Skip to main content

Natural Plants in the Treatment of Renal Syndrome Caused by Viruses: Ethnopharmacology, Chemistry, and Clinical and Preclinical Studies

  • Reference work entry
  • First Online:
Anti-Viral Metabolites from Medicinal Plants

Abstract

The kidney is the primary excretory organ, responsible for flushing the body of waste products created during metabolism. Clinicians are concerned about kidney disorders brought on by viral infections because early diagnosis and therapy may prevent or lessen the severity of damage caused by the viruses. Post-infectious glomerulonephritis, also known as infection-related glomerulonephritis, is a complication of kidney damage caused by an infection. Depending on the virus’ endemicity/epidemicity and the source of infection, the clinical symptoms may be either acute or chronic. All microbes, including viruses, have been linked to kidney disease by either directly damaging the kidneys or indirectly doing so via the immune system. A wide variety of treatment approaches are available to treat these kinds of nephropathy. However, due to their significant adverse effects, nowadays natural medicines are of great use. Natural plants are an excellent source of several active chemicals. The renal cortex and renal medulla are the two distinct components of a nephron. These are mainly responsible for governing the potential therapeutic values like anti-inflammatory, antioxidant, etc. properties of natural plants. This chapter provides comprehensive information about different viral infection-induced renal syndromes, and their conventional treatment methodologies, as well as explores the potential medicinal plants in treating renal dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lote CJ, Lote CJ (1994) Principles of renal physiology. Chapman & Hall, London

    Book  Google Scholar 

  2. Laasya TS, Thakur S, Poduri R, Joshi G (2020) Current insights toward kidney injury: decrypting the dual role and mechanism involved of herbal drugs in inducing kidney injury and its treatment. Curr Res Biotech 2:161–175

    Article  Google Scholar 

  3. Javaid R, Aslam M, Nizami Q, Javaid R (2012) Role of antioxidant herbal drugs in renal disorders: an overview. Free Radic Antioxid 2(1):2–5

    Article  Google Scholar 

  4. Taft DR (2009) Drug excretion. In: Pharmacology. Academic Press, pp 175–199

    Chapter  Google Scholar 

  5. Smith HW (1951) The kidney: structure and function in health and disease. Oxford University Press, New York

    Google Scholar 

  6. Mehta RL, Cerdá J, Burdmann EA, Tonelli M, García-García G, Jha V (2015) International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 385:2616–2643

    Article  PubMed  Google Scholar 

  7. Couser WG (2012) Basic and translational concepts of immune-mediated glomerular diseases. J Am Soc Nephrol 23:381–399

    Article  CAS  PubMed  Google Scholar 

  8. Glassock RJ, Alvarado A, Prosek J, Hebert C, Parikh S, Satoskar A (2015) Staphylococcus-related glomerulonephritis and post-streptococcal glomerulonephritis: why defining “post” is important in understanding and treating infection-related glomerulonephritis. Am J Kidney Dis 65:826–832

    Article  PubMed  Google Scholar 

  9. Carney EF (2020) The impact of chronic kidney disease on global health. Nat Rev Nephrol 16(5):251–251

    Article  PubMed  Google Scholar 

  10. Mahmoud MF, Diaai AA, Ahmed F (2012) Evaluation of the efficacy of ginger, Arabic gum, and Boswellia in acute and chronic renal failure. Ren Fail 34(1):73–82

    Article  CAS  PubMed  Google Scholar 

  11. Arfeen Z, Owen H, Plummer JL, Ilsley AH, Sorby-Adams RA, Doecke CJ (1995) A double-blind randomized controlled trial of ginger for the prevention of postoperative nausea and vomiting. Anaesth Intensive Care 23(4):449–452

    Article  CAS  PubMed  Google Scholar 

  12. Avila-Carrasco L, García-Mayorga EA, Díaz-Avila DL, Garza-Veloz I, Martinez-Fierro ML, González-Mateo GT (2021) Potential therapeutic effects of natural plant compounds in kidney disease. Molecules 26(20):6096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Avila-Carrasco L, Majano P, Sánchez-Toméro JA, Selgas R, López-Cabrera M, Aguilera A, González Mateo G (2019) Natural plants compounds as modulators of epithelial-to-mesenchymal transition. Front Pharmacol 10:715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bliss DZ, Stein TP, Schleifer CR, Settle RG (1996) Supplementation with gum arabic fiber increases fecal nitrogen excretion and lowers serum urea nitrogen concentration in chronic renal failure patients consuming a low-protein diet. Am J Clin Nutr 63(3):392–398

    Article  CAS  PubMed  Google Scholar 

  15. Chikezie PC, Ojiako OA (2015) Herbal medicine: yesterday, today and tomorrow. Alter Integr Med 2015

    Google Scholar 

  16. Lai AS, Lai KN (2006) Viral nephropathy. Nat Clin Pract Nephrol 2(5):254–262

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chacko EC, Surrun SK, Sani TM, Pappachan JM (2010) Chronic viral hepatitis and chronic kidney disease. Postgrad Med J 86(1018):486–492

    Article  PubMed  Google Scholar 

  18. Prasad N, Patel MR (2018) Infection-induced kidney diseases. Front Med 5:327

    Article  Google Scholar 

  19. Jaryal A, Kumar V, Sharma V (2016) Renal disease in patients infected with hepatitis B virus. Trop Gastroenterol 36(4):220–228

    Article  Google Scholar 

  20. Deray G, Buti M, Gane E, Jia JD, Chan HL, Craxi A, Piratvisuth T, Pol S (2015) Hepatitis B virus infection and the kidney: renal abnormalities in HBV patients, antiviral drugs handling, and specific follow-up. Adv Hepatol 2015(2):1–11

    Article  Google Scholar 

  21. Ren J, Wang L, Chen Z, Ma ZM, Zhu HG, Yang DL, Li XY, Wang BI, Fei J, Wang ZG, Wen YM (2006) Gene expression profile of transgenic mouse kidney reveals pathogenesis of hepatitis B virus associated nephropathy. J Med Virol 78(5):551–560

    Article  CAS  PubMed  Google Scholar 

  22. Deng CL, Song XW, Liang HJ, Feng C, Sheng YJ, Wang MY (2006) Chronic hepatitis B serum promotes apoptotic damage in human renal tubular cells. World J Gastroenterol: WJG 12(11):1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barsoum RS, William EA, Khalil SS (2017) Hepatitis C and kidney disease: a narrative review. J Adv Res 8(2):113–130

    Article  CAS  PubMed  Google Scholar 

  24. Ferri C, Mascia MT (2006) Cryoglobulinemic vasculitis. Curr Opin Rheumatol 18(1):54–63

    Article  PubMed  Google Scholar 

  25. Dammacco F, Sansonno D (2013) Therapy for hepatitis C virus–related cryoglobulinemic vasculitis. N Engl J Med 369(11):1035–1045

    Article  CAS  PubMed  Google Scholar 

  26. Balayan MS (1997) Epidemiology of hepatitis E virus infection. J Viral Hepat 4(3):155–166

    Article  CAS  PubMed  Google Scholar 

  27. Mannucci PM, Gringeri A, Santagostino E, Romano L, Zanetti A (1994) Low risk of transmission of hepatitis E virus by large-pool coagulation factor concentrates. Lancet 343(8897):597–598

    Article  CAS  PubMed  Google Scholar 

  28. Bazerbachi F, Haffar S, Garg SK, Lake JR (2016) Extra-hepatic manifestations associated with hepatitis E virus infection: a comprehensive review of the literature. Gastroenterol Rep 4(1):1–5

    Google Scholar 

  29. Boroghain SA, Dudeja RK, Singla S, Roychoudhary A (2000) Acute pancreatitis associated with acute hepatitis E virus infection. Indian Acad Clin Med 1:282–284

    Google Scholar 

  30. Deniel C, Coton T, Brardjanian S, Guisset M, Nicand E, Simon F (2011) Acute pancreatitis: a rare complication of acute hepatitis E. J Clin Virol 51(3):202–204

    Article  PubMed  Google Scholar 

  31. Lizarraga KJ, Nayer A (2014) Dengue-associated kidney disease. J Nephropathol 3(2):57

    PubMed  Google Scholar 

  32. Halstead SB (2007) Dengue. Lancet 370(9599):1644–1652

    Article  PubMed  Google Scholar 

  33. Lee IK, Liu JW, Yang KD (2009) Clinical characteristics, risk factors, and outcomes in adults experiencing dengue hemorrhagic fever complicated with acute renal failure. Am J Trop Med Hyg 80(4):651–655

    Article  PubMed  Google Scholar 

  34. Bhagat M, Zaki SA, Sharma S, Manglani MV (2012) Acute glomerulonephritis in dengue haemorrhagic fever in the absence of shock, sepsis, haemolysis or rhabdomyolysis. Paediatr Int Child Health 32(3):161–163

    Article  PubMed  Google Scholar 

  35. Wang M, Xiong H, Chen H, Li Q, Ruan XZ (2021) Renal injury by SARS-CoV-2 infection: a systematic review. Kidney Dis 7(2):100–110

    Article  Google Scholar 

  36. Rabb H (2020) Kidney diseases in the time of COVID-19: major challenges to patient care. J Clin Investia 130(6):2749–2751

    Article  CAS  Google Scholar 

  37. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367(6483):1260–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen J, Subbarao K (2007) The immunobiology of SARS. Annu Rev Immunol 25:443–472

    Article  CAS  PubMed  Google Scholar 

  39. Fang Z, Yi F, Wu K, Lai K, Sun X, Zhong N, Liu Z (2020) Clinical characteristics of coronavirus disease 2019 (COVID-19): an updated systematic review. Med Rxiv

    Google Scholar 

  40. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DS, Du B (2020) Clinical characteristics of 2019 novel coronavirus infection in China. Med Rxiv

    Google Scholar 

  41. Fabrizi F, Martin P, Cacoub P, Messa P, Donato FM (2015) Treatment of hepatitis C-related kidney disease. Expert Opin Pharmacother 16(12):1815–1827

    Article  CAS  PubMed  Google Scholar 

  42. Sise ME, Bloom AK, Wisocky J, Lin MV, Gustafson JL, Lundquist AL, Steele D, Thiim M, Williams WW, Hashemi N, Kim AY (2016) Treatment of hepatitis C virus–associated mixed cryoglobulinemia with direct-acting antiviral agents. Hepatol 63(2):408–417

    Article  CAS  Google Scholar 

  43. Cattran DC, Feehally J, Cook HT, Liu ZH, Fervenza FC, Mezzano SA, Floege J, Nachman PH, Gipson DS, Praga M, Glassock RJ (2012) Kidney disease: improving global outcomes (KDIGO) glomerulonephritis work group. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int Suppl 2(2):139–274

    Google Scholar 

  44. Shah AS, Amarapurkar DN (2018) Spectrum of hepatitis B and renal involvement. Liver Int 38(1):23–32

    Article  PubMed  Google Scholar 

  45. Abou El-Soud NH, El-Lithy NA, El-Saeed G, Wahby MS, Khalil MY, Morsy F, Shaffie N (2014) Renoprotective effects of caraway (Carum carvi L.) essential oil in streptozotocin induced diabetic rats. J Appl Pharm Sci 4(2):27

    Article  Google Scholar 

  46. Ahmed S, Hasan MM (2015) Crude drug adulteration: a concise review. World J Pharm Pharm Sci 4(10):274–283

    CAS  Google Scholar 

  47. Aleksa K, Matsell D, Krausz K, Gelboin H, Ito S, Koren G (2005) Cytochrome P450 3A and 2B6 in the developing kidney: implications for ifosfamide nephrotoxicity. Pediatr Nephrol 20(7):872–885

    Article  PubMed  Google Scholar 

  48. Cerretelli G, Gragnani L, Monti M, Arena U, Fognani E, Petraccia L, Gianni E, Sollima S, Brancaccio G, Galli M, Gaeta GB (2017) Sofosbuvir/ribavirin treatment in patients with genotype 2, hepatitis C virus infection and symptomatic mixed cryoglobulinemia: an interim analysis on safety, efficacy and impact on quality of life. J Hepatol 1(66):S505

    Article  Google Scholar 

  49. Tandon N, Yadav S (2017) Contributions of Indian Council of Medical Research (ICMR) in the area of medicinal plants/traditional medicine. J Ethnopharmacol 197:39–45

    Article  PubMed  Google Scholar 

  50. Lee CD, Ott M, Thyagarajan SP, Shafritz DA, Burk RD, Gupta S (1996) Phyllanthus amarus down-regulates hepatitis B virus mRNA transcription and replication. Eur Clin Investig 26(12):1069–1076

    Article  CAS  Google Scholar 

  51. Banerjee S, Bose S, Mandal SC, Dawn S, Sahoo U, Ramadan AM, Mandal SK (2019) Pharmacological property of pentacyclic triterpenoids. Egypt J Chem 62(Special Issue (Part 1) Innovation in Chemistry):13–35

    Google Scholar 

  52. Lavanchy D (2004) Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 11(2):97–107

    Article  CAS  PubMed  Google Scholar 

  53. Cheng P, Ma YB, Yao SY, Zhang Q, Wang EJ, Yan MH, Chen JJ (2007) Two new alkaloids and active anti-hepatitis B virus constituents from Hypserpa nitida. Bioorg Med Chem Lett 17(19):5316–5320

    Article  CAS  PubMed  Google Scholar 

  54. Qu SJ, Wang GF, Duan WH, Yao SY, Zuo JP, Tan CH, Zhu DY (2011) Tryptamine derivatives as novel non-nucleosidic inhibitors against hepatitis B virus. Bioorg Med Chem 19(10):3120–3127

    Article  CAS  PubMed  Google Scholar 

  55. Wu YR, Ma YB, Zhao YX, Yao SY, Zhou J, Zhou Y, Chen JJ (2007) Two new quaternary alkaloids and anti-hepatitis B virus active constituents from Corydalis saxicola. Planta Med 73(08):787–791

    Article  CAS  PubMed  Google Scholar 

  56. Li HL, Han T, Liu RH, Zhang C, Chen HS, Zhang WD (2008) Alkaloids from Corydalis saxicola and their anti-hepatitis B virus activity. Chem Biodivers 5(5):777–783

    Article  CAS  PubMed  Google Scholar 

  57. Cao TW, Geng CA, Jiang FQ, Ma YB, He K, Zhou NJ, Chen JJ (2013) Chemical constituents of Swertia yunnanensis and their anti-hepatitis B virus activity. Fitoterapia 89:175–182

    Article  CAS  PubMed  Google Scholar 

  58. Geng CA, Huang XY, Ma YB, Zhang XM, Chen JJ (2015) Synthesis of erythrocentaurin derivatives as a new class of hepatitis B virus inhibitors. Bioorg Med Chem Lett 25(7):1568–1571

    Article  CAS  PubMed  Google Scholar 

  59. Cao TW, Geng CA, Ma YB, Zhang XM, Zhou J, Tao YD, Chen JJ (2015) Chemical constituents of Swertia mussotii and their anti-hepatitis B virus activity. Fitoterapia 102:15–22

    Article  CAS  PubMed  Google Scholar 

  60. Guo Q, Zhao L, You Q, Yang Y, Gu H, Song G, Xin J (2007) Anti-hepatitis B virus activity of wogonin in vitro and in vivo. Antivir Res 74(1):16–24

    Article  CAS  PubMed  Google Scholar 

  61. Zembower DE, Lin YM, Flavin MT, Chen FC, Korba BE (1998) Robustaflavone, a potential non-nucleoside anti-hepatitis B agent. Antivir Res 39(2):81–88

    Article  PubMed  Google Scholar 

  62. Chen HC, Chou CK, Lee SD, Wang JC, Yeh SF (1995) Active compounds from Saussurea lappa Clarks that suppress hepatitis B virus surface antigen gene expression in human hepatoma cells. Antivir Res 27(1–2):99–109

    Article  CAS  PubMed  Google Scholar 

  63. Li J, Huang Y, Guan XL, Li J, Deng SP, Wu Q, Yang RY (2012) Anti-hepatitis B virus constituents from the stem bark of Streblus asper. Phytochemistry 82:100–109

    Article  CAS  PubMed  Google Scholar 

  64. Chen H, Li J, Wu Q, Niu XT, Tang MT, Guan XL, Su XJ (2012) Anti-HBV activities of Streblus asper and constituents of its roots. Fitoterapia 83(4):643–649

    Article  CAS  PubMed  Google Scholar 

  65. Li J, Meng AP, Guan XL, Li J, Wu Q, Deng SP, Yang RY (2013) Anti-hepatitis B virus lignans from the root of Streblus asper. Bioorg Med Chem Lett 23(7):2238–2244

    Article  CAS  PubMed  Google Scholar 

  66. Li LQ, Li J, Huang Y, Wu Q, Deng SP, Su XJ, Li S (2012) Lignans from the heartwood of Streblus asper and their inhibiting activities to hepatitis B virus. Fitoterapia 83(2):303–309

    Article  CAS  PubMed  Google Scholar 

  67. Geng CA, Zhang XM, Shen Y, Zuo AX, Liu JF, Ma YB, Chen JJ (2009) Swerilactones C and D, anti-HBV new lactones from a traditional Chinese herb: Swertia mileensis. Org Lett 11(21):4838–4841

    Article  CAS  PubMed  Google Scholar 

  68. Geng CA, Zhang XM, Ma YB, Jiang ZY, Luo J, Zhou J, Chen JJ (2010) Swerilactones E–G, three unusual lactones from Swertia mileensis. Tetrahedron Lett 51(18):2483–2485

    Article  CAS  Google Scholar 

  69. Geng CA, Wang LJ, Zhang XM, Ma YB, Huang XY, Luo J, Chen JJ (2011) Anti-hepatitis B virus active lactones from the traditional Chinese herb: Swertia mileensis. Chem–A Eur J 17(14):3893–3903

    Article  CAS  Google Scholar 

  70. Romero MR, Efferth T, Serrano MA, Castaño B, Macias RI, Briz O, Marin JJ (2005) Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an “in vitro” replicative system. Antivir Res 68(2):75–83

    Article  CAS  PubMed  Google Scholar 

  71. Su CR, Yeh SF, Liu CM, Damu AG, Kuo TH, Chiang PC, Wu TS (2009) Anti-HBV and cytotoxic activities of pyranocoumarin derivatives. Bioorg Med Chem 17(16):6137–6143

    Article  CAS  PubMed  Google Scholar 

  72. Xu B, Liu S, Fan XD, Deng LQ, Ma WH, Chen M (2015) Two new coumarin glycosides from Herpetospermum caudigerum. J Asian Nat Prod Res 17(7):738–743

    Article  CAS  PubMed  Google Scholar 

  73. Zhou NJ, Geng CA, Huang XY, Ma YB, Zhang XM, Wang JL, Chen JJ (2015) Anti-hepatitis B virus active constituents from Swertia chirayita. Fitoterapia 100:27–34

    Article  CAS  PubMed  Google Scholar 

  74. Kanchanapoom T, Noiarsa P, Otsuka H, Ruchirawat S (2006) Lignan, phenolic and iridoid glycosides from Stereospermum cylindricum. Phytochemistry 67(5):516–520

    Article  CAS  PubMed  Google Scholar 

  75. Ma WH, Lu Y, Huang H, Zhou P, Chen DF (2009) Schisanwilsonins A–G and related anti-HBV lignans from the fruits of Schisandra wilsoniana. Bioorg Med Chem Lett 19(17):4958–4962

    Article  CAS  PubMed  Google Scholar 

  76. Kim KH, Kim YH, Lee KR (2007) Isolation of quinic acid derivatives and flavonoids from the aerial parts of Lactuca indica L. and their hepatoprotective activity in vitro. Bioorg Med Chem Lett 17(24):6739–6743

    Article  CAS  PubMed  Google Scholar 

  77. Shin MS, Kang EH, Lee YI (2005) A flavonoid from medicinal plants blocks hepatitis B virus-e antigen secretion in HBV-infected hepatocytes. Antivir Res 67(3):163–168

    Article  CAS  PubMed  Google Scholar 

  78. Xu X, Xie H, Hao J, Jiang Y, Wei X (2010) Eudesmane sesquiterpene glucosides from lychee seed and their cytotoxic activity. Food Chem 123(4):1123–1126

    Article  CAS  Google Scholar 

  79. Zhao Y, Geng CA, Sun CL, Ma YB, Huang XY, Cao TW, Chen JJ (2014) Polyacetylenes and anti-hepatitis B virus active constituents from Artemisia capillaris. Fitoterapia 95:187–193

    Article  CAS  PubMed  Google Scholar 

  80. Chen H, Ma YB, Huang XY, Geng CA, Zhao Y, Wang LJ, Chen JJ (2014) Synthesis, structure–activity relationships and biological evaluation of dehydroandrographolide and andrographolide derivatives as novel anti-hepatitis B virus agents. Bioorg Med Chem Lett 24(10):2353–2359

    Article  CAS  PubMed  Google Scholar 

  81. Zhang Q, Jiang ZY, Luo J, Cheng P, Ma YB, Zhang XM, Chen JJ (2008) Anti-HBV agents. Part 1: synthesis of alisol a derivatives: a new class of hepatitis B virus inhibitors. Bioorg Med Chem Lett 18(16):4647–4650

    Article  CAS  PubMed  Google Scholar 

  82. Hsu WC, Chang SP, Lin LC, Li CL, Richardson CD, Lin CC, Lin LT (2015) Limonium sinense and gallic acid suppress hepatitis C virus infection by blocking early viral entry. Antivir Res 118:139–147

    Article  CAS  PubMed  Google Scholar 

  83. Gao M, Nettles RE, Belema M, Snyder LB, Nguyen VN, Fridell RA, Serrano-Wu MH, Langley DR, Sun JH, O’Boyle DR II, Lemm JA (2010) Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465(7294):96–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wu SF, Lin CK, Chuang YS, Chang FR, Tseng CK, Wu YC, Lee JC (2012) Anti-hepatitis C virus activity of 3-hydroxy caruilignan C from Swietenia macrophylla stems. J Viral Hepat 19(5):364–370

    Article  PubMed  Google Scholar 

  85. Hassan ST, Berchová-Bímová K, Petráš J (2016) Plumbagin, a plant-derived compound, exhibits antifungal combinatory effect with amphotericin B against Candida albicans clinical isolates and anti-hepatitis C virus activity. Phytother Res 30(9):1487–1492

    Article  CAS  PubMed  Google Scholar 

  86. Lou S, Zheng YM, Liu SL, Qiu J, Han Q, Li N, Zhu Q, Zhang P, Yang C, Liu Z (2014) Inhibition of hepatitis C virus replication in vitro by xanthohumol, a natural product present in hops. Planta Med 80(02/03):171–176

    CAS  PubMed  Google Scholar 

  87. Bachmetov L, Gal-Tanamy M, Shapira A, Vorobeychik M, Giterman-Galam T, Sathiyamoorthy P, Golan-Goldhirsh A, Benhar I, Tur-Kaspa R, Zemel R (2012) Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. J Viral Hepat 19(2):e81–e88

    Article  CAS  PubMed  Google Scholar 

  88. Lan KH, Wang YW, Lee WP, Lan KL, Tseng SH, Hung LR, Yen SH, Lin HC, Lee SD (2012) Multiple effects of Honokiol on the life cycle of hepatitis C virus. Liver Int 32(6):989–997

    Article  PubMed  Google Scholar 

  89. Wagoner J, Negash A, Kane OJ, Martinez LE, Nahmias Y, Bourne N, Owen DM, Grove J, Brimacombe C, McKeating JA, Pécheur EI (2010) Multiple effects of silymarin on the hepatitis C virus lifecycle. Hepatol 51(6):1912–1921

    Article  CAS  Google Scholar 

  90. Blaising J, Lévy PL, Gondeau C, Phelip C, Varbanov M, Teissier E, Ruggiero F, Polyak SJ, Oberlies NH, Ivanovic T, Boulant S (2013) Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking. Cell Microbiol 15(11):1866–1882

    CAS  PubMed  Google Scholar 

  91. Roy K, Kanwar JR, Langerholc T (2017) Antiviral activity of selected Indian medicinal herbs against hepatitis E virus (Hev) in the established porcine cell model. J Res Edu Ind Med 23(1):3–12

    Google Scholar 

  92. Todt D, Moeller N, Praditya D, Kinast V, Friesland M, Engelmann M, Verhoye L, Sayed IM, Behrendt P, Thi VL, Meuleman P (2018) The natural compound silvestrol inhibits hepatitis E virus (HEV) replication in vitro and in vivo. Antivir Res 157:151–158

    Article  CAS  PubMed  Google Scholar 

  93. Panya A, Yongpitakwattana P, Budchart P, Sawasdee N, Krobthong S, Paemanee A, Roytrakul S, Rattanabunyong S, Choowongkomon K, Yenchitsomanus P (2019) Novel bioactive peptides demonstrating anti-dengue virus activity isolated from the Asian medicinal plant Acacia catechu. Chem Biol Drug Des 93(2018):100–109

    Article  CAS  PubMed  Google Scholar 

  94. Chandra D, Prasad K (2017) Phytochemicals of Acorus calamus (sweet flag). J Med Plants Stud 5(5):277–281

    Google Scholar 

  95. Yao X, Ling Y, Guo S, Wu W, He S, Zhang Q, Zou M, Nandakumar KS, Chen X, Liu S (2018) Tatanan a from the Acorus calamus L. root inhibited dengue virus proliferation and infections. Phytomedicine 42:258–267

    Article  CAS  PubMed  Google Scholar 

  96. Rosmalena R, Elya B, Dewi BE, Fithriyah F, Desti H, Angelina M, Hanafi M, Lotulung PD, Prasasty VD, Seto D (2019) The antiviral effect of Indonesian medicinal plant extracts against dengue virus in vitro and in silico. Pathogens 8(85):1–11

    Google Scholar 

  97. Pulipati S, Srinivasa Babu P, Devi BS, Devi GR, Bhanuja M (2015) Pharmacognostic studies of Alternanthera philoxeroides (mart.) griseb. J Pharmacogn Phytochem 4(2):202–204

    Google Scholar 

  98. Jiang W, Luo X, Kuang S (2005) Effects of Alternanthera philoxeroides griseb against dengue virus in vitro. J First Mil Med Univ 25(4):454–456

    Google Scholar 

  99. Bourjot M, Leyssen P, Eydoux C, Guillemot J, Canard B, Rasoanaivo P, Guéritte F, Litaudon M (2012) Chemical constituents of Anacolosa pervilleana and their antiviral activities. Fitoterapia 83:1076–1080

    Article  CAS  PubMed  Google Scholar 

  100. Jayakumar T, Hsieh C, Lee J, Sheu J (2013) Experimental and clinical pharmacology of Andrographis paniculate and its major bioactive phytoconstituent andrographolide. Evid-Based Complement Altern Med 2013(Article ID 846740):1–16

    Google Scholar 

  101. Tang LIC, Ling APK, Koh RY, Chye SM, Voon KGL (2012) Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC Complement Altern Med 12(3):1–10

    Google Scholar 

  102. Panraksa P, Ramphan S, Khongwichit S, Smith DR (2017) Activity of andrographolide against dengue virus. Antivir Res 139:69–78

    Article  CAS  PubMed  Google Scholar 

  103. Brandão GC, Kroon EG, Souza DER, Filho JDS, Oliveira AB (2013) Chemistry and antiviral activity of Arrabidaea pulchra (bignoniaceae). Molecules 18:9919–9932

    Article  PubMed  PubMed Central  Google Scholar 

  104. Parida MM, Upadhyay C, Pandya G, Jana AM (2002) Inhibitory potential of neem (Azadirachta indica juss) leaves on dengue virus type-2 replication. J Ethnopharmacol 79:273–278

    Article  CAS  PubMed  Google Scholar 

  105. Madhavan V, Yoganarasimhan S, Prasad R, Gurudeva M, Deveswaran R (2013) Pharmacognostical studies on the leaves of Basilicum polystachyon moench. J Tradi Med 8(1):118–126

    Google Scholar 

  106. Tan YP, Houston SD, Modhiran N, Savchenko AI, Boyle GM, Young PR, Watterson D, Williams CM (2019) Stachyonic acid: a dengue virus inhibitor from Basilicum polystachyon. Chem Eur J 25:5664–5667

    Article  CAS  PubMed  Google Scholar 

  107. Eng-Chong T, Yean-Kee L, Chin-Fei C, Choon-Han H, Sher-Ming W, Li-Ping CT, Gen-Teck F (2012) Boesenbergia rotunda: from ethnomedicine to drug discovery. Evid-Based Complement Altern Med 2012(Article ID 473637):1–25

    Google Scholar 

  108. Kiat TS, Pippen R, Yusof R, Ibrahim H, Khalid N, Rahman NA (2006) Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorg Med Chem Lett 16(12):3337–3340

    Article  CAS  PubMed  Google Scholar 

  109. Sajeesh T, Parimelazhagan T (2014) Analgesic, anti-inflammatory, and GC-MS studies on Castanospermum australe A. Cunn. & C. Fraser Ex hook. Sci World J 2014(Article ID 587807):1–9

    Google Scholar 

  110. Whitby K, Pierson TC, Geiss B, Lane K, Engle M, Zhou Y, Doms RW, Diamond MS (2005) Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. J Virol 79(14):8698–8706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Amresh G, Singh PN, Rao CV (2007) Antinociceptive and antiarthritic activity of Cissampelos pareira roots. J Ethnopharmacol 111:531–536

    Article  CAS  PubMed  Google Scholar 

  112. Sood R, Raut R, Tyagi P, Kumar P (2015) Cissampelos pareira linn: natural source of potent antiviral activity against all four dengue virus serotypes. PLoS Negl Trop Dis 9(12):e0004255

    Article  PubMed  PubMed Central  Google Scholar 

  113. Sithisarn P, Rojsanga P, Sithisarn P, Kongkiatpaiboon S (2015) Antioxidant activity and antibacterial effects on clinical isolated Streptococcus suis and Staphylococcus intermedius of extracts from several parts of Cladogynos orientalis and their phytochemical screenings. Evid Based Complementary Altern Med 2015(Article ID 908242):1–8

    Google Scholar 

  114. Klawikkan N, Nukoolkarn V, Jirakanjanakit N, Yoksan S, Wiwat C, Thirapanmethee K (2011) Effect of Thai medicinal plant extracts against dengue virus in vitro. MU J Pharm Sci 38(1–2):13–18

    Google Scholar 

  115. Karlowicz-Bodalska K, Han S, Freier J, Smolenski M, Bodalska A (2017) Curcuma longa as medicinal herb in the treatment of diabetic complications. Acta Pol Pharm 74(2):605–610

    CAS  PubMed  Google Scholar 

  116. Ichsyani M, Ridhanya A, Risanti M, Desti H, Ceria R, Putri DH, Sudiro TM, Dewi BE (2017) Antiviral effects of Curcuma longa L. against dengue virus in vitro and in vivo. IOP Conf Series: Earth Environ Sci Paper 101:1–10

    Google Scholar 

  117. Simoes L, Maciel G, Brandao G, Kroon E, Castilho R, Oliveira A (2011) Antiviral activity of Distictella elongata (vahl) urb. (Bignoniaceae), a potentially useful source of anti-dengue drugs from the state of minas gerais, Brazil. Lett Appl Microbiol 53:602–607

    Article  CAS  PubMed  Google Scholar 

  118. Marimoutou M, Le Sage F, Smadja J, D’Hellencourt CL, Gonthier MP, Da Silva CR (2015) Antioxidant polyphenolrich extracts from the medicinal plants Antirhea borbonica, Doratoxylon apetalum and Gouania mauritiana protect 3T3-L1 preadipocytes against H2O2, TNF-α and LPS inflammatory mediators by regulating the expression of superoxide dismut. J Inflamm 12(10):1–15

    Google Scholar 

  119. Haddad JG, Koishi AC, Gaudry A, dos Santos CND, Viranaicken W, Desprès P, El Kalamouni C (2019) Doratoxylon apetalum, an indigenous medicinal plant from mascarene islands, is a potent inhibitor of zika and dengue virus infection in human cells. Int J Mol Sci 20(2382):1–13

    CAS  Google Scholar 

  120. Bourjot M, Leyssen P, Eydoux C, Guillemot JC, Canard B, Rasoanaivo P, Guéritte F, Litaudon M (2012) Flacourtosides A-F, phenolic glycosides isolated from Flacourtia ramontchi. J Nat Prod 75(4):752–758

    Article  CAS  PubMed  Google Scholar 

  121. Ragasa CY, Macuha MR, De Los Reyes MM, Mandia EH, Van Altena IA (2016) Chemical constituents of Ficus septicaburm, F. Int J Pharm Clin Res 8(11):1464–1469

    Google Scholar 

  122. Huang N-C, Hung W-T, Tsai W-L, Lai F-Y, Lin Y-S, Huang M-S, Chen J-J, Lin W-Y, Weng J-R, Chang T-H (2017) Ficus septica plant extracts for treating dengue virus in vitro. Peer J 2017(5):e3448

    Article  Google Scholar 

  123. Tong XK, Qiu H, Zhang X, Shi LP, Wang GF, Ji FH, Ding HY, TangW DK, Zuo JP (2010) WSS45, a sulfated α-D-glucan, strongly interferes with dengue 2 virus infection in vitro. Acta Pharmacol Sin 31:585–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ali AM, Mackeen MM, El-Sharkawy SH, Hamid JA, Ismail NH, Ahmad FBH, Lajis NH (1996) Antiviral and cytotoxic activities of some plants used in Malaysian indigenous medicine. Pertanika J Trop Agric Sci 19(2/3):129–136

    Google Scholar 

  125. Rothan H, Zulqarnain M, Ammar Y, Tan E, Rahman N, Yusof R (2014) Screening of antiviral activities in medicinal plants extracts against dengue virus using dengue NS2B-NS3 protease assay. Trop Biomed 31(2):286–296

    CAS  PubMed  Google Scholar 

  126. Yang L, Jiang J (2009) Bioactive components and functional properties of Hottuynia cordata and its applications. Pharm Biol 47(12):1154–1161

    Article  CAS  Google Scholar 

  127. Nehdi IA, Sbihi H, Tan CP, Al-Resayes SI (2014) Leucaena leucocephala (Lam.) deWit seed oil: characterization and uses. Ind Crop Prod 52:582–587

    Article  CAS  Google Scholar 

  128. Ono L, Wollinger W, Rocco IM, Coimbra TLM, Gorin PAJ, Sierakowski M (2003) In vitro and in vivo antiviral properties of sulfated galactomannans against yellow fever virus (BeH111 strain) and dengue 1 virus (Hawaii strain). Antivir Res 60:201–208

    Article  CAS  PubMed  Google Scholar 

  129. Ganter JLMS, Cardoso ATM, Kaminski M, Reicher F (1997) Galactomannan fromthe seeds of Mimosa scabrella: a scaleup process. Int J Biol Macromol 21:137–140

    Article  CAS  PubMed  Google Scholar 

  130. Chowdhury MAR, Manirujjaman HMM (2017) Phytochemical and pharmacological activity of Myristica fragrans houtt (myristicaceae). Int J Toxicol Pharmacol Res 9(1):56–63

    Google Scholar 

  131. Jamshidi N, Cohen MM (2017) The clinical efficacy and safety of tulsi in humans: a systematic review of the literature. Evid-Based Complement Altern Med 2017(Article ID 9217567):1–13

    Google Scholar 

  132. Ling APK, Khoo BF, Seah CH, Foo KY, Cheah RK, Chye SM, Koh RY (2014) Inhibitory activities of methanol extracts of Andrographis paniculata and Ocimum sanctum against dengue–1 virus. Int Conf Biol Environ Food Eng 4–5:47–52

    Google Scholar 

  133. Pratheeba T, Taranath V, Sai Gopal DVR, Natarajan D (2019) Antidengue potential of leaf extracts of Pavetta tomentosa and Tarenna asiatica (rubiaceae) against dengue virus and its vector aedes aegypti (diptera: culicidae). Heliyon 5:e02732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Salehi B, Zakaria ZA, Gyawali R, Ibrahim SA, Rajkovic J, Shinwari ZK, Khan T (2019) Piper species: a comprehensive review on their phytochemistry, biological activities and applications. Molecules 24(7):1364

    Article  PubMed  PubMed Central  Google Scholar 

  135. Naseer S, Hussain S, Naeem N, Pervaiz M, Rahman M (2018) The phytochemistry and medicinal value of Psidium guajava (guava). Clin Phytosci 4(32):1–8

    Google Scholar 

  136. Trujillo-correa AI, Quintero-gil DC, Diaz-castillo F, Quiñones W, Robledo SM, Martinez-gutierrez M (2019) In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med 19(298):1–16

    CAS  Google Scholar 

  137. Prabhu VV, Guruvayoorappan C (2012) Anti-inflammatory and anti-tumor activity of the marine mangrove Rhizophora apiculata. J Immunotoxicol 9(4):341–352

    Article  CAS  PubMed  Google Scholar 

  138. Yu J, Wu Y, Tseng C, Lin C, Hsu Y, Chen Y-H, Lee J-C (2017) Schisandrin A inhibits dengue viral replication via upregulating antiviral interferon responses through STAT signaling pathway. Sci Rep 7(45171):1–12

    Google Scholar 

  139. Zhao Q, Chen XY, Martin C (2016) Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci Bull 61(18):1391–1398

    Article  CAS  Google Scholar 

  140. Zandi K, Teoh B, Sam S, Wong P, Mustafa MR, Abubakar S (2012) Novel antiviral activity of baicalein against dengue virus. BMC Complement Altern Med 12(214):1–9

    Google Scholar 

  141. Manojj D, YasasveM KK, Sai Ramesh A (2020) In vitro cytotoxicity study and anti-brucella activity of Tarenna asiatica (L.). S Afr J Bot 128:54–61

    Article  CAS  Google Scholar 

  142. Sánchez I, Gómez-Garibay F, Taboada J, Ruiz BH (2000) Antiviral effect of flavonoids on the dengue virus. Phytother Res 14:89–92

    Article  PubMed  Google Scholar 

  143. Allard P, Dau ETH, Eydoux C, Guillemot J-C, Dumontet V, Poullain C, Canard B, Gueritte F, Litaudon M (2011) Alkylated flavanones from the bark of Cryptocarya chartacea as dengue virus NS5 polymerase inhibitors. J Nat Prod 74:2446–2453

    Article  CAS  PubMed  Google Scholar 

  144. Kanjanasirirat P, Suksatu A, Manopwisedjaroen S, Munyoo B, Tuchinda P, Jearawuttanakul K, Seemakhan S, Charoensutthivarakul S, Wongtrakoongate P, Rangkasenee N, Pitiporn S (2020) High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin A as anti-SARS-CoV-2 agents. Sci Rep 10(1):1–2

    Article  Google Scholar 

  145. Park JY, Yuk HJ, Ryu HW, Lim SH, Kim KS, Park KH, Ryu YB, Lee WS (2017) Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J Enzyme Inhib Med Chem 32(1):504–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chen CJ, Michaelis M, Hsu HK, Tsai CC, Yang KD, Wu YC, Cinatl J Jr, Doerr HW (2008) Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. J Ethnopharmacol 120(1):108–111

    Article  PubMed  PubMed Central  Google Scholar 

  147. Chang FR, Yen CT, Ei-Shazly M, Lin WH, Yen MH, Lin KH, Wu YC (2012) Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia. Nat Prod Commun 7(11):1934578X1200701103

    Google Scholar 

  148. Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L, Ho TY, Hsieh CC, Chao PD (2005) Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antivir Res 68(1):36–42

    Article  CAS  PubMed  Google Scholar 

  149. Wen CC, Shyur LF, Jan JT, Liang PH, Kuo CJ, Arulselvan P, Wu JB, Kuo SC, Yang NS (2011) Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. J Tradit Complement Med 1(1):41–50

    Article  PubMed  PubMed Central  Google Scholar 

  150. Park JY, Ko JA, Kim DW, Kim YM, Kwon HJ, Jeong HJ, Kim CY, Park KH, Lee WS, Ryu YB (2016) Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J Enzyme Inhib Med Chem 31(1):23–30

    Article  CAS  PubMed  Google Scholar 

  151. Lau KM, Lee KM, Koon CM, Cheung CS, Lau CP, Ho HM, Lee MY, Au SW, Cheng CH, Bik-San Lau C, Tsui SK (2008) Immunomodulatory and anti-SARS activities of Houttuynia cordata. J Ethnopharmacol 118(1):79–85

    Article  PubMed  PubMed Central  Google Scholar 

  152. Park JY, Jeong HJ, Kim JH, Kim YM, Park SJ, Kim D, Park KH, Lee WS, Ryu YB (2012) Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol Pharm Bull:b12–b00623

    Google Scholar 

  153. Saleh MS, Kamisah Y (2021) Potential medicinal plants for the treatment of dengue fever and severe acute respiratory syndrome-coronavirus. Biomol Ther 11(1):42

    CAS  Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mondal, A., Banerjee, S., Chakraborty, U., Das, A., Debnath, A., Majumdar, R. (2024). Natural Plants in the Treatment of Renal Syndrome Caused by Viruses: Ethnopharmacology, Chemistry, and Clinical and Preclinical Studies. In: Pal, D. (eds) Anti-Viral Metabolites from Medicinal Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-12199-9_23

Download citation

Publish with us

Policies and ethics