84–86. https://doi.org/10.1038/345084a0

    Article  CAS  PubMed  Google Scholar 

  80. Westendorp MO, Frank R, Ochsenbauer C, Stricker K, Dhein J, Walczak H et al (1995) Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375:497–500. https://doi.org/10.1038/375497a0

    Article  CAS  PubMed  Google Scholar 

  81. Campbell GR, Pasquier E, Watkins J, Bourgarel-Rey V, Peyrot V, Esquieu D et al (2004) The glutamine-rich region of the HIV-1 Tat protein is involved in T-cell apoptosis. J Biol Chem 279:48197–48204. https://doi.org/10.1074/jbc.M406195200

    Article  CAS  PubMed  Google Scholar 

  82. Shojania S, O’Neil JD (2010) Intrinsic disorder and function of the HIV-1 Tat protein. Protein Pept Lett 17:999–1011. https://doi.org/10.2174/092986610791498993

    Article  CAS  PubMed  Google Scholar 

  83. Tsvetkov P, Asher G, Reiss V, Shaul Y, Sachs L, Lotem J (2005) Inhibition of NAD(P)H:quinone oxidoreductase 1 activity and induction of p53 degradation by the natural phenolic compound curcumin. Proc Natl Acad Sci USA 102:5535–5540. https://doi.org/10.1073/pnas.0501828102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ali A, Banerjea AC (2016) Curcumin inhibits HIV-1 by promoting tat protein degradation. Sci Rep 6:27539. https://doi.org/10.1038/srep27539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U et al (2004) Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279:51163–51171. https://doi.org/10.1074/jbc.M409024200

    Article  CAS  PubMed  Google Scholar 

  86. Gilden D, Smart T (1996) Curcumin trial fifinds no activity. GMHC Treat Issues 10:9. https://doi.org/10.1002/dap.30444

    Article  CAS  PubMed  Google Scholar 

  87. James J (1996) Curcumin: clinical trial finds no antiviral effect. AIDS Treat News 242:1–2

    Google Scholar 

  88. Ferreira VH, Nazli A, Dizzell SE, Mueller K, Kaushic C (2015) The anti-inflammatory activity of curcumin protects the genital mucosal epithelial barrier from disruption and blocks replication of HIV-1 and HSV-2. PLoS One 10:e0124903. https://doi.org/10.1371/journal.pone.0124903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, Gray-Owen SD, Arsenault AL, Kaushic C (2010) Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog 6:e1000852

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sui Z, Salto R, Li J, Craik C, Ortiz de Montellano R (1993) Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes. Bioorg Med Chem 1:415–422

    Article  CAS  PubMed  Google Scholar 

  91. Chen DY, Jui-Hung S, Tiley L, Chiou SS, Wang SY, Tien-Jye C et al (2010) Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chem 119:1346–1351. https://doi.org/10.1111/febs.12503

    Article  CAS  Google Scholar 

  92. Dai J, Gu L, Su Y, Wang Q, Zhao Y, Chen X et al (2018) Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways. Int Immunopharmacol 54:177–187. https://doi.org/10.1016/j.intimp.2017.11.009

    Article  CAS  PubMed  Google Scholar 

  93. Han S, Xu J, Guo X, Huang M (2018) Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production. Clin Exp Pharmacol Physiol 45:84–93. https://doi.org/10.1111/1440-1681.12848

    Article  CAS  PubMed  Google Scholar 

  94. Ou JL, Mizushina Y, Wang SY, Chuang DY, Nadar M, Hsu WL (2013) Structure-activity relationship analysis of curcumin analogues on anti-influenza virus activity. FEBS J 280:5829–5840. https://doi.org/10.1111/febs.12503

    Article  CAS  PubMed  Google Scholar 

  95. Richart S, Li YL, Mizushina Y, Chang YY, Chung TY, Chen GH et al (2018) Synergic effect of curcumin and its structural analogue (Monoacetyl curcumin) on anti-influenza virus infection. J Food Drug Anal 26:1015–1023. https://doi.org/10.1016/j.jfda.2017.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Umar S, Shah MAA, Munir MT, Yaqoob M, Fiaz M, Anjum S et al (2016) Synergistic effects of thymoquinone and curcumin on immune response and anti-viral activity against avian influenza virus (H9N2) in turkeys. Poult Sci 95:1513–1520. https://doi.org/10.3382/ps/pew069

  97. Yang M, Lee G, Si J, Lee SJ, You HJ, Ko G (2016) Curcumin shows antiviral properties against norovirus. Molecules 21:E1401. https://doi.org/10.3390/molecules21101401

    Article  CAS  Google Scholar 

  98. Randazzo W, Aznar R, Sánchez G (2016) Curcumin -mediated photodynamic inactivation of norovirus surrogates. Food Environ Virol 8(4):244–250. https://doi.org/10.1007/s12560-016-9255-3

    Article  CAS  PubMed  Google Scholar 

  99. Chung S, Breshears LE, Gonzales A, Cmn J, Cmn M, Betancourt WQ et al (2021) Norovirus detection in water samples at the level of single virus copies per microliter using a smartphone-based fluorescence microscope. Nat Protocol 16(3):1452–1475. https://doi.org/10.1038/s41596-020-00460-7

    Article  CAS  Google Scholar 

  100. Wu J, Hou W, Cao B, Zuo T, Xue C, Leung AW et al (2015) Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters. Photodiagn Photodyn Ther 12:385–392. https://doi.org/10.1016/j.pdpdt.2015.06.005

    Article  CAS  Google Scholar 

  101. Shi T, Mcallister D, O’brien K, Simoes E, Madhi S, Gessner B et al (2017) Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet 390:946–958. https://doi.org/10.1016/S0140-6736(17)30938-8

    Article  PubMed  PubMed Central  Google Scholar 

  102. Jara M, Rasmussen DA, Corzo CA, Machado G (2020) Porcine reproductive and respiratory syndrome virus dissemination across pig production systems in the United States. Transboundary Emerg Dis. https://doi.org/10.1111/tbed.13728

  103. Law BJ, Wang EE, Macdonald N, Mcdonald J, Dobson S, Boucher F et al (1997) Does ribavirin impact on the hospital course of children with respiratory syncytial virus (RSV) infection? An analysis using the pediatric investigators collaborative network on infections in Canada (PICNIC) RSV database. Pediatrics 99:E7

    Article  CAS  PubMed  Google Scholar 

  104. Long CE, Voter KZ, Barker WH, Hall CB (1997) Long term follow-up of children hospitalized with respiratory syncytial virus lower respiratory tract infection and randomly treated with ribavirin or placebo. Pediatr Infect Dis J 16:1023–1028. https://doi.org/10.1097/00006454-199711000-00004

    Article  CAS  PubMed  Google Scholar 

  105. Obata K, Kojima T, Masaki T, Okabayashi T, Yokota S, Hirakawa S et al (2013) Curcumin prevents replication of respiratory syncytial virus and the epithelial responses to it in human nasal epithelial cells. PLoS One 8:e70225. https://doi.org/10.1371/journal.pone.0070225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang XX, Cmn L, Huang CZ (2016) Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale 8:3040–3048. https://doi.org/10.1039/c5nr07918g

    Article  CAS  PubMed  Google Scholar 

  107. Yang XX, Cmn L, Li YF, Wang J, Huang CZ (2017) Synergisticantiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale 9:16086–16092. https://doi.org/10.1039/c7nr06520e

    Article  CAS  PubMed  Google Scholar 

  108. Clifford GM, Smith JS, Aguado T, Franceschi S (2003) Comparison of HPV type distribution in high-grade cervical lesions and cervical cancer: a meta-analysis. Br J Cancer 89:101–105. https://doi.org/10.1038/sj.bjc.6601024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Della Fera AN, Warburton A, Coursey TL, Khurana S, McBride AA (2021) Persistent human papillomavirus infection. Viruses 13(2):321. https://doi.org/10.3390/v13020321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Toh ZQ, Russell FM, Garland SM, Mulholland EK, Patton G, Licciardi PV (2021) Human papillomavirus vaccination after COVID-19. JNCI Can Spect 5(2). https://doi.org/10.1093/jncics/pkab011

  111. Daniels V, Saxena K, Roberts C, Kothari S, Corman S, Yao L, Niccolai L (2021) Impact of reduced human papillomavirus vaccination coverage rates due to COVID-19 in the United States: a modelbased analysis. Vaccine 39(20):2731–2735. https://doi.org/10.1016/j.vaccine.2021.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Teymouri M, Pirro M, Johnston TP, Sahebkar A (2017) Cmnn as a multifaceted compound against human papilloma virus infection and cervical cancers: a review of chemistry, cellular, molecular, and preclinical features. Biofactors 43:331–346. https://doi.org/10.1002/biof.1344

    Article  CAS  PubMed  Google Scholar 

  113. Scheffner M, Werness BA, Huibregtse JM, Levine A, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136. https://doi.org/10.1016/0092-8674(90)90409-8

    Article  CAS  PubMed  Google Scholar 

  114. Mamgain S, Sharma P, Pathak RK, Baunthiyal M (2015) Computer aided screening of natural compounds targeting the E6 protein of HPV using molecular docking. Bioinformation 11:236–242. https://doi.org/10.6026/97320630011236

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mishra A, Kumar R, Tyagi A, Kohaar I, Hedau S, Bharti AC et al (2015) Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer. Ecancermedicalscience 9:525. https://doi.org/10.3332/ecancer.2015.525

    Article  PubMed  PubMed Central  Google Scholar 

  116. Maher DM, Bell MC, O’donnell EA, Gupta BK, Jaggi M, Chauhan C (2011) Curcumin suppresses human papillomavirus oncoproteins, restores p53, Rb, and PTPN13 proteins and inhibits benzoapyrene-induced upregulation of HPV E7. Mol Carcinog 50:47–57. https://doi.org/10.1002/mc.20695

    Article  CAS  PubMed  Google Scholar 

  117. Singh M, Singh N (2009) Molecular mechanism of curcumin induced cytotoxicity in human cervical carcinoma cells. Mol Cell Biochem 325:107–119. https://doi.org/10.1007/s11010-009-0025-5

    Article  CAS  PubMed  Google Scholar 

  118. Debata PR, Castellanos MR, Fata JE, Baggett S, Rajupet S, Szerszen A et al (2013) A novel curcumin -based vaginal cream Vacurin selectively eliminates apposed human cervical cancer cells. Gynecol Oncol 129:145–153. https://doi.org/10.1016/j.ygyno.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  119. Mukherjee S, Debata PR, Hussaini R, Chatterjee K, Baidoo JNE, Sampat S et al (2017) Unique synergistic formulation of curcumin, epicatechin gallate and resveratrol, tricurin, suppresses HPV E6, eliminates HPV+ cancer cells, and inhibits tumor progression. Oncotarget 8:60904–60916. https://doi.org/10.18632/oncotarget.16648

    Article  PubMed  PubMed Central  Google Scholar 

  120. Basu P, Dutta S, Begum R, Mittal S, Dutta PD, Bharti AC, et al (2013) Clearance of cervical human papillomavirus infection by topical application of curcumin and curcumin containing polyherbal cream: a phase II randomized controlled study. Asian Pac J Cancer Prev 14: 5753–5759. https://doi.org/10.7314/APJCP.2013.14.10.5753

  121. Gattoc L, Frew PM, Thomas SN, Easley KA, Ward L, Chow HHS et al (2017) Phase I dose-escalation trial of intravaginal curcumin in women for cervical dysplasia. Open Access J Clin Trials 9:1–10. https://doi.org/10.2147/OAJCT.S105010

    Article  PubMed  Google Scholar 

  122. Looker KJ, Magaret AS, May MT, Turner KME, Vickerman P, Gottlieb SL et al (2015) Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012. PLoS One 10:e0140765. https://doi.org/10.1371/journal.pone.0140765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Connolly SA, Jardetzky TS, Longnecker R (2020) The structural basis of herpesvirus entry. Nat Rev Microbiol. https://doi.org/10.1038/s41579-020-00448-w

  124. Šudomová M, Hassan STS (2021) Nutraceutical curcumin with promising protection against herpesvirus infections and their associated inflammation: mechanisms and pathways. Microorganisms 9(2):292. https://doi.org/10.3390/microorganisms9020292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Farsimadan M, Motamedifar M (2020) The effects of human immunodeficiency virus, human papillomavirus, herpes simplex virus-1 and -2, human herpesvirus-6 and -8, cytomegalovirus, and hepatitis B and C virus on female fertility and pregnancy. Br J Biomed Sci:1–11. https://doi.org/10.1080/09674845.2020.1803540

  126. Bourne KZ, Bourne N, Reising SF, Stanberry LR (1999) Plant products as topical microbicide candidates: assessment of in vitro and in vivo activity against herpes simplex virus type 2. Antivir Res 42:219–226. https://doi.org/10.1016/s0166-3542(99)00020-0

    Article  CAS  PubMed  Google Scholar 

  127. Kutluay SB, Doroghazi J, Roemer ME, Triezenberg SJ (2008) Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology 373:239–247. https://doi.org/10.1016/j.virol.2007.11.028

    Article  CAS  PubMed  Google Scholar 

  128. Zandi K, Ramedani E, Mohammadi K, Tajbakhsh S, Deilami I, Rastian Z et al (2010) Evaluation of antiviral activities of curcumin derivatives against HSV-1 in Vero cell line. Nat Prod Commun 5:1935–1938

    CAS  PubMed  Google Scholar 

  129. Lv Y, An Z, Chen H, Wang Z, Liu L (2014) Mechanism of curcumin resistance to human cytomegalovirus in HELF cells. BMC Complement Altern Med 14:284. https://doi.org/10.1186/1472-6882-14-284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lv Y, Gong L, Wang Z, Han F, Liu H, Lu X (2015) Curcumin inhibits human cytomegalovirus by downregulating heat shock protein 90. Mol Med Rep 12:4789–4793. https://doi.org/10.3892/mmr.2015.3983

    Article  CAS  PubMed  Google Scholar 

  131. Hergenhahn M, Soto U, Weninger A, Polack A, Hsu CH, Cheng AL et al (2002) The chemopreventive compound curcumin is an efficient inhibitor of Epstein-Barr virus BZLF1 transcription in Raji DR-LUC cells. Mol Carcinog 33:137–145. https://doi.org/10.1002/mc.10029

    Article  CAS  PubMed  Google Scholar 

  132. Ramayanti O, Brinkkemper M, Verkuijlen SAWM, Ritmaleni L, Go ML, Middeldorp JM (2018) Curcuminoids as EBV lytic activators for adjuvant treatment in EBV-positive carcinomas. Cancers 10:89. https://doi.org/10.3390/cancers10040089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rein D, Stevens G, Theaker J, Wittenborn J, Wiersma S (2012) The global burden of hepatitis E virus genotypes 1 and 2 in 2005. Hepatology 55:988–997. https://doi.org/10.1002/hep.25505

    Article  PubMed  Google Scholar 

  134. Percivalle E, Monzillo V, Pauletto A, Marone P, Imberti R (2016) Colistin inhibits E. coli O157:H7 Shiga-like toxin release, binds endotoxins and protects Vero cells. New Microbiol 39:119–123

    CAS  PubMed  Google Scholar 

  135. Dehesa-Violante M, Nuñez-Nateras R (2007) Epidemiology of hepatitis virus B and C. Arch Med Res 38(6):606–611. https://doi.org/10.1016/j.arCmned.2007.03.001

    Article  PubMed  Google Scholar 

  136. Zhao H, Dai Y, Zhou YH (2020) Overview of infection causing hepatitis other than non-A to E hepatitis virus during pregnancy. Best Pract Res Clin Obstet Gynaecol. https://doi.org/10.1016/j.bpobgyn.2020.02.012

  137. Pfaender S, Hahn T, Steinmann J, Ciesek S, Steinmann E (2016) Prevention strategies for blood-borne viruses-in the era of vaccines, direct acting antivirals and antiretroviral therapy. Rev Med Virol 26:330–339. https://doi.org/10.1002/rmv.1890

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kim HJ, Yoo HS, Kim JC, Park CS, Choi MS, Kim M et al (2009) Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. J Ethnopharmacol 124:189–196. https://doi.org/10.1016/j.jep.2009.04.046

    Article  PubMed  Google Scholar 

  139. Kim J, Ha HL, Moon HB, Lee YW, Cho CK, Yoo HS et al (2011) Chemo preventive effect of Curcuma longa Linn on liver pathology in HBx transgenic mice. Integr Cancer Ther 10:168–177. https://doi.org/10.1177/1534735410380613

    Article  PubMed  Google Scholar 

  140. Rechtman MM, Har-Noy O, Bar-Yishay I, Fishman S, Adamovich Y, Shaul Y et al (2010) Curcumin inhibits hepatitis B virus via down-regulation of the metabolic coactivator PGC-1α. FEBS Lett 584:2485–2490. https://doi.org/10.1016/j.febslet.2010.04.067

    Article  CAS  PubMed  Google Scholar 

  141. Wei ZQ, Zhang YH, Ke CZ, Chen HX, Ren P, He YL et al (2017) Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA bound histone acetylation. World J Gastroenterol 23:6252–6260. https://doi.org/10.3748/wjg.v23.i34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Anggakusuma CCC, Schang LM, Rachmawati H, Frentzen A, Pfaender S, Behrendt P et al (2014) Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells. Gut 63:1137–1149. https://doi.org/10.1136/gutjnl-2012-304299

    Article  CAS  PubMed  Google Scholar 

  143. Ingolfsson HI, Koeppe RE, Anderse OS (2007) Curcumin is a modulator of bilayer material properties. Biochemist 46:10384–10391. https://doi.org/10.1021/bi701013n

    Article  CAS  Google Scholar 

  144. Kim K, Kim KH, Kim HY, Cho HK, Sakamoto N, Cheong J (2010) Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway. FEBS Lett 584:707–712. https://doi.org/10.1016/j.febslet.2009.12.019

    Article  CAS  PubMed  Google Scholar 

  145. Chen MH, Lee MY, Chuang JJ, Li YZ, Ning ST, Chen JC et al (2012) Curcumin inhibits HCV replication by induction of heme oxygenase-1 and suppression of AKT. Int J Mol Med 30:1021–1028. https://doi.org/10.3892/ijmm.2012.1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rhein C, Weidner T, Henß L, Martin J, Weber C, Sliva K et al (2016) Curcumin and Boswellia serrata gum resin extract inhibits chikungunya and vesicular stomatitis virus infections in vitro. Antivir Res 125:51–57. https://doi.org/10.1016/j.antiviral.2015.11.007

    Article  CAS  Google Scholar 

  147. Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M (2017) Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antivir Res 142:148–157. https://doi.org/10.1016/j.antiviral.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  148. De Souza GAP, Rocha RP, Gonçalves RL, Ferreira CS, de Mello SB, de Castro RFG et al (2021) Nanoparticles as vaccines to prevent arbovirus infection: a long road ahead. Pathogens 10(1):36. https://doi.org/10.3390/pathogens10010036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Abílio AP, Abudasse G, Kampango A, Candrinho B, Sitoi S, Luciano J et al (2018) Distribution and breeding sites of Aedes aegypti and Aedes albopictus in 32 urban/peri-urban districts of Mozambique: implication for assessing the risk of arbovirus outbreaks. PLOS Neg Trop Dis 12(9):e0006692. https://doi.org/10.1371/journal.pntd.0006692

    Article  Google Scholar 

  150. Dutta K, Ghosh D, Basu A (2009) Curcumin protects neuronal cells from Japanese encephalitis virus-mediated cell death and also inhibits infective viral particle formation by dysregulation of ubiquitin-proteasome system. J Neuroimmune Pharmacol 4:328–337. https://doi.org/10.1007/s11481-009-9158-2

    Article  PubMed  Google Scholar 

  151. Padilla-S L, Rodríguez A, Gonzales MM, Gallego-G JC, Castaño-O JC (2014) Inhibitory effects of curcumin on dengue virus type 2-infected cells in vitro. Arch Virol 159:573–579. https://doi.org/10.1007/s00705-013-1849-6

    Article  CAS  PubMed  Google Scholar 

  152. Narayanan A, Kehn-Hall K, Senina S, Lundberg L, Van Duyne R, Guendel I et al (2012) Curcumin inhibits Rift Valley fever virus replication in human cells. J Biol Chem 287:33198–33214. https://doi.org/10.1074/jbc.M112.356535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kalaivani K, Senthil-Nathan S, Murugesan AG (2012) Biological activity of selected Lamiaceae and Zingiberaceae plant essential oils against the dengue vector Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 110:1261–1268. https://doi.org/10.1007/s00436-011-2623-x

    Article  PubMed  Google Scholar 

  154. Schmidt AC, Schaap-Nutt A, Bartlett EJ et al (2011) Progress in the development of human parainfluenza virus vaccines. Expert Rev Respir Med 5(4):515–526

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bose S, Basu M, Banerjee AK (2004) Role of nucleolin in human parainfluenza virus type 3 infection of human lung epithelial cells. J Virol 78(15):8146–8158. https://doi.org/10.1128/jvi.78.15.8146-8158.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ding B, Zhang L, Li Z, Zhong Y, Tang Q, Qin Y, Chen M (2017) The matrix protein of human parainfluenza virus type 3 induces mitophagy that suppresses interferon responses. Cell Host Microbe 21(4):538–547.e4. https://doi.org/10.1016/j.chom.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  157. Pawełczyk M, Kowalski ML (2017) The role of human parainfluenza virus infections in the immunopathology of the respiratory tract. Curr Allergy Asthma Rep 17(3):16

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ison MG, Hirsch HH (2019) Community-acquired respiratory viruses in transplant patients: diversity, impact, unmet clinical needs. Clin Microbiol Rev 32(4):e00042–e00019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Weinberg GA, Hall CB, Iwane MK et al (2009) Parainfluenza virus infection of young children: estimates of the population- based burden of hospitalization. J Pediatr 154(5):694–699

    Article  PubMed  Google Scholar 

  160. Stokes A, Tierney EL, Murphy BR, Hall SL (1992) The complete nucleotide sequence of the JS strain of human parainfluenza virus type 3: comparison with the Wash/47885/57 prototype strain. Virus Res 25(1–2):91–103

    Article  CAS  PubMed  Google Scholar 

  161. Spriggs MK, Collins PL (1986) Human parainfluenza virus type 3: messenger RNAs, polypeptide coding assignments, intergenic sequences, and genetic map. J Virol 59(3):646–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Galinski MS (1991) Paramyxoviridae: transcription and replication. Adv Virus Res 39:129–162

    Article  CAS  PubMed  Google Scholar 

  163. Zhang C, Zhang K, Zang G, Chen T, Lu N, Wang S, Zhang G (2021) Curcumin inhibits replication of human parainfluenza virus type 3 by affecting viral inclusion body formation. Bio Med Res Int. https://doi.org/10.1155/2021/1807293

  164. Coronado L, Perera CL, Rios L, Frías MT, Pérez LJ (2021) A critical review about different vaccines against classical swine fever virus and their repercussions in endemic regions. Vaccine 9(2):154. https://doi.org/10.3390/vaccines9020154

    Article  CAS  Google Scholar 

  165. Wei Q, Liu Y, Zhang G (2021) Research progress and challenges in vaccine development against classical swine fever virus. Viruses 13(3):445. https://doi.org/10.3390/v13030445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Paton D, McGoldrick A, Greiser-Wilke I, Parchariyanon S, Song JY, Liou P (2000) Genetic typing of classical swine fever virus. Veter Microbiol 73(2–3):137–157. https://doi.org/10.1016/s0378-1135(00)00141-3

    Article  CAS  Google Scholar 

  167. Fan J, Liao Y, Zhang M, Liu C, Li Z, Li Y (2021) Anti-classical swine fever virus strategies. Microorganisms 9(4):761. https://doi.org/10.3390/microorganisms9040761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lamp B, Riedel C, Roman-Sosa G, Heimann M, Jacobi S, Becher P, Thiel HJ, Rumenapf T (2011) Biosynthesis of classical swine fever virus nonstructural proteins. J Virol 85:3607–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Meyers G, Rümenapf T, Thiel HJ (1989) Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology 171:555–567

    Article  CAS  PubMed  Google Scholar 

  170. Rijnbrand R, Straaten T, Rijn PA, Spaan WJ, Bredenbeek PJ (1997) Internal entry of ribosomes is directed by the 5′ noncoding region of classical swine fever virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation codon. J Virol 71:451–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhou B, Liu K, Jiang Y, Wei JC, Chen PY (2011) Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E. coli as multiple epitope vaccine induces a protective immune response. Virol J 8:378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Dutta A, Sharma-Walia N (2019) Curbing lipids: impacts ON cancer and viral infection. Int J Mol Sci 20:644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Heaton NS, Randall G (2011) Multifaceted roles for lipids in viral infection. Trends Microbiol 19:368–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Palma PJ, Sumana S (2018) Perturbation of intracellular cholesterol and fatty acid homeostasis during flavivirus infections. Front Immunol 9:1276

    Article  Google Scholar 

  175. Shavinskaya A, Boulant S, Penin F, Mclauchlan J, Bartenschlager R (2008) The lipid droplet binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly. J Biol Chem 282:37158–37169

    Article  Google Scholar 

  176. Ma S, Mao Q, Chen W, Zhao M, Wu K, Song D, Li X, Zhu E, Fan S, Yi L, Ding H, Zhao M, Chen J (2019) Serum lipidomics analysis of classical swine fever virus infection in piglets and emerging role of free fatty acids in virus replication in vitro. Front Cell Infect Microbiol 9:410

    Article  PubMed  PubMed Central  Google Scholar 

  177. Gao Y, Tai W, Wang N, Li X, Jiang S, Debnath AK, Du L, Chen S (2019a) Identification of novel natural products as effective and broad-spectrum anti-Zika virus inhibitors. Viruses 11:1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D (2017) An update on Zika virus infection. Lancet 390(10107):2099–2109. https://doi.org/10.1016/s0140-6736(17)31450-2

    Article  PubMed  Google Scholar 

  179. Wikan N, Smith DR (2016) Zika virus: history of a newly emerging arbovirus. Lancet Infect Dis 16(7):e119–e126. https://doi.org/10.1016/s1473-3099(16)30010-x

    Article  PubMed  Google Scholar 

  180. Dawes BE, Smalley CA, Tiner BL, Beasley DWC, Milligan GN, Reece LM, Hombach J, Barrett ADT (2016) Research and development of Zika virus vaccines. NPJ Vaccines 1:16007

    Article  PubMed  PubMed Central  Google Scholar 

  181. Adams BK, Ferstl EM, Davis MC, Herold M, Kurtkaya S, Camalier RF, Hollingshead MG, Kaur G, Sausville EA, Rickles FR et al (2004) Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg Med Chem 12:3871–3883

    Article  CAS  PubMed  Google Scholar 

  182. Lin L, Hutzen B, Zuo M, Ball S, Deangelis S, Foust E, Pandit B, Ihnat MA, Shenoy SS, Kulp S et al (2010) Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res 70:2445–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Colpitts CC, Schang LM, Rachmawati H, Frentzen A, Pfaender S, Behrendt P, Brown RJ, Bankwitz D, Steinmann J, Ott M et al (2014) Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells. Gut 63:1137–1149

    Article  PubMed  Google Scholar 

  184. Kim M, Choi H, Kim YB (2021) Therapeutic targets and biological mechanisms of action of curcumin against Zika virus: in silico and in vitro analyses. Eur J Pharmacol 904:174144

    Article  CAS  PubMed  Google Scholar 

  185. Bhatt P, Sabeena SP, Varma M, Arunkumar G (2020) Current understanding of the pathogenesis of dengue virus infection. Curr Microbiol. https://doi.org/10.1007/s00284-020-02284-w

  186. Martina BEE, Koraka P, Osterhaus ADME (2009) Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 22(4):564–581. https://doi.org/10.1128/Cmnr.00035-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Holmes E, Twiddy S (2003) The origin, emergence and evolutionary genetics of dengue virus. Infect Genet Evol 3(1):19–28. https://doi.org/10.1016/s1567-1348(03)00004-2

    Article  PubMed  Google Scholar 

  188. Schwartz O, Albert ML (2010) Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol 8(7):491–500. https://doi.org/10.1038/nrmicro2368

    Article  CAS  PubMed  Google Scholar 

  189. Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D et al (2007) Characterization of reemerging chikungunya virus. PLoS Pathog 3(6):e89. https://doi.org/10.1371/journal.ppat.0030089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Simon F, Javelle E, Oliver M, Leparc-Goffart I, Marimoutou C (2011) Chikungunya virus infection. Curr Infect Dis Rep 13(3):218–228. https://doi.org/10.1007/s11908-011-0180-1

    Article  PubMed  PubMed Central  Google Scholar 

  191. Von Rhein C, Weidner T, Henß L, Martin J, Weber C, Sliva K, Schnierle BS (2016) Curcumin and Boswellia serrata gum resin extract inhibits chikungunya and vesicular stomatitis virus infections in vitro. Antivir Res 125:51–57

    Article  Google Scholar 

  192. Katano H (2018) Pathological features of Kaposi’s sarcoma-associated herpesvirus infection. In: Human herpesviruses, pp 357–376. https://doi.org/10.1007/978-981-10-7230-7_16

    Chapter  Google Scholar 

  193. Bigi R, Landis JT, An H, Caro-Vegas C, Raab-Traub N, Dittmer DP (2018) Epstein–Barr virus enhances genome maintenance of Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci 201810128. https://doi.org/10.1073/pnas.1810128115

  194. Chen J, Dai L, Goldstein A, Zhang H, Tang W, Forrest JC et al (2019) Identification of new antiviral agents against Kaposi’s sarcoma-associated herpesvirus (KSHV) by high-throughput drug screening reveals the role of histamine-related signalling in promoting viral lytic reactivation. PLoS Pathog 15(12):e1008156. https://doi.org/10.1371/journal.ppat.1008156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Li H, Zhong C, Wang Q, Chen W, Yuan Y (2019) Curcumin is an APE1 redox inhibitor and exhibits an antiviral activity against KSHV replication and pathogenesis. Antivir Res 167:98–103

    Article  CAS  PubMed  Google Scholar 

  196. Zhong C, Xu M, Wang Y, Xu J, Yuan Y (2017) An APE1 inhibitor reveals critical roles of the redox function of APE1 in KSHV replication and pathogenic phenotypes. PLoS Pathog 13:e1006289

    Article  PubMed  PubMed Central  Google Scholar 

  197. Raaperi K, Orro T, Viltrop A (2014) Epidemiology and control of bovine herpesvirus 1 infection in Europe. Vet J 201(3):249–256. https://doi.org/10.1016/j.tvjl.2014.05.040

    Article  PubMed  Google Scholar 

  198. Muylkens B, Thiry J, Kirten P, Schynts F, Thiry E (2007) Bovine herpesvirus 1 infection and infectious bovine rhinotracheitis. Vet Res 38(2):181–209. https://doi.org/10.1051/vetres:2006059

    Article  CAS  PubMed  Google Scholar 

  199. Fiorito F, Irace C, Nocera FP, Piccolo M, Ferraro MG, Ciampaglia R (2021) MG-132 interferes with iron cellular homeostasis and alters virulence of bovine herpesvirus 1. Res Vet Sci 137:1–8. https://doi.org/10.1016/j.rvsc.2021.04.023

    Article  CAS  PubMed  Google Scholar 

  200. Zhu L, Ding X, Zhang D, Yuan C, Wang J, Ndegwa E, Zhu G (2015) Curcumin inhibits bovine herpesvirus type 1 entry into MDBK cells. Acta Virol 59:221–227

    Article  CAS  PubMed  Google Scholar 

  201. Zhu L, Ding X, Tao J, Wang J, Zhao X, Zhu G (2010) Critical role of cholesterol in bovine herpesvirus type 1 infection of MDBK cells. Vet Microbiol 144:51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Reolon JB, Brustolin M, Accarini T, Viçozz GP, Sari MHM, Bender EA, Haas SE, Brum MCS, Gündel A, Colomé LM (2019) Co-encapsulation of acyclovir and curcumin into microparticles improves the physicochemical characteristics and potentiates in vitro antiviral action: influence of the polymeric composition. Eur J Pharm Sci 131:167–176

    Article  CAS  PubMed  Google Scholar 

  203. Park NH, Pavao-Langston D, McLean SL (1979) Acyclovir in oral and ganglionic herpes simplex virus infections. J Infect Dis 140:802–806

    Article  CAS  PubMed  Google Scholar 

  204. Moattari G, Izadi Z, Shakhsi-Niaei M (2021) Development of an electrochemical genosensor for detection of viral hemorrhagic septicemia virus (VHSV) using glycoprotein (G) gene probe. Aquaculture 536:736451. https://doi.org/10.1016/j.aquaculture.2021.73

    Article  CAS  Google Scholar 

  205. Ha SR, Munang’andu HM, Yeo IK, Kim SH (2020) Bacillus subtilis inhibits viral hemorrhagic septicemia virus infection in olive flounder (Paralichthys olivaceus) intestinal epithelial cells. Viruses 13(1):28. https://doi.org/10.3390/v13010028

    Article  CAS  Google Scholar 

  206. Seong MS, Jang EA, Kim J, Kim WJ, Cheong J (2021) A single amino acid variation of NV protein of viral hemorrhagic septicemia virus increases protein stability and decreases immune gene expression. Fish Shellfish Immunol 116:84–90. https://doi.org/10.1016/j.fsi.2021.06.019

    Article  CAS  PubMed  Google Scholar 

  207. Einer-Jensen K, Harmache A, Biacchesi S, Bremont M, Stegmann A, Lorenzen N (2014) High virulence differences among phylogenetically distinct isolates of the fish rhabdovirus viral hemorrhagic septicaemia virus are not explained by variability of the surface glycoprotein G or the non-virion protein Nv. J Gen Virol 95:307–316

    Article  CAS  PubMed  Google Scholar 

  208. Jeong EH, Vaidya B, Cho SY, Park MA, Kaewintajuk K, Kim SR, Oh MJ, Choi JS, Kwon J, Kim D (2015) Identification of regulators of the early stage of viral hemorrhagic septicemia virus infection during curcumin treatment. Fish Shellfish Immunol 45:184–193

    Article  CAS  PubMed  Google Scholar 

  209. Lee M-S, Chang L-Y (2010) Development of enterovirus 71 vaccines. Expert Rev Vaccines 9(2):149–156. https://doi.org/10.1586/erv.09.152

    Article  CAS  PubMed  Google Scholar 

  210. Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T (2010) Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol 9(11):1097–1105. https://doi.org/10.1016/s1474-4422(10)70209-x

    Article  PubMed  Google Scholar 

  211. Solomon T, Lewthwaite P, Perera D, Cardosa MJ, Mcmninn P, Ooi MH (2010) Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 10(11):778–790. https://doi.org/10.1016/s1473-3099(10)70194-8

    Article  PubMed  Google Scholar 

  212. Fischer TK, Simmonds P, Harvala H (2021) The importance of enterovirus surveillance in a post-polio world. Lancet Infect Dis. https://doi.org/10.1016/s1473-3099(20)30852-5

  213. Qin Y, Lin L, Chen Y, Wu S, Si X, Wu H, Zhai X, Wang Y, Tong L, Pan B (2014) Curcumin inhibits the replication of enterovirus 71 in vitro. Acta Pharm Sin B 4:284–294

    Article  PubMed  PubMed Central  Google Scholar 

  214. Huang HI, Chio CC, Lin JY (2018) Inhibition of EV71 by curcumin in intestinal epithelial cells. PLoS One 13:e0191617

    Article  PubMed  PubMed Central  Google Scholar 

  215. Lin CJ, Chang L, Chu HW, Lin HJ, Chang PC, Wang RYL, Unnikrishnan B, Mao JY, Chen SY, Huang CC (2019) High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. Small 15:1902641

    Article  CAS  Google Scholar 

  216. Thompson SR, Sarnow P (2003) Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology 315:259–266

    Article  CAS  PubMed  Google Scholar 

  217. Bem RA, Domachowske JB, Rosenberg HF (2011) Animal models of human respiratory syncytial virus disease. Am J Physiol Lung Cell Mol Physiol 301(2):L148–L156. https://doi.org/10.1152/ajplung.00065.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Yu JM, Fu YH, Peng XL, Zheng YP, He JS (2021) Genetic diversity and molecular evolution of human respiratory syncytial virus A and B. Sci Rep 11(1). https://doi.org/10.1038/s41598-021-92435-1

  219. Yang XX, Cmn L, Li YF, Wang J, Huang CZ (2017) Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale 9:16086–16092

    Article  CAS  PubMed  Google Scholar 

  220. Feldman SA, Audet S, Beeler JA (2000) The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate. J Virol 74:6442–6447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Sametband M, Kalt I, Gedanken A, Sarid R (2014) Herpes simplex virus type-1 attachment inhibition by functionalized graphene oxide. ACS Appl Mater Interfaces 6:1228–1235

    Article  CAS  PubMed  Google Scholar 

  222. Ison MG, Hayden RT (2016) Adenovirus. Diag Microbiol Immunocom Host:217–232. https://doi.org/10.1128/9781555819040.ch10

  223. Smith JG, Wiethoff CM, Stewart PL, Nemerow GR (2010) Adenovirus. In: Cell entry by non-enveloped viruses, pp 195–224. https://doi.org/10.1007/82_2010_16

    Chapter  Google Scholar 

  224. Berk AJ (1986) Functions of adenovirus E1A. Cancer Surv 5:367–387. 81

    CAS  PubMed  Google Scholar 

  225. Jennings MR, Parks RJ (2020) Antiviral effects of curcumin on adenovirus replication. Microorganisms 8:1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilipkumar Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pal, D., Sahu, P. (2024). Anti-Viral Potential of Curcumins: Ethnopharmacology, Chemistry, and Clinical Studies Focusing on Mechanism of Action and Future Perspectives. In: Pal, D. (eds) Anti-Viral Metabolites from Medicinal Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-12199-9_30

Download citation

Publish with us

Policies and ethics